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In this paper, we propose a new dictionary learning approach for image deconvolution, which effectively
integrates the Fourier regularization and dictionary learning technique into the deconvolution frame-
work. Specifically, we propose an iterative algorithm with the decoupling of the deblurring and denoising
steps in the restoration process. In the deblurring step, we involve a regularized inversion of the blur
in the Fourier domain. Then we remove the colored noise using a dictionary learning method in the
denoising step. In the denoising step, we propose an approach to update the estimation of noise variance
for dictionary learning. We will show that this approach outperforms several state-of-the-art image de-
convolutionmethods in terms of improvement in signal-to-noise ratio and visual quality. © 2014 Optical
Society of America
OCIS codes: (100.0100) Image processing; (100.1830) Deconvolution; (100.3190) Inverse problems;

(100.3020) Image reconstruction-restoration.
http://dx.doi.org/10.1364/AO.53.005677

1. Introduction

Image deconvolution is a classical inverse problem
existing in a wide variety of image processing fields,
including physical, optical, medical [1], and astro-
nomical applications [1,2]. For example, the camera
might have moved during the time the image was
captured, in which case the image is corrupted by
motion blur. Another common source of blurriness
is out-of-focus blur.

Mathematically, the blur process corrupting the
image is a convolution with a point spread function
(PSF) h. A degraded image y is given by

y�n1; n2� � �h � uorig��n1; n2� � γ�n1; n2�; (1)

where uorig and y are the original image and the ob-
served image, respectively. γ is the noise introduced
in the procedure of image acquisition, and it is gen-

erally assumed to be independent and identically dis-
tributed zero-mean additive white Gaussian noise
(AWGN) with variance σ2. � denotes convolution,
and 1 ≤ n1 ≤ N, 1 ≤ n2 ≤ N.

In the discrete Fourier transform (DFT) domain,
Eq. (1) can be written as

Y�k1; k2� � H�k1; k2� ·Uorig�k1; k2� � Γ�k1; k2�; (2)

where Y, H, Uorig, and Γ are the DFTs of y, h, uorig,
and γ, respectively.

The inversion of the blurring process is called im-
age deconvolution. The goal of image deconvolution
is to reconstruct a true image uorig from a degraded
image y. It is well known that the deconvolution
problem is ill-posed. Thus, to obtain a reasonable im-
age estimation, a method of reducing the noise level
needs to be utilized.

Because noise is always present in natural images,
even a small amount dominates the signal in
high frequencies, leading to numerous artifacts. The
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Wiener filter [2,3] and the constrained least squares
algorithm [2] can solve this problem in the frequency
domain with a fast speed. However, the visual
quality of the recovered image often degrades. Total-
variation-based deconvolution is a popular approach;
variations of this method have also been proposed in
[4] fast total variation deconvolution (FTVd), [5] total
variation majorization minimization (TVMM), and
[6] total variation shrinkage (TVS). These methods
are well known for their edge-preserving properties
and generally achieve state-of-the-art results. How-
ever, their ability to describe image textures is not
satisfactory. These methods usually lead to a slightly
blocky result, and some fine image textures are lost.

The most recent and effective deconvolution meth-
ods usually adopt a two-step approach [7–9]: first, a
regularized inversion of the blur is performed, such
as Fourier regularization, then the resulting image
is processed with a cleverly engineered denoising al-
gorithm to remove artefacts. Various denoising meth-
ods have been used for this task: for instance, a
Gaussian scale mixture model (GSM) [10], a shape
adaptive discrete cosine transform [11], or a block
matching with three-dimensional-filtering kernel re-
gression [12,13]. It has been shown that edge-preserv-
ing-filter-based deconvolutin algorithms can achieve
good results [14,15]. A regularized deblurring method
blurred/sharped dictionary learning (BSDL) using a
previously learned dictionary was proposed in [16].
It employed first pairs of blurry/shape images to train
the dictionary; a gradient algorithm is used for solving
the corresponding optimization task. There are also
many other useful algorithms and additional tech-
niques that may be found within references [17–21].

In this paper, we propose an iterative algorithm
using dictionary learning for image deconvolution to
integrate a Fourier regularization technique and a
dictionary learning technique into the same frame-
work. It is a new iterative scheme different from
existing image deblurring methods. The iterative
process consists of two parts: debluring and denoising.
The deblurring step amplifies and colors the noise
corrupting the image information. In the denoising
step, a dictionary-learning-based approach is used
to suppress the noise and artifacts. The noise variance
is an important parameter for dictionary learning;
therefore we propose an approach to update the esti-
mation of noise variance in the denoising step.

A. Paper Organization

The remainder of this paper is organized as follows.
Section 2 gives a brief overview of dictionary learn-
ing. Section 3 shows how the dictionary learning is
used for regularizing the deconvolution problem
and how to compute the regularizer. Section 4 dem-
onstrates the effectiveness of our approach via
simulation. Section 5 provides concluding remarks.

2. Learned Sparse Representations

Like some recent algorithms for image restoration
[22,23], our approach is based on the sparse

decomposition of image patches. Using a dictionary
matrix D � �d1;…; dK � in RL×K , a signal x ∈ RL may
be represented as a linear combination of a small
number of atoms from a dictionary D.

In most dictionary-learning-based image process-
ing, L is relatively small—for instance, L � 64 for
image patches of size 8 × 8 pixels—when K � L and
D is full rank, we have a basis representation. When
K > L, the dictionary is said to be overcomplete.

We say that the dictionary D is well adapted to a
vector x when there exists a sparse vector α in RK

such that x can be approximated by the product Dα.
Besides predefined sparsifying transforms, sparse

and redundant representations of image patches
based on learned dictionaries have drawn consider-
able attention in recent years [24–26]. The image
patch set R�u� � �R1�u�; R2�u�;…; RT�u�� consists of
T samples, with Rt�u� ∈ RL denoting a vectored form
of the

����
L

p
×

����
L

p
patch extracted from image u. The

sparseland model for image patches introduced by
Elad and Aharon [22] suggests that every image
patch Rt�u� could be represented sparsely over a
learned dictionary D; that is,

α�t � arg min
αt

kDαt − Rt�u�k22;

s:t:kαtk0 ≤ S; t � 1; 2;…; T; (3)

where S is the required sparsity level and k · k0
denotes the l0 quasi-norm which counts the number
of nonzero coefficients of the vector.

The combination of sparse and redundant represen-
tation modeling of signals, together with a learned
dictionary, has shown promise in a series of applica-
tions in image processing such as image denoising, im-
age inpainting, and medical image reconstruction
[27]. Specifically, Elad and Aharon presented a
method named K-means singular value decomposi-
tion (K-SVD) [22]. It is a method to learn a dictionary
of features which can then be used in regularized in-
verse problems. K-SVD learns the underlying features
assuming a sparsity-based prior, which can then be
used for denoising with the objective function as

fu�; D�;Γ�g � arg min
u;D;Γ

XT
t�1

�kDαt − Rt�u�k22

� kαtk0� � λku − bk22; (4)

where u is the clear image, noisy data b � u� γ,
Γ � �α1; α2;…; αT � denotes the sparse coefficient ma-
trix of image patches, and λ > 0 is the regularization
parameter and is empirically chosen as λ � �C∕σ�,
where σ is the standard derivation of the noise γ
and C is a positive constant. Such a method is usually
implemented in a two-step alternating manner:
the sparse coding stage and the dictionary D
update stage.

3. Dictionary-Learning-Based Deconvolution Algorithm

In this work, we intend to recover the underlying
image by iteratively deblurring and denoising via
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dictionary learning. Our method relies on two steps:
(1) a regularized inversion of the blur in the Fourier
domain and (2) a denoising step using dictionary
learning. In this section, we describe these two steps
in detail.

Similar to Eq. (4), the image deblurring task
can be formulated into the following minimization
problem:

fu�; D�;Γ�g � arg min
u;D;Γ

XT
t�1

�kDαt − Rt�u�k22

� kαtk0� � λkh � u − yk22: (5)

In the regularization term of Eq. (5), the convolu-
tion operator h and the sparse representation Dα
are coupled; hence we resort to the splitting tech-
nique to decouple them. The problem in Eq. (5)
can be converted as follows by introducing auxiliary
variables v:

min
u;v;D;Γ

XT
t�1

�kDαt −Rt�u�k22 � kαtk0�

� ηku − vk22 � λkh � v − yk22: (6)

We set r � λ∕η, and obtain a sequence of con-
strained subproblems as follows:

vk�1 � arg min
v

kuk
− vk22 � rkh � v − yk22; (7)

fuk�1; Dk�1;Γk�1g � arg min
u;D;Γ

XT
t�1

�kDαt − Rt�u�k22

� kαtk0� � λku − vk�1k22; (8)

A. Direct Deconvolution

The goal of deconvolution is to make a blurry image
sharper. This has the positive effect of localizing
information, but it has the negative side-effect of
introducing new artifacts.

Considering that Eq. (7) is a simple least squares
problem, we can update v with its analytic solution.
In the Fourier domain, this can be solved in a single
step,

F �vk�1� � F �h�� · F �y� � rkF �uk�
jF �h�j2 � rk

; (9)

by using the convolution theorem for the Fourier
transform, where F is the fast Fourier transform
operator and F �·�� denotes the complex conjugate.
The plus, multiplication, and division are all
component-wise operators.

The regularization parameter rk plays an impor-
tant role in our work, and it is updated in each
iteration. In practice, we find that larger rks often
cause noisy results with ringing effects, though they
substantially reduce the noise variances. We should

choose a smaller rk which obtains an edge-preserving
image with more noise. Then, in the denoising step,
we propose a procedure that removes the leaked
noise and additional image artifacts.

For an image of N ×N size and the kth step, we
compute the parameters rk using the following
method:

r0 � N2σ2

ky − E�y�k22 −N2σ2
; (10)

rk�1 � βrk; (11)

where E�y� denotes the mean of y. From this
equation, one can see that the larger variance of
image (ky − E�y�k22 −N2σ2) would obtain a smaller
r0; it can preserve the detail information, while
the smaller variance of image (a smooth image)
which contains a little high-frequency information
will not produce the strong ringing effects with
large r0.

Parameter r is automatically adapted in iterations
starting from a small value r0; it is multiplied by β
each time. This scheme is effective to speed up
convergence [4].

After direct deconvolution, the inverse Fourier
transform of F �vk�1� is taken. The resulting image
usually contains a special form of distortions, which
are removed in the denoising step of our method.

B. Artifact Removal by Dictionary Learning

Sparsity and dictionary learning have shown prom-
ising performance in denoising, and thus we
integrate them into the proposed deconvolution
model.

Different from fixed basis dictionaries such as
bandelets [28], contourlets [29], curvelets [30], and
wavelets [31], which are usually restricted to images
of a certain type, the atoms of the learned basis dic-
tionaries can be empirically learned from image ex-
amples which will apply to any family of images.
Representative learned dictionaries include adaptive
learned dictionaries (K-SVDs), locally learned dic-
tionaries [32], and learned simultaneous sparse
coding [33]. These sparse coding methods can work
effectively for denoising because their learned
dictionaries give more adaptive image priors for
Bayesian estimation than fixed basis dictionaries.

The strategy to solve Eq. (8) is to alternately up-
date the dictionary D and coefficient matrix α, the
same as that used in the K-SVD [22] and dictionary
learning magnetic resonance imaging (DLMRI) [23]
algorithms. Specifically, in the sparse coding step,
seeking the solution of Eq. (8) with respect
to a fixed dictionary D is achieved by the greedy
algorithm—orthogonal matching pursuit (OMP). In
the dictionary updating step, the columns of the dic-
tionary are updated sequentially one at a time using
a singular value decomposition (SVD) to minimize
the approximation error.
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Algorithm 1: Dictionary Learning Framework

1. Initialization: u � vk�1, D � Dk, σ2k�1

2. Repeat:

• Sparse Coding Stage: Use OMP method to compute the
representation coefficient α for each Rt�u� by approximating the
solution of

∀t min
αt

kαtk0; s:t:kDαt −Rt�u�k22 ≤C0σ
2
k�1:(12)

The OMP can be used again to obtain the near-optimal (recall that
OMP is an approximation algorithm, and thus a trueminimization
is not guaranteed) set of representation coefficient α.

• Dictionary Updating Stage: For each column t � 1;2;…; T
in D, update them sequentially one at a time using SVD to obtain
Dk�1:

– Find the set of patches that uses this atom,
ωl � ftjαt�l� ≠ 0g.

– For each index t ∈ ωl, compute this representation error:

elt � Rt�u� −
X
m≠l

dmαt�m�: (13)

– Set El as a matrix whose columns are feltgt∈ωl
.

– Apply SVD decompositionEl � UΔVT . Choose the updated
dictionary columns dk�1

l to be the first column of U. Update the co-
efficient values fαltgt∈ωl

to be the entries of V multiplied by Δ�1; 1�.
3. Given all αt, we can now fix those and turn to update u.
Returning to Eq. (4), we need to solve

uk�1 � arg min
u

XT
t�1

�kDk�1αt −Rt�u�k22� � λkku − vk�1k22: (14)

This is a simple quadratic term that has a closed-form solution of
the form

uk�1 �
�
λkI �

XT
t�1

RT
t Rt

�
−1�

λkvk�1 �
XT
t�1

RT
t D

k�1αt

�
: (15)

4. Output: uk�1, Dk�1.

whereDk is the dictionary obtained by the kth iter-
ation, and σ2k�1 is the estimated variance from vk�1.

C. Variance Estimation of Deblurred Image

Here, we propose to extend the idea of iterative regu-
larization to update the noise variance σ2k�1
from vk�1.

For the image vk�1 in Eq. (9), its noise contains two
parts: One is the feedback of regularized noise from
y, and the other one is the leaked noise in the
denoised image uk � uorig � γk:

F �vk�1� � F �uk�1
orig � � F �γk�1;1� � F �γk�1;2�; (16)

where

uk�1
orig � F−1

�jF �h�j2 · F �uorig� � rkF �uorig�
jF �h�j2 � rk

�
; (17)

γk�1;1 � F−1

�
F �h�� · F �γ�
jF �h�j2 � rk

�
; (18)

γk�1;2 � F−1

�
rkF �γk�

jF �h�j2 � rk

�
: (19)

Then, the variance of γk�1;1 can be computed as

σ2k�1;1 � E�jhγk�1;1; γk�1;1ij2�

� Var�γ�
���� F �h��
jF �h�j2 � rk

����
2

� σ2
���� F �h��
jF �h�j2 � rk

����
2
; (20)

where Var�� is the variance.
Similar to γk�1;1, the variance of leaked noise γk�1;2

in the denoised image uk can be estimated as

σ2k�1;2 � Var�γk�
���� rk

jF �h�j2 � rk

����
2

; (21)

Var�γk� � c0�σ2k − kvk − ukk22�; (22)

where σ2k is the noise variance of v
k, kvk − ukk22 means

the variance of removed noise, and c0 is a scaling fac-
tor controlling the re-estimation of noise variance.

Finally, we update the noise variance in the vk�1 as

σk�1 � c1
��������������������������������
σ1k�1;1 � σ2k�1;2

q
; (23)

where c1 is also a scaling factor.
An intuitive explanation of Eq. (23) is as follows.

As the iteration starts, only strong signals (with
large coefficients) can contribute to the initial esti-
mate of u; however, the partially recovered signal
will be fed back to the noisy observation through
Eq. (9), which helps lower the estimation of noise.
In return, weaker signals can be identified and added
to the signal estimate. As the iteration progresses,
we usually observe that the estimated noise variance
monotonically decreases; meanwhile, image struc-
tures are progressively recovered.

We summarize the main steps of the pro-
posed image deconvolution algorithm as shown in
Algorithm 2.

Algorithm 2: Image Deconvolution via Dictionary Learning

1. Initialization: u0 � 0, D0 � ODCT, σ20 � σ2

2. Iterate on k � 0;1;…; iter

– Iterative regularization: obtain vk�1 using Eq. (9).
– Noise variance update: reestimate noise variance σ2k�1 from

vk�1 via Eq. (23).
– Image denoising via dictionary learning: update dictionary

Dk�1 and obtain an improved denoised image uk�1 using Eq. (15).

3. Output: uiter.
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4. Simulations

In all the simulations, the choice of β in Eq. (10) is
taken as 1.5 as that is a good balance between effi-
ciency and performance. The parameters c0 in
Eq. (21) and c1 in Eq. (23) empirically are set as
0.4 and 1.25, respectively. The dictionaries used were
of size 64 × 256, designed to handle image patches of
size 8 × 8 pixels (L � 64, K � 256). In Algorithm 1,
we choose C0 � 1.5, and λk � 30∕σk�1.

To evaluate our method for the nonblind deblur-
ring task, we consider nine benchmark deblurring
problems. In these simulations, original images are
House of size 256 × 256 (experiments 1, 2, 3, and
4), Lena of size 512 × 512 (experiments 5 and 6),
and Barbara of size 512 × 512 (experiments 7, 8,
and 9). In our simulations, the blur PSFs we used are

• PSF1: hi;j � �1� i2 � j2�; i; j � −7;…; 7
• PSF2: 9 × 9 uniform
• PSF3: �1; 4; 6; 4; 1�T �1; 4; 6; 4; 1�∕256
• PSF4: 25 × 25 Gaussian with std � 1.6

All PSFs are normalized so that
P

h � 1.
We summarizes different degradation models

used, which are defined by the blur type and the vari-
ance of the AWGN for each of the experiments as
follows:

• Experiment 1: PSF1, σ2 � 2, and House
• Experiment 2: PSF2, σ2 � 0.165, and House
• Experiment 3: PSF3, σ2 � 49, and House
• Experiment 4: PSF4, σ2 � 4, and House
• Experiment 5: PSF2, σ2 � 0.195, and Lena
• Experiment 6: PSF4, σ2 � 4, and Lena
• Experiment 7: PSF2, σ2 � 0.242, and Barbara
• Experiment 8: PSF3, σ2 � 49, and Barbara
• Experiment 9: PSF4, σ2 � 4, and Barbara

They are used in other papers [13,18] and go from
strong-blur/weak-noise to weak-blur/strong-noise
cases.

Table 1 presents a comparison of the proposed
algorithm versus a number of algorithms including
the current state of the art. In this section, we
present results of our proposed algorithm and com-
pare it against competing deblurring methods such
as ForWaRD [7], TVS [6], BM3DDEB [13], BLDL
[16], L0-AbS [18], and SURE-LET [20]. We use the
default parameters suggested by the authors for
the competing algorithms.

In these experiments we will use the improvement
in signal-to-noise-ratio (ISNR) to measure the perfor-
mance. The ISNR is defined as

ISNR � 10 log10

�kuorig − yk22
kuorig − ûk22

�
; (24)

where û is the corresponding estimated image.

Table 1. Comparison of the Output INSR (dB) of the Proposed Deblurring Algorithma

Method Exp 1 Exp 2 Exp 3 Exp 4 Exp 5 Exp 6 Exp 7 Exp 8 Exp 9

BNSR 29.16 40 15.99 26.61 40 16.47 40 17.35 28.07
Ours 9.38 12.21 5.41 5.18 8.40 4.61 6.02 2.15 1.47
ForWaRD 7.35 9.56 3.19 3.85 6.97 3.50 4.02 0.94 0.98
TVS 7.98 10.39 4.49 4.65 7.47 3.61 3.49 0.63 0.75
L0-AbS 8.40 11.06 4.55 4.80 7.79 4.22 3.98 0.73 0.81
SURE-LET 8.71 10.72 4.35 4.26 7.96 4.25 4.24 1.13 1.06
BM3DDEB 9.32 10.85 5.13 4.56 7.97 4.37 5.86 1.90 1.28
BSDL 9.32 6.99 5.22 4.88 4.83 4.50 2.65 2.00 1.13

aBlurred signal-to-noise ratio (BSNR) is defined as BSNR � 10 log10 Var�y�∕N2σ2, where Var�� is the variance.

Fig. 1. Visual comparison of House image in experiment 4.
(a) Original image; (b) blurred image; (c) ForWaRD result,
ISNR � 3.85 dB; (d) TVS result, ISNR � 4.65 dB; (e) L0-AbS re-
sult, ISNR � 4.80 dB; (f) SURE-LET, ISNR � 4.26 dB;
(g) BM3DDEB, ISNR � 4.56 dB; (h) our result, ISNR � 5.18 dB.
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In the first set of experiments (1–4), a House
image is blurred by four different PSFs. The ISNR
values obtained by the different methods are com-
pared in Table 1 under the Exp 1–4 columns. As
can be seen from the ISNR, our algorithm shows
the best performance compared to other image de-
convolution methods. In Fig. 1, we show the details
of the images obtained by the different methods in
experiment 4. As can be seen from the Fig. 1(c),
the result of ForWaRD [7] obtains a low contrast im-
age with some visual artifacts. The result of TVS [6]
is shown in Fig. 1(d)—there are some blocking
artifacts in the image; and the L0-Abs [18] result
is shown in Fig. 1(e), and it can be seen that the ver-
tical white edge of the wall is still blurry. Figure 1(f)
shows the result of SURE-LET [20]. By carefully ex-
amining it, there are a few artifacts around the
vertical edges in the window. Figure 1(g) shows the
result of BM3DDEB [13]; it obtains an image with
obvious artifacts. Our result is shown in Fig. 1(h);
one can see that our method recovers the sharpness
of some edges (for instance, vertical edges in the
window).

The second set of experiments (5 and 6) was per-
formed on the Lena image. The simulation results
are reported under the Exp 5–6 columns of Table 1,
respectively. The proposed method yields ISNR val-
ues better than the values obtained by any of the
other methods. The details of the images obtained
by the different methods in experiment 5 are shown
in Fig. 2. As can be seen from the figure, the slight
difference among them in the visual performance
is around the side of Lena’s eyes.

In the third set of tests (Exp 7–9), a Barbara image
is blurred by three different PSFs. The results are
summarized under the Exp 7–9 columns of Table 1.
From Table 1, we notice that our method performs
the best in terms of ISNR. A portion of the deblurred
images from different methods is shown in Fig. 3. The
restoration result of ForWaRD [7] is shown in Fig. 3(c).
By carefully examining it, there are some visually
annoying artifacts in the image. The result of the
TVS [6] obtains a blurred and noisy image, which is
shown in Fig. 3(d). The results of L0-Abs [18] and
SURE-LET [20] are shown in Fig. 3(e) and Fig. 3(f),
respectively. It can be seen that the most details on

Fig. 2. Details of the image deconvolution experiment with Lena
in experiment 5. (a) Crop from Lena image; (b) blurred image;
(c) ForWaRD result, ISNR � 6.97 dB; (d) TVS result, ISNR �
7.47 dB; (e) L0-AbS result, ISNR � 7.79 dB; (f) SURE-LET result,
ISNR � 7.96 dB; (g) BM3DDEB result, ISNR � 7.97 dB; (h) our
result, ISNR � 8.40 dB.

Fig. 3. Details of the image deconvolution experiment with Bar-
bara in experiment 8. (a) Crop from Barbara image; (b) blurred
image; (c) ForWaRD result, ISNR � 0.94 dB; (d) TVS result,
ISNR � 0.63 dB; (e) L0-AbS result, ISNR � 0.73 dB; (f) SURE-
LET result, ISNR � 1.13 dB; (g) BM3DDEB result, ISNR �
1.90 dB; (h) our result, ISNR � 2.15 dB.
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Barbara’s trousers are lost. The restoration result of
BM3DDEB [13] is shown in Fig. 3(g), there are a few
artifacts around the side of trousers. The restoration
result of our proposed method is shown in Fig. 3(h).
One can see that it is more visually pleasant than
Figs. 3(c)–3(g). Results have shown that the dictionary
learning-based method obtains a deblurring result
with better quantitative and visual performance.

Figure 4 describes the deconvolution process of
experiment 7. Each iteration improves the deconvo-
lution results, with the initial dictionary set to be the
overcomplete discrete cosine transform (ODCT) [see
Fig. 4(b)]. The restoration result of our proposed
method is shown in Fig. 4(f), and the final adaptive
dictionary that leads to the result is presented in
Fig. 4(e). The results of BSDL [16] and the learned
dictionary are shown in Fig. 4(c) and Fig. 4(d), respec-
tively. It can be seen that Barbara’s face is still blurry,
and the dictionary is noisy.

5. Conclusion and Future Work

In this paper, we proposed a new formulation for im-
age deconvolution using a dictionary learning strat-
egy and a penalized splitting approach. A splitting
method was presented to decouple the difference op-
erators and dictionary. We also proposed a approach
to update the estimation of noise variance for diction-
ary learning. The proposed method was tested using

synthetic experiments and outperformed five
existing state-of-the-art deconvolution algorithms.
Future work will consist of extending the approach
to the blind deblurring problem, where a blur kernel
has to be learned at the same time as the learned
dictionaries.

The authors would like to thank the support by the
2013 Jilin Province Post-doctor Research Program
(RB20131).
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