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a b s t r a c t

Recently gecko's feet and gecko-inspired two-level fibrillar adhesives have been found to show direc-
tional adhesion property. In this paper, a theoretical model is proposed to predict the directional
adhesion law of a two-level seta. The model predicts that for a typical two-level seta, there exists a
structural parameters-dependent critical shear force, below and above which the bending deformation
dominates or the axial deformation dominates. In the bending deformation dominated region, the
adhesion force increases almost linearly with the applied shear force and the adhesion law can be tuned
effectively by varying the structural parameters; while in the axial deformation dominated region, the
adhesion force is no longer limited by the bending deformation and the adhesion law is almost the same
with that predicted by the classical Kendall model. Additionally, an approximately optimum structure
behaving consistently with geckos' hierarchical setal arrays is obtained by designing the structural pa-
rameters properly, especially the slanted angles. Thus this model can aid in interpreting the experimental
test outcomes and designing optimal biomimetic two-level adhesives.

© 2014 Published by Elsevier Masson SAS.
1. Introduction

Distinctive hairy attachment systems of geckos have extraordi-
nary controllable adhesive abilities on vertical walls and ceilings.
These systems consist of array of tilted setaewith twoormore levels
of hierarchy, which allow for a large contact area on almost any
surface and hence feature high adhesion and frictionmainly derived
from molecular interaction (Autumn et al., 2000; Autumn et al.,
2002). The topmost level of seta, which directly contacts with or
peels fromthe substrateduring the locomotion, appears as one thin-
film terminal element of spatulate shape and is also called spatula.

The asymmetrical or tilted adhesive structure of the seta en-
dows gecko's feet the directional adhesion property, and thus en-
ables geckos to achieve strong attachment and to detach easily in a
controllable manner (Autumn et al., 2006). Specifically speaking, a
gecko gains strong adhesion strength when it applies a shear force
along the griping direction on the substrate; but when it retracts
the shear force or applies the shear force along the opposite di-
rection, the adhesion strength vanishes and the topmost spatula
peels easily from the substrate. This phenomenon arouses lots of
research interests in exploring its mechanism (Chen et al., 2009,
2008; Filippov et al., 2011; Gao et al., 2005; Peng et al., 2010;
.

Pesika et al., 2007; Tian et al., 2006; Varenberg et al., 2010; Yao,
2013; Yao and Gao, 2006, 2009), and also stimulates extensive
developments of biomimetic single-level (Aksak et al., 2007; Lee
et al., 2008) and hierarchical fibrillar adhesives (Jeong et al.,
2009; Jin et al., 2012; Murphy et al., 2009) as well as applications
of directional adhesion in robots (Yu et al., 2011) and transfer
printing (Carlson et al., 2011).

Many models have been proposed to explain the directional
adhesion property of geckos and gecko-inspired fibrillar adhesives.
Tian et al. (2006) proposed a frictional adhesion model based on
force equilibrium and found that the peel-off force varies strongly
with the peeling angle. Pesika et al. (2007) considered a length term
in their peel zone model and derived a relation between the peel-
off force and the peeling angle. However they did not strictly treat
the deformation of the seta. Peng et al. (2010) studied the effect of
the contact length of a nanofilm on the adhesion force. Gao et al.
(2005) simulated the adhesion behavior of a curved seta and
found that the adhesion force is maximized when the pulling angle
is about 30�. Based on this study, Yao and Gao (2006) further
studied the amplifying effect of gecko's hierarchical structure on its
directional adhesion property. Chen et al. (2008) proposed a hier-
archical model to concisely explain the adhesion behavior by
modeling the spatula level, the seta level and the toe level as a
peeling film described by the Kendall model, a stretchable rod and
an elastic plate under displacement controlled pulling respectively.
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However most of these works only model the bottom level of the
seta (Gao et al., 2005) or the topmost spatula (Chen et al., 2009;
Filippov et al., 2011; Peng et al., 2010; Pesika et al., 2007;
Varenberg et al., 2010) or treat them separately (Chen et al.,
2008; Tian et al., 2006). Numerical models such as FEM models
(Sauer, 2009) could treat the two levels simultaneously, but they
could not be easily utilized for exploring the correlation between
the structure and the corresponding adhesion property and opti-
mizing structural parameters. Particularly, it is not clearly known
how the two-level structure of geckos' feet and gecko-inspired
adhesives contributes to the distinctive directional adhesion
property as geckos show in a directional adhesion test. Motivated
by such a problem, we propose a theoretical model that can predict
the directional adhesion behavior of a two-level fibrillar structure.

2. Modeling

A two-level seta is considered as shown in Fig. 1(c). The bottom
level is a beam with length l1, bending stiffness EI1, and axial stiff-
ness EA1, and the top level is a spatula with length l2, bending
stiffness EI2, and axial stiffness EA2. The slanted angle of the beam at
the bottom is a1, and the angle between the beam and the spatula is
a2. The latter angle is prevalent in bio-/biomimetic adhesives as
shown in Fig. 1(a) and (b) (Arzt et al., 2003; Filippov et al., 2011) and
is found to have a significant influence on the adhesion properties
as will be shown in this paper. The adhesion between the two-level
seta and a rigid contacting surface under the coupling effect of a
normal force Fn and a shear force Ft is studied in the present paper.
The work of adhesion per unit length of the contact interface be-
tween them is denoted by u. When being applied a comparatively
large Fn and Ft, the seta will deform and form side contact with the
Fig. 1. SEM pictures of biological adhesives and schematic figures of a two-level fibrillar str
animals with adhesion capabilities (Arzt et al., 2003, Copyright (2003) National Academy
two-level seta.
rigid surface. The arc length of the non-contact part along the
whole structure, i.e. the arc-length coordinate s

0
of the contact

boundary, is termed the real “non-contact length” a
0
. The slanted

angles of the beam and spatula after deformation are termed q1 and
q2 as shown in Fig. 1(d).

A side contact model for a single-level extensible fiber was
proposed in a previous paper (He et al., 2013). In the paper we
applied a variational method to the total energy of the system
consisting of the axial strain energy, the bending strain energy, the
interface energy and the potential energy of external forces. By
formulating the energy functional in a convected coordinate s
which is initially established along the arc length of the unde-
formed fiber, we derived the governing equation and adhesion
boundary condition for the fiber so that the adhesion mechanics
problem of an extensible fiber can be tackled in a very concise way.
The governing equation and adhesion boundary condition will be
directly cited for modeling the two-level seta in the present paper.

Applying the governing equation to the beam and the spatula
respectively, we have:

EI1
ⅆ2q1

ⅆs2
þðFn sin q1þFt cos q1Þ½1þðFt sin q1�Fn cos q1Þ=EA1� ¼0;

0� s� l1;

(1)

EI2
ⅆ2q2

ⅆs2
þðFn sin q2þFt cos q2Þ½1þðFt sin q2�Fn cos q2Þ=EA2� ¼0;

l1 � s� a:

(2)
ucture. (a) Spatulae of Gekko gecko (Filippov et al., 2011); (b) feet structures of typical
of Sciences, U.S.A.); (c) and (d) the undeformed and deformed configurations of the
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where q1 and q2 are the slanted angles of the beam and the spatula
at the convected coordinate s, and a is the non-contact length
measured in the convected coordinate. In the following analysis, a
is called the non-contact length for simplicity. As has been shown in
the previous paper (He et al., 2013), small axial strain and negligible
shear strain are assumed during themodeling process, but it should
also be noted that axial deformation and large bending deforma-
tion are captured in the above governing equations. Especially
when the axial stiffness EAi (i ¼ 1,2) is infinite, i.e. neglecting the
axial deformation, the governing equations degenerate to the
classical deformation equation of beam with large bending
deformation.

Applying the adhesion boundary condition to the two-level seta
yields:

"
1
2
EI2

�
ⅆq2
ⅆs

�2

þ ðFt sin q2 � Fn cos q2Þ2
2EA2

#
s¼a

¼ u: (3)

From the point of view of fracture mechanics, Eq. (3) means that
at equilibrium, the energy release rate of the system (can be seen as
an interfacial crack) equals the work of adhesion.

By using the angle relation and bending moment condition at
the connecting point between the beam and the spatula, we have:

q2ðl1Þ � q1ðl1Þ ¼ a2; EI2
ⅆq2
ⅆs

ðl1Þ ¼ EI1
ⅆq1
ⅆs

ðl1Þ: (4)

The essential boundary conditions can also be written as:

qð0Þ ¼ a1; qðaÞ ¼ p

2
: (5)

The governing Eqs. (1) and (2) and the adhesion boundary
condition (3) show that both the large bending deformation and
the axial deformation bring geometrical nonlinearity to the adhe-
sion problem.

For a special but insightful case of no external forces being
applied to the two-level seta, Eqs. (1) and (2) degenerate to, EI1d2q1/
ds2 ¼ 0, 0 � s � l1, EI2d2q2/ds2 ¼ 0, l1 � s � a, i.e. EI1dq1/ds ¼ EI2dq2/
ds ¼ constant bending moment, where the Eq. (4) is utilized. This
means that the seta undergoes a pure bending deformation.
Meanwhile Eq. (3) degenerates to [1/2EI2(dq2/ds)2]s¼a ¼ u, i.e.

EI2ðⅆq2=ⅆsÞs¼a ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
2EI2u

p
, which implies that the equivalent

bending moment induced by the adhesion force at the adhesion
boundary is Meq ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2EI2u

p
. Assuming that there exists a finite

contact length lc(lc ¼ l � a) between the seta and the rigid surface,
the bending angles for the beam and the spatula are Meql1/EI1 and
Meq(l2 � lc)/EI2 respectively. By using Eqs. (4) and (5), we obtain

Meqðl2 � lcÞ
EI2

þMeql1
EI1

¼ p

2
� ða1 þ a2Þ: (6)

This equation can be written in the following non-dimensional
form:

�
1� lc

�
¼
�
l2
l1

��1�EI2
EI1

�1=2
( ffiffiffiffiffiffiffiffiffiffi

EI1
2ul21

s hp
2
�ða1þa2Þ

i
�
�
EI2
EI1

�1=2
)
;

(7)

wherelc ¼ lc=l2. Only when
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EI1=ð2ul21Þ

q
is small enough, l2/l1 is

large enough, and the slanted angles a1 and a2 are large enough
that the right hand side of Eq. (7) is smaller than 1, there could exist
a finite contact length. Moreover, the right hand side of Eq. (7)
varies non-monotonically with EI2/EI1 and the turning point isffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EI1=2ul21

q
ðp=4� a1 þ a2=2Þ. This is mainly due to a significant fact
that the equivalent bending moment is proportional to the square
root of EI2. For a single-level structure, the contact length also in-

creases with the decrease of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EI=ð2ul2Þ

p
, where EI and l are the

bending stiffness and length of the single-level structure.
For the general case, the adhesion problem can be analyzed as

follows. Firstly Eqs. (1) and (2) can be integrated to take the
following forms respectively:

1
2
EI1

�
ⅆq1
ⅆs

�2
¼�Ft sinq1þFn cosq1�

ðFt sinq1�Fn cosq1Þ2
2EA1

þM0;

(8)

1
2
EI2

�
ⅆq2
ⅆs

�2
¼�Ft sin q2þFn cos q2�

ðFt sin q2�Fn cos q2Þ2
2EA2

þM;

(9)

where M
0
and M are integration constants to be determined. By

applying an appropriate variable transformation to Eq. (9) as has
been shown in the previous paper (He et al., 2013), we can obtain a
formula as shown below:

ffiffiffiffiffiffiffiffiffiffi
2EI2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mð1þq�pÞð1þ l2Þ

p ½Fð4ðp=2Þ;mÞ� Fð4ðq2ðl1ÞÞ;mÞ� ¼ a� l1;

(10)

where F(x, m) is the incomplete elliptical integral of the first kind,
and

M¼ Ft þu; N¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2n þF2t

q
; tanf¼ Fn

Ft
; q¼ N

M
; p¼ N2

2EA2M
;

l1 ¼
ðq�2pÞþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2þ4p

q
1þq�p

; l2 ¼
�ðq�2pÞþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2þ4p

q
1þq�p

;m¼ l1þl2

1þl2
;

4
�
q
�¼

8>>>>>><
>>>>>>:

Arcsin

" ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þl2Þð1þ sinðq�fÞÞ
2þl2ð1þ sinðq�fÞÞ

s #
; q�f�p

2

p�Arcsin

" ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þl2Þð1þ sinðq�fÞÞ
2þl2ð1þ sinðq�fÞÞ

s #
; q�f>

p

2

:

(11)

Based on Eq. (8), Eq. (9) and the boundary condition (Eq. (4)) at
s ¼ l1, we have:

M0 ¼ EI2
EI1

�
N sinðf� q2ðl1ÞÞ �

1
2

N2

EA2
sin2ðf� q2ðl1ÞÞ þM

�

� N sinðf� q2ðl1Þ þ a2Þ þ
1
2

N2

EA1
sin2ðf� q2ðl1Þ þ a2Þ:

(12)

Therefore via applying a similar variable transformation to Eq.
(8), we obtain another formula as shown below:

ffiffiffiffiffiffiffiffiffiffi
2EI1

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M0ð1þq0 �p0Þ�1þl02

�q ½Fð40ðq2ðl1Þ�a2Þ;m0Þ�Fð40ða1Þ;m0Þ�¼ l1;

(13)

where
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q0 ¼ N=M0; p0 ¼ N2
.
ð2EA1M

0Þ;
:

Fig. 2. Effects of the axial stiffness (a) and the length ratio l2/l1 (b) on the critical line of
adhesion for the two-level seta. In (a), c2 ¼ EA2/u, c1 ¼ EA1/u and the “inf” denotes
infinite.
l01 ¼ ðq0 � 2p0Þ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ 4p0

q
1þ q0 � p0

; l02 ¼ �ðq0 � 2p0Þ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q02 þ 4p0

q
1þ q0 � p0

;

m0 ¼ l01 þ l02
1þ l01

;

40�q� ¼

8>>>>>>><
>>>>>>>:

Arcsin

" ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1þ l02

�ð1þ sinðq� fÞÞ
2þ l02ð1þ sinðq� fÞÞ

s #
; q� f � p

2

p� Arcsin

" ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1þ l02

�ð1þ sinðq� fÞÞ
2þ l02ð1þ sinðq� fÞÞ

s #
; q� f>

p

2

:

(14)

By combing Eqs. (10) and (13), a group of equations describing
the mechanical response of the two-level seta is obtained as shown
below:

8>>>>><
>>>>>:

ffiffiffiffiffiffiffiffiffiffi
2EI2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mð1þq�pÞð1þl2Þ

p ½Fð4ðp=2Þ;mÞ�Fð4ðq2ðl1ÞÞ;mÞ�¼a� l1

ffiffiffiffiffiffiffiffiffiffi
2EI1

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M0ð1þq0 �p0Þ�1þl02

�q ½Fð40ðq2ðl1Þ�a2Þ;m0Þ�Fð40ða1Þ;m0Þ�¼ l1

(15)

The following conclusions can be made based on Eq. (15). On
one hand, if the applied forces Ft and Fn is given, q2(l1) can be firstly
solved from the second Equation of Eq. (15) and then a can be found
from the first Equation. On the other hand, it can be assumed that
the two-level seta loses side contact when a¼ l1 þ l2 (The jumping-
off mode of losing sie contact is not considered here, for it is

possible for a positive Ft only when
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EI1=ð2ul21Þ

q
is small enough, l2/

l1 is large enough, or the slanted angles a1 anda2 are very large).
This is similar to that discussed for the single-level one in our
previous papers (He et al., 2012, 2013), therefore by setting
a¼ l1þ l2 and finding the roots (Fn and q2(l1)) of the implicit Eq. (15)
for each given Ft, a critical line of adhesion (contours of a¼ l1þ l2) in
a 2D force space Fn � Ft can be easily obtained as displayed in Fig. 2.
The critical line of adhesion means that for a given Ft, once the
applied normal force Fn is decreased to reach the critical Fn at the
critical line, the seta will lose side contact with the contacting
surface. If the critical Fn on a critical line for a given Ft is negative, its
absolute value is termed the “normal pull-off force” ((Fn)pull-off) or
the normal adhesion force and detachment will happen. We will
discuss the results in the following section.

3. Results and discussions

Set EI1=ul21 ¼ 5, a1 ¼ p/6,a2 ¼ p/6, EI2/EI1 ¼ 0.4, l2/l1 ¼ 0.1, EA2/
u ¼ 50 and EA1/u ¼ ∞ as reference variables. By changing one
variable at a time, the directional adhesion behavior of the two-
level seta is studied systematically. The non-dimensional normal
and shear forces are denoted byFn ¼ Fn=u and Ft ¼ Ft=u.

3.1. General description of the directional adhesion behavior

Figs. 2 and 3 show that the critical line of adhesion for the two-
level seta usually consists of two different parts. At the lower part,
(Fn)pull-off is smaller than the critical value determined by the Ken-
dall model (Kendall, 1975) (a classical model used to predict the
peeling force of an extensible film from a rigid substrate without
considering the bending deformation) and increases almost linearly
with Ft. While at the upper part, Fn changes with Ft almost along the
critical line of adhesion for the Kendall model. This is because at the
lower part, increasing the shear force within a certain degree
benefits for closing the interfacial crack to a larger extent
(increasing the contact length), hence a higher normal pull force is
needed to completely open the crack. While when Ft is close to the
maximum allowable shear force (Ft)max (ðFtÞmax ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2EA2u

p
), the

axial deformation energy per unit length at the contact boundary,
which is a quadratic function of Ft, dominates the energy release
rate as shown in the left hand side of Eq. (3). Thus in this case Ft
contributes to the opening of the interfacial crack and the adhesion
force decreases with the increase of Ft. Therefore the 2D force space
can be roughly divided into a bending deformation dominated re-
gion (small Ft relative to (Ft)max) and an axial deformation domi-
nated region (large Ft close to (Ft)max), so that the lower part belongs
to the bending deformation dominated region and the upper part
belongs to the axial deformation dominated region.

Corresponding to the above observations, the directional
adhesion behavior for typical structures can be approximately
described quantitatively. Firstly in the bending deformation
dominated region, the equation for the critical line can be
approximated as:



Fig. 3. Effects of the bending stiffness ratio (a), the second slanted angle (b) and the
distribution of the two angles (c) on the critical line of adhesion for the two-level seta.
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Fn ¼ ðFnÞ0 þ
Ft
k
; (16)

where k is the slope of the straight line as shown in Fig. 2 and (Fn)0
means the adhesion force of the structure in its natural state
(Ft ¼ 0). It is clear that 1/jkj characterizes the increasing rate of the
normal adhesion force with the applied shear force. In the axial
deformation dominated region, the equation for the critical line is
usually the same with that of the Kendall model (Kendall, 1975),
which is also given below:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2t þ F2n

q
þ F2t þ F2n

2EA2
� Ft � u ¼ 0: (17)

The maximum (Fn)pull-off is another important characteristic
parameter for the directional adhesion behavior. It increases with
the axial stiffness of the spatula.

The effect of the axial stiffness of the seta on the adhesion
behavior is displayed in Fig. 2(a). If the axial deformation is not
considered (c1 ¼ c2 ¼∞), (Fn)pull-off increases monotonically with Ft
along the critical line for the Rivlinmodel (Rivlin,1944) at the upper
part of the critical line, different from the extensible case
(c1 ¼ c2 ¼ 50). Fig. 2(a) also shows that the differences among
curves for the cases of (c2 ¼ 50, c1 ¼ 50), (c2 ¼ 50, c1 ¼ 100) and
(c2 ¼ 50, c1 ¼ ∞) are relatively small and negligible, from which it
can be inferred that the axial stiffness of the beam has almost
negligible influence on the adhesion behavior. Therefore the exis-
tence of a maximum (Fn)pull-off is due to the extensibility of the
topmost spatula, and in the following analysis, the axial stiffness of
the beam is taken to be infinite as mentioned in the beginning of
this section.

The effects of the length ratio, the bending stiffness ratio, and
the second slanted angle of the two-level seta on the directional
adhesion behavior are also studied. Figs. 2(b), 3(a) and (b) show
respectively that in the bending deformation dominated region, if
the applied shear force Ft is fixed, the normal adhesion force in-
creases with the increase of l2/l1 and EI2/EI1 in the range of EI2/
EI1 > 0.2 and also increases with the increase of the slanted angle
a2. These results can be explained qualitatively as follows. Under
the effect of the same normal and shear forces within the bending
deformation dominated region, structure with larger l2/l1, larger
EI2/EI1 (which should be beyond the turning point) or larger
slanted angles can form larger contact length with the contacting
surface as has been demonstrated for the case of no external
forces being applied in Section.2 (in that case the turning point
for EI2/EI1 is about 0.17), thus a larger normal pull-off force is
usually required to completely peel the structure from the sur-
face. While Figs. 2(b), 3(a) and (b) also show that, in the axial
deformation dominated region the adhesion force is usually
saturated and does not rely on these structural parameters, for
bending deformation is accommodated and no longer limits the
normal pull-off force.

A significant difference of the adhesion behavior of a two-level
seta from that of a single-level is shown in Fig. 4. For a single
level setae, if the non-dimensional stiffness EI/(ul2) is much smaller
than 1, its critical line of adhesion could be very close to the Kendall
limit (eg. the case of EI/ul2 ¼ 1/2 shown in Fig. 4), but meanwhile its
normal adhesion force in its natural state (Ft ¼ 0) is comparatively
large and cannot be decreased by adjusting its slanted angle (He
et al., 2013). But for the two level setae, if the structural parame-
ters are within a certain range, the (Fn)0 can be independently
controlled and meanwhile the maximum normal pull off force re-
mains constant as demonstrated in Figs. 2(b), 3(a) and (b). This is
because for a typical two-level setae, in the bending deformation
dominated region, the bending deformation limits the adhesion



Fig. 4. Comparison of the directional adhesion behavior of the two-level seta with
single-level ones (for all the structures, EA/u ¼ 50or EA2/u ¼ 50).
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force and the adhesion force can be adjusted bymany variables; but
in the axial deformation dominated region, the bending deforma-
tion is accommodated, so that the normal pull off force saturates to
the limit set by the Kendall model.
Fig. 5. (a) Effect of the bending stiffness ratio on the adhesion force in its natural state
(Fn)0 and (b) effect of the slanted angle a2 on the increasing rate 1/jkj of the adhesion
force with the applied shear force (a1 þ a2 ¼ p/6).
3.2. Tunability of the directional adhesion property

With the purpose of tuning the directional adhesion property of
the seta, the influences of the structural parameters on the slope k
and the adhesion force (Fn)0 of the critical line are further discussed.
The results show that decreasing EI1=ul21, or increasing a1, a2 or l2/l1
leads to effective reduction of (Fn)0, i.e. enhancing the adhesion
performance, but (Fn)0 does not decrease monotonically with EI2/
EI1. It is also revealed that only l2/l1 and a2 have an observable in-
fluence on the slope k. A case of changing a2 while keeping a1 þ a2
constant is further analyzed. Fig. 3(c) demonstrates that the (Fn)0
almost remains constant, while the slope could be adjusted effec-
tively by distributing the two angles.

In order to interpret these results, the small deformation theory
is adopted to derive two simple formulas to show the effects of the
structural parameters on the characteristic parameters k and (Fn)0.
Although they are not quantitatively correct, they could help
interpret the directional adhesion results qualitatively. In the
bending deformation dominated region, the axial deformation is
neglected for its influences on (Fn)0 and k are comparatively small.
Because we just care about the critical state of adhesion, only the
case of a ¼ l1 þ l2 is considered. By using the fundamental theory of
mechanics of materials, we have:

½Ft cosða1þa2ÞþFn sinða1þa2Þ�l22
2EI2

þMeql2
EI2

þ½Ft cosa1þFn sina1�l21
2EI1

þ
	
Ft cosða1þa2Þl2þFn sinða1þa2Þl2þMeq



l1

EI1
¼p

2
�ða1þa2Þ;

(18)

where Meq ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2EI2u

p
.

Let Ft ¼ 0 in Eq. (18), then the following formula can be
obtained:
�
Fn

�
0 ¼ ðFnÞ0

u
¼

ffiffiffiffiffiffi
8m

p
sinða1 þ a2Þ

ffiffiffiffiffiffiffiffi
m=2

p
Dq� x1=2 � xx�1=2

x2
�
xþ 2xþ sin a1=sinða1 þ a2Þ

;

(19)

where Dq ¼ p/2 � (a1 þ a2), m ¼ EI1=ul21, x ¼ EI2/EI1,x ¼ l2/l1. By
using Eq. (7), Eq. (19) can be reduced to the following form.

�
Fn

�
0¼

ffiffiffiffiffiffi
8m

p
sinða1þa2Þ

	
x2
�
xþ2xþsina1=sinða1þa2Þ


 1
x1=2

�
� lc
l1

�
:

(20)

From Eq. (20), it can be inferred that if the structure could hold
the adhesion state (lc > 0) only under the action of the equivalent
bending moment Meq, it has adhesion capability in its natural state
(Ft ¼ 0); otherwise if lc does not exist or lc < 0, we have (Fn)0 > 0,
which means that the structure is not sticky in the natural state,
thus behaving like gecko's feet. In fact, it is natural to draw this
conclusion, and it does not rely on the small deformation approx-
imation. The ðFnÞ0�x curves obtained from the small deformation
approximation (Eq. (19)) and the actuate model are plotted as
shown in the Fig. 5 (a). It shows that they are in good agreement
with each other qualitatively, and both the two peak positions of
the two curves are also very close to the approximate value x ¼ 0.1.

By differentiating Eq. (18), the absolute value of the slope k can
as be obtained as:



jkj ¼ jFt j
jFnjz

����ⅆFtⅆFn

���� ¼ tanða1 þ a2Þ

2
66641� 1

sin2ða1 þ a2Þ

�

x2=xþ2x
sin a2

þ cot a2

�
cotða1 þ a2Þ þ 1

�
3
7775 (21)
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From this formula we can see that m does not affect the slope,
and if x≪ 2x, the influence of x is negligible. It could be checked that
only x and a2 have a noticeable effect on the slope. When a1 þ a2
remains constant, increasing a2 can significantly increase 1/jkj. The
1/jkj � a2 curves calculated from the approximation and the actuate
model are displayed in Fig. 5(b), which shows that they are quali-
tatively consistent with each other. Therefore it can be summarized
that the two formulas derived from the small deformation
approximation could help interpret the tunability of the directional
adhesion law and designing structural parameters.

From the point of view of optimization, it should be guaranteed
that the hierarchical structure does not have adhesion capability in
its natural state, i.e.(Fn)0 � 0, so that no work needs to be done to
break up the adhesion. In order to achieve detachment, it is only
necessary to decrease Ft to some extent. According to the above
discussion, such a relation

�
l2
l1

��1�EI2
EI1

�1=2
( ffiffiffiffiffiffiffiffiffiffi

EI1
2ul21

s hp
2
�ða1þa2Þ

i
�
�
EI2
EI1

�1=2
)
�1 (22)

can be applied to ensure that (Fn)0 � 0. Therefore in order to
optimize the structure, balance should be made among the
following parameters: EI1=ul21,EI2/EI1, l2/l1 and a1 þ a2. Then the
Fig. 6. Comparison of the predicted adhesion behavior for an optimal structure (a) with exp
2006) and (c) in displacement controlled mode (Zhao et al., 2008).
total angle a1þ a2 should be reasonably distributed between a1and
a2. In one opposite case of a2 being very large and a1 being almost
zero, the normal stiffness of the seta after the spatula forms com-
plete contact with the contacting surface (Kn ¼ 3EI1/sin2a1) is too
large, which is not beneficial for achieving strong adhesion on
rough surfaces. On the other opposite case of very small a2 and
large a1, the maximum (Fn)pull-off is far lower than that given by the
Kendall model (as shown in Fig. 3(c)). Thus when choosing the
optimal angle for a2, we should first guarantee the maximum
(Fn)pull-off is maximized, and then decrease the normal stiffness
(decreasing a2) as much as possible. For the calculated case, an
approximately optimum angle for a2 is about p/6, and an optimal
angle must be at its neighborhood. The critical line of adhesion for
p/6 is also plotted in Fig. 6(a), and its difference with that of the
Kendall model is clearly shown. Evidently for a general case,
optimal values depend on other structural parameters.

3.3. Further discussions

Concerning the optimization of hierarchical fiber arrays, the
structural stability (no lateral collapse happens) requires high
bending stiffness, short length and large gap between adjacent fi-
bers. While rough surface adaptability needs low effective stiffness,
which in turn requires low bending stiffness, long length and large
erimental results on gecko's feet obtained (b) in force controlled mode (Autumn et al.,
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gap. As the objective of optimization, high-performance adhesion
necessitates dense distribution of the fiber array and strong
directionality in the adhesion of a single fiber. As discussed above,
various parameters significantly influence the latter one. Thus in
order to search for an optimal adhesion structure, balances should
be made among these constraints and the multiple objectives.
Obviously, optimization of the structural parameters is not an easy
task. However, further studies on the optimization should be con-
ducted to aid the design of hierarchical adhesives.

We also compare our model with experimental outcomes of
hierarchical fibrillar bio-/biomimetic structures. The comparisons
reveal that our model could explain well the directional adhesion
test outcomes of gecko's hierarchical setal arrays in the literatures.
Autumn et al. (2006) first did the test in a force-loaded mode and
found that, as shown in Fig. 6(b), the structure is not adhesive in its
natural state and the adhesion force increases almost linearly with
the applied shear force until the a maximum shear force is reached.
As shown in Fig. 6(a), the aforementioned optimal structure
(a2 ¼ p/6) displays such directional adhesion property. In addition,
the existence of the so called “maximum shear force” is due to that
when such a shear force is applied, the pull force equals the
maximum pull-off force and detachment will happen. Zhao et al.
(2008) also did a delicate adhesion test in a displacement-loaded
mode, and plotted a complete critical line of adhesion as shown
in Fig. 6(c). It shows that when the shear force exceeds the above
calledmaximumvalue, the adhesion force decreases with the shear
force. This result is consistent with the result predicted by our
model as shown in Fig. 6(a).

Murphy et al. (2009) also conducted directional adhesion test on
their two-level adhesives in displacement-loaded mode, and found
similar adhesion behavior with that obtained by Zhao et al. (2008),
which could also be interpreted easily by using our model. Jeong
et al. (2009) tested the adhesion behavior of a fiber with a small
spatula and found that the results are in good agreement with the
Kendall model. It can be seen as a special case of our model when
the structure is very flexible. Thus our model can help interpret
experimental test outcomes of hierarchical biomimetic fibrillar
structures.

4. Conclusion

In conclusion, an adhesion model is proposed to predict the
directional adhesion law of two-level fibrillar bio-/biomimetic
structures. The model predicts that there exists a structural
parameters-dependent critical shear force, below and above which
the bending deformation dominates or the axial deformation dom-
inates. In the bending deformation dominated region, the adhesion
force increases almost linearly with the applied shear force and the
adhesion law can be tuned effectively by varying the structural pa-
rameters; while in the axial deformation dominated region, the
adhesion force is no longer limited by the bending deformation and
the adhesion law is almost the same with that predicted by the
classical Kendallmodel. It is also demonstrated through comparisons
that the model agrees well with typical experimental outcomes re-
ported in literatures, and as has been discussed preliminarily, the
obtained adhesion law can contribute to biomimetic design and
structural optimization of such dry adhesives. Further exploration of
the optimization method is our further work.
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