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1. INTRODUCTION
Optical bistability (OB) has been extensively studied in the
recent years because of its potential application in optical
logic, all-optical switching, and optical transistors, which
are essential for optical computing and communications.
OB behavior is the result of nonlinearity of the interactive
atomic medium and feedback of the optical interactivity field
from the cavity mirrors. Most experimental and theoretical
studies in OB are devoted to two-level atomic systems in
an optical resonator [1–7]. The OB in three-level atomic
systems in optical ring cavity has also been studied theoreti-
cally and experimentally [8–14]. One major advantage of using
three-level atomic systems instead of two-level atomic sys-
tems is that the quantum interference effects induced by op-
tical fields can greatly modify the absorption, dispersion, and
nonlinearity of the system [11–13]. In four-level atomic sys-
tems, interaction of double dark resonances can be estab-
lished, which does not occur in three-level systems,
allowing modification of the optical response of the atomic
medium [15–17]. Therefore, OB in four-level atomic systems
via the interaction of double dark resonances has been stud-
ied most recently [18].

The above studies are carried out in an atomic medium, and
coupling lasers are essential in these systems. On the other
hand, twoormore quantumdots coupledby tunneling can form
quantum dot molecules (QDMs). In QDMs, one can control the
tunneling of electrons or holes by an external electric field and
create a multilevel structure of excitonic states. Via tunneling
coupling, quantum interference and coherence can be pro-
duced in QDMs. Using self-assembled dot growth technology,
double quantum dots (DQDs) can be fabricated [19]. Many ex-
perimental studies have been carried out about such DQDs,

such as optical spectroscopy [20], excitonic entanglement
[21], single photon and spin storage [22], control of electron
tunneling [23], and coherent population trapping [24]. There
have also been theoretical works based on DQDs, such as
electromagnetically induced transparency (EIT) and slow light
[25–27], entanglement [28–31], OB [32–34], coherent popula-
tion transfer [35], narrowing of the transmission spectrum
[36], and narrowing of the fluorescence spectrum [37].

Building on DQDs with controlled electron numbers, both
linear and triangular types of triple quantum dots (TQDs) have
been achieved [38–41]. In a triangular TQD, we obtained
multiple transparencywindows and slow light [42]. Later in the
same triangular TQD system, Hamedi studied OBwith the help
of an incoherent pump field [43]. The narrowing transmission
spectrum in triangular TQDshas been also investigated [44]. As
for a linear TQD, the energy levels and confinement of
electrons and holes have been studied experimentally
[45,46]. The transmission-dispersion spectrum [47], resonance
fluorescence spectrum [48,49], and Kerr nonlinearity [50] have
also been investigated theoretically in linear TQDs.

In the present paper, we analyze the controllability of OB
via double tunneling in linear TQDs using a unidirectional ring
cavity. Our work is based on previous studies of OB, but the
scheme proposed here is different from those. First, in con-
trast with previous studies of OB in atomic systems, in TQDs
we use tunneling instead of coupling lasers [8–14,18] to
modify OB properties, which can be controlled by the external
electric field. Second, although OB properties have been stud-
ied in DQDs with one tunneling coupling [32–34], in TQDs the
use of double tunneling can induce double dark resonances
and provides flexibility in the control of the type, the hyste-
resis loop, and the threshold of OB. Third, OB has also inves-
tigated in quantum wells (QWs) with tunneling coupling
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[51,52]. The difference between tunneling coupling QWs and
TQDs is that, in QWs, the excited subbands are coupled by
tunneling to the same electronic continuum and the laser field
couples more than one transition. But in TQDs, the probe field
couples only one direct transition, and tunneling couples the
other indirect transition. Last, it should be pointed out that OB
has recently been studied in another work [43]. Our study is
different from that work in the following ways: the system
studied here is linear TQDs, while the system of that work
is of the triangular type; in our consideration, we do not in-
clude the incoherent pump; and we emphasize the double
dark resonances and consider both linear and nonlinear
susceptibility to explain the physics of OB phenomena.

The paper is organized as follows. In Section 2, we intro-
duce the model and the basic equations of TQDs and the cav-
ity system. In Section 3, we analyze the properties of OB and
interpret the corresponding results by linear and nonlinear
susceptibilities. Section 4 is the conclusion.

2. MODEL AND EQUATIONS
We consider a TQD sample inside an optical cavity comprising
four mirrors, as shown in Fig. 1(a). For simplicity, we assume
that mirrors 3 and 4 have 100% reflectivity, and the intensity
reflection and transmission coefficient of mirrors 1 and 2 are
R and T (R� T � 1), respectively. In Fig. 1(b), we show
the schematic of the setup of TQDs. Three single QDs are

arranged linearly and are coupled together by tunneling. At
nanoscale interdot separation, the hole states are localized
in the QDs and the electron states are rather delocalized.
In TQDs, the tunneling can be controlled by placing a gate
electrode between the neighboring dots. Without a gate volt-
age, the conduction-band electron levels are out of resonance
and the electron tunneling between the QDs is very weak,
while with a gate voltage, the conduction-band electron levels
come close to resonance and the electron tunneling between
the QDs is greatly enhanced. The band structure of the TQDs
for this situation is shown in Fig. 1(c). (We neglect hole tun-
neling because of the higher off-resonance of the valence-
band energy levels.) Then we give the schematic of the level
configuration of TQDs in Fig. 1(d). The ground state j0i has no
excitations, while the exciton state j1i has one electron–hole
pair in QD 1. Under the tunneling couplings, the electron can
tunnel from QD 1 to QD 2, then from QD 2 to QD 3. Therefore,
the indirect exciton state j2i has one hole in QD 1 and one
electron in QD 2, and indirect exciton state j3i has one hole
in QD 1 and one electron in QD 3.

Under the rotating-wave and the electric-dipole approxima-
tions, and after performing the unitary transformation U �
e−iωpt�j1ih1j � j2ih2j � j3ih3j� [26], which removes the time-
dependent oscillatory terms (ωp is the laser frequency), the
Hamiltonian under the basis fj0i; j1i; j2i; j3ig can be written
as (assumption of ℏ � 1)

Fig. 1. (a) Unidirectional ring cavity containing a TQD sample of length L. EI
p and ET

p are the incident and the transmitted fields, respectively.
(b) The schematic of the setup of a TQDs. The probe field transmits QD 1. VB is a bias voltage. (c) The schematic of the band structure of a TQDs
with a gate voltage. (d) The schematic of the level configuration of a TQDs. (e) Dressed states of the TQDs for two tunneling couplings.
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−Ωp δp −T1 0
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0 0 −T2 δp − δ1 − δ2

1
CCCA: (1)

Here Ωp � μ10Ep is the Rabi frequency of the transition
j0i → j1i. Ep denotes the electric-field amplitude of the laser,
and μ10 � μ10 · e denotes the electric dipole moment for the
excitonic transition between states j0i and j1i, with e being
the polarization vector. T1 and T2 are the tunneling couplings,
which depend on the barrier characteristics and the external
electric field. δp � ω10 − ωp, δ1 � ω12, and δ2 � ω23 are the de-
tuning of the probe field and the tunneling, with ωmn being the
transition frequency between jmi and jni states. Experimen-
tally, the frequency transition ω12 and ω23 can be done by
manipulation of the external electric field that changes the
effective confinement potential.

At any time t, the state vector can be written as

jΨI�t�i � a0�t�j0i � a1�t�j1i � a2�t�j2i � a3�t�j3i: (2)

The evolution of the state vector obeys the Schrödinger
equation

d
dt

jΨI�t�i � −iHI�t�jΨI�t�i: (3)

By substituting Eq. (1) and Eq. (2) into Eq. (3), and then using
the Weisskopf–Wigner theory [53,54], we can obtain the fol-
lowing dynamical equations for atomic probability amplitudes
in the interaction picture:

i _a0 � −Ωpa1; (4a)

i _a1 � −Ωpa0 − T1a2 � �δp − iγ1�a1; (4b)

i _a2 � −T1a1 − T2a3 � �δp − δ1 − iγ2�a2; (4c)

i _a3 � −T2a2 � �δp − δ1 − δ2 − iγ3�a3; (4d)

ja0j2 � ja1j2 � ja2j2 � ja3j2 � 1: (4e)

Here, γi � 1
2Γi0 � γdi0�i � 1 − 3� is the typical effective decay

rate, with Γi0 being the radiative decay rate of populations
from jii → j0i and γdi0 being the pure dephasing rates.

When the TQDs are inside the optical cavity, because only
one probe laser field is applied, the total electromagnetic field
is E � Epe−iωpt � c:c:, where the probe field Ep circulates in
the ring cavity, and the symbol “c.c.” means complex conju-
gation. Then, under slowly varying envelope approximation,
the dynamic response of the probe field is governed by
Maxwell’s equation:

∂Ep

∂t
� c

∂Ep

∂z
� i

ωpΓ
2ε0

P�ωp�; (5)

where c is the speed of light, ε0 is the permittivity of the free
space, and Γ is the optical confinement factor [55]. P�ωp� is
the slowly oscillating term of the induced polarization in
the intersubband transitions j0i → j1i and is determined by
P�ωp� � Nμ10ρ10. Here, N is the electron density of the TQDs,

and ρ10 � a0a�1 is the density matrix element, which can be
calculated by solving Eq. (4).

We consider the field of Eq. (5) in the steady-state case. By
setting the time derivative in Eq. (5) equal to zero for the
steady state, we can obtain the field amplitude as follows:

∂Ep

∂z
� i

Nωpμ10Γ
2cε0

ρ10: (6)

For a perfectly tuned ring cavity, in the steady-state limit,
the boundary conditions impose the following conditions be-
tween the incident field EI

p and the transmitted field ET
p :

Ep�0� �
����
T

p
EI
p � REp�L�; (7a)

Ep�L� � ET
p ∕

����
T

p
; (7b)

where L is the length of the TQD sample, and the second term
on the right-hand side of Eq. (7a) describes a feedback mecha-
nism due to the mirror, which is essential to give rise to bist-
ability, that is to say, no bistability can occur if R � 0.

In the mean-field limit [56,57], by using the boundary con-
ditions [Eq. (7)] and normalizing the fields by letting y �
μ10EI

p∕ℏ
����
T

p
and x � μ10ET

p∕ℏ
����
T

p
, we can get the input–output

relationship:

y � x − iCρ10; (8)

where C � LNωpjμ10j2Γ∕2ℏcε0T is the electronic cooperation
parameter. It is worth pointing out that the second term on the
right-hand side of Eq. (8) is vital for OB to occur. Then we can
arrive at the steady-state solutions of the output field intensity
versus the input field intensity.

Because OB behavior is the result of nonlinearity of the in-
teractivity atomic medium and feedback of the optical inter-
activity field from the cavity mirrors, the investigation of
nonlinear susceptibilities of TQDs is necessary. As is known,
the probe susceptibility χ is proportional to the density matrix
element ρ10. Then, by using the method used in Ref. [50], we
obtain the analytical expressions of the first χ�1� and third χ�3�

order susceptibilities:

χ�1� � Γjμ10j2
Vε0ℏ

1

Γ1 −
T2
1Γ3

Γ2Γ3−T2
2

; (9a)

χ�3� � Γjμ10j4
3Vε0ℏ3

1

Γ1 −
T2
1Γ3

Γ2Γ3−T2
2

1����Γ1 −
T2
1Γ3

Γ2Γ3−T2
2

����
2

�
1� T2

1
Γ2
3

jΓ2Γ3 − T2
2j2

� �T1T2�2
1

jΓ2Γ3 − T2
2j2

�
; (9b)

with Γ1 � δp − iγ1, Γ2 � δp − δ1 − iγ2, and
Γ3 � δp − δ1 − δ2 − iγ3; V is the volume of the TQDs [55].

In the following, we present some numerical results for the
steady state of the output field intensity versus the input field
intensity under various parametric conditions according to
Eq. (8) and interpret the results by the linear and nonlinear
behavior of TQDs according to Eq. (9).
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3. RESULTS AND DISCUSSION
DQDs have been previously fabricated [19,20] and many ex-
perimental works based on them have been carried out
[21–24]. Building on DQDs, linear TQDs have resulted in much
progress [38–40], and the energy levels and confinement of
electrons and holes of linear TQDs have been investigated ex-
perimentally [45,46]. In such TQDs, the tunneling T1 and T2

depend on the barrier characteristics and the external electric
field. Frequency transitions ω12 and ω23 can be done by
manipulation of the external electric field, which changes
the effective confinement potential. In addition, in this inves-
tigation, we work in the low-temperature regime, and consider
both the population decay rates and the dephasing rates. Real-
istic values of the parameters are according to Table 1 of
Ref. [50] and references therein. Although some of the param-
eter values are for DQDs, it can be inferred that the tunneling,
energy splitting, and decay rates of TQDs have the same val-
ues as those of DQDs. For simplicity, all the parameters are
scaled by the decay rate γ1.

First we show in Fig. 2(a) the OB behavior without the tun-
neling, with only one tunneling and with double tunneling by
the gate voltage. Without the tunneling coupling, the electron
cannot tunnel from QD 1 to other QDs. Therefore, the system
is reduced to a single QD with one exited state j1i and one
ground state j0i, and a OB is obtained (red solid line). Then,
with only tunneling T1, the electron can tunnel from QD 1 to
QD 2, but cannot tunnel from QD 2 to QD 3. Thus, the system
is similar to DQDs, and the OB (black dotted line). With both
tunneling T1 and T2, the electrons can tunnel from QD 1 to QD
2, and from QD 2 to QD 3, which creates a four-level structure.
In this case, the OB appears again (blue dashed line). As can
be seen by comparing the blue dashed line and red solid line,
the OB threshold yth with double tunneling is smaller than that
without double tunneling, while the slope of the lower
branches of the two OBs are the same.

The OB behavior can be understood by displaying the linear
absorption Im�χ�1��, nonlinear absorption Im�χ�3��, and

nonlinear dispersion Re�χ�3�� versus the frequency detuning
of the probe field δp in Figs. 2(b), 2(c), and 2(d), respectively.
When δp � 0, it can be seen that the values of linear absorp-
tion, nonlinear absorption, and nonlinear dispersion with only
one tunneling are all zero (black dotted line), which leads to
the disappearance of OB. On the other hand, the value of lin-
ear and nonlinear absorption without double tunneling (red
solid line) and with double tunneling (blue dashed line) both
have nonzero value. Meanwhile, the values of the nonlinear
dispersion of these two cases are zero; therefore, the OB ob-
tained in Fig. 2(a) is absorptive. We can also note that the val-
ues of linear absorption without double tunneling and that
with double tunneling are the same, but the value of nonlinear
absorption without double tunneling is smaller than that with
double tunneling. Therefore, together with Fig. 2(a), we con-
clude that first, the linear absorption is relative to the slope of
the lower branch of OB. Second, the nonlinear absorption is
relative to the absorptive OB threshold: the larger is the value
of the nonlinear absorption, the smaller is the OB threshold.

The physical interpretation can be seen clearly under the
dressed-state picture. With two tunneling couplings, T1 and
T2, the state j1i splits into three dressed sublevels [Fig. 1(e)],
and the expressions of the three dressed sublevels for δ1 �
δ2 � 0 are

jψ�i �
1���
2

p
�
j1i � j2i � T2

T1
j3i

�
; (10a)

jψ
−

i � 1���
2

p
�
j1i − j2i � T2

T1
j3i

�
; (10b)

jψ0i � −

T2

T1
j1i � j3i: (10c)

From Eq. (10), when T2 � 0, the two dressed levels jψ	i
correspond to the usual Autler–Townes dressed components,

Fig. 2. (a) Output intensity jxj versus input intensity jyj, (b) imaginary Im�χ�1�� parts of the linear susceptibility, (c) imaginary Im�χ�3��, and (d) real
Re�χ�3�� parts of the nonlinear susceptibility as a function of probe detuning δp, respectively. Curves with red solid line, dark dotted line, and blue
dashed line correspond to T1 � T2 � 0, T1 � 2; T2 � 0, and T1 � T2 � 2, respectively. Other parameters are δp � δ1 � δ2 � 0, γ2 � γ3 � 10−3γ1,
and C � 50. (All parameters are scaled by the decay rate γ1.)
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and the energy splitting of them is 2T1. The other dressed level
jψ0i coincides with the bare state j3i and, hence, is decoupled
from the system. Because both levels jψ	i have a finite over-
lap with the excited state j1i, there is quantum interference in
two probe transitions j0i → jψ	i, leading to a single dark res-
onance. The single dark resonance suppresses the linear and
nonlinear absorption when δp � 0, resulting in the disappear-
ance of the OB. On the other hand, when T2 ≠ 0, the dressed
level jψ0i contains an admixture of j1i and, thus, has a non-
zero dipole matrix element with ground state j0i. That is to
say, all the dressed levels jψ ii�i � 0;�;−� have a finite over-
lap with the excited state j1i. Therefore, there is quantum in-
terference in three probe transitions j0i → jψ ii�i � 0;�;−�,
which leads to the double dark resonances. The interaction
of the double dark resonances enhances both the linear
and nonlinear absorption for δp � 0, and, therefore, the OB
appears again with smaller OB threshold.

The detuning of the probe field can also influence OB
behavior. We plot in Fig. 3 the OB curves in the presence
of one tunneling and double tunneling for δp ≠ 0. When only
tunneling T1 is applied, there are two absorption peaks lo-
cated at δp � 	T1, corresponding to the Autler–Townes
dressed components. So when δp � 	T1 � 	2, the linear
and nonlinear absorption both have maximum value [black

dotted lines of Figs. 2(b) and 2(c)]. As a result, the OB appears
[blue dashed line of Fig. 3(a)]. Meanwhile, the value of non-
linear dispersion is still zero [black dotted line of Fig. 2(d)];
therefore, the OB is absorptive. The symmetrical linear and
nonlinear susceptibility curves make the two OB curves for
δp � 2 and δp � −2 coincident.

As for double tunneling coupling, because of tunneling T2,
one dark resonance splits into two dark resonances, which
locate at the position of δp � 	T2. Therefore, when
δp � 	T2 � 	2, the values of linear and nonlinear absorption
[blue dashed lines of Figs. 2(b) and 2(c)] are both zero, leading
to the disappearance of the OB [black dotted line of Fig. 3(b)].

However, when δp � 	
������������������
T2
1 � T2

2

q
� 	2

���
2

p
, the linear and-

nonlinear absorption both have maximum values, and, there-
fore, the OB appears with two coincident curves [blue dashed
line of Fig. 3(b)]. Compared with the case of δp � 0, the value
of nonlinear absorption is increased [blue dashed line of
Fig. 2(c)], while the value of nonlinear dispersion is still zero
[blue dashed line of Fig. 2(d)], which leads to the decreased
threshold of absorptive OB. On the other hand, the values of

linear absorption for δp � 	2
���
2

p
and δp � 0 are equal [blue

dashed line of Fig. 2(b)], and, therefore, the slopes of the
lower branches of OB are the same.

Fig. 3. (a) Output intensity jxj versus input intensity jyj of DQDs (T1 � 2; T2 � 0). Curves with red solid line and blue dashed line correspond to
δp � 0 and δp � 	2, respectively. (b) Output intensity jxj versus input intensity jyj of TQDs (T1 � T2 � 2). Curves with red solid line, blue dashed
line, and dark dotted line correspond to δp � 0, δp � 	2

���
2

p
, and δp � 	2, respectively. Other parameters are the same as those in Fig. 2.

Fig. 4. (a) Output intensity jxj versus input intensity jyj, (b) imaginary Im�χ�1�� parts of the linear susceptibility, (c) imaginary Im�χ�3��, and (d) real
Re�χ�3�� parts of the nonlinear susceptibility as a function of probe detuning δp, respectively. Curves with red solid line, dark dotted line, and blue
dashed line correspond to T1 � 4, T1 � 6, and T1 � 8, respectively. The insets are plotted for a larger range of δp. Other parameters are the same as
those in Fig. 2.
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In Figs. 4 and 5 we show the effects of the intensity of dou-
ble tunneling coupling on the OB for δp � 0. It can be seen
from Fig. 4(a) that, for increasing intensity of tunneling T1,
the threshold of OB is decreased, while the slope of the lower
branch of OB stays the same. The reason for the results is pre-
sented below. As can be seen from Fig. 4(b), in the region of
δp � 0, the values of linear absorption for different values of
T1 are the same, which leads to the same slope of the lower
branch of OB. On the other hand, increasing intensity of tun-
neling T1 leads to increased nonlinear absorption [Fig. 4(c)],
while the value of nonlinear dispersion stays zero for δp � 0
[Fig. 4(d)]. Therefore, for all values of T1, the OB is absorptive,
and the increasing nonlinear absorption results in the de-
creased threshold of OB.

The changing of the intensity of tunneling T2 can also lead
to the difference of OB. With decreasing value of T2, the slope
of the lower branch of the OB stays the same, while the OB
threshold is decreased. The same slope of the lower branch is
also due to the same value of linear absorption [Fig. 5(b)], and
the decreased threshold of OB is due to the increasing value of
nonlinear absorption [Fig. 5(c)]. Because of the zero value of
nonlinear dispersion [Fig. 5(d)], the OB is also absorptive.

From the results obtained in Figs. 4 and 5, it can be
concluded that the behavior of such absorptive OB can be
controlled by the intensity of the tunneling. The increasing

intensity of tunneling T1 or the decreasing intensity of tunnel-
ing T2 can lower the threshold of OB and keep the slope of the
lower branch of the OB the same. The physical interpretation
is that the increasing intensity of tunneling T1 or the decreas-
ing intensity of tunneling T2 can lead to the enhancement of
the interaction between the two dark resonances, which
results in increased nonlinear absorption, and, therefore,
the OB threshold is decreased.

The results of Figs. 4 and 5 are obtained for δp � 0. For fur-
ther investigation, we plot in Fig. 6 the OB of TQDs for δp �
0.3 with different intensity of double tunneling. As shown in
Fig. 6(a), when the intensity of tunneling T1 is increasing, the
slope of the lower branch of OB is increased and the threshold
of OB is decreased. The results can be seen clearly from
Figs. 4(b)–4(d). As shown in Fig. 4(b), when δp � 0.3, the
value of linear absorption is decreased with the increasing
value of T1, and, as a result, the slope of the lower branch
of OB is increased. For T1 � 4 or T1 � 6, the values of non-
linear absorption [Fig. 4(c)] and nonlinear dispersion [Fig. 4
(d)] are not zero; thus the type of OB is hybrid absorptive–
dispersive. Compared between these two cases, the value
of nonlinear dispersion is almost the same, while the value
of nonlinear absorption of T1 � 6 is smaller than that of
T1 � 4, which gives rise to the decreasing threshold of OB.
When tunneling T1 is increased to T1 � 8, the nonlinear

Fig. 5. (a) Output intensity jxj versus input intensity jyj, (b) imaginary Im�χ�1�� parts of the linear susceptibility, (c) imaginary Im�χ�3��, and (d) real
Re�χ�3�� parts of the nonlinear susceptibility as a function of probe detuning δp, respectively. Curves with red solid line, dark dotted line, and blue
dashed line correspond to T2 � 1.5, T2 � 1, and T2 � 0.5, respectively. The insets are plotted for a larger range of δp. Other parameters are the
same as those in Fig. 2.

Fig. 6. (a) Output intensity jxj versus input intensity jyj for fixed value of T2 � 2 and different value of T1. Curves with red solid line, dark dotted
line, and blue dashed line correspond to T1 � 4, T1 � 6, and T1 � 8, respectively. (b) Output intensity jxj versus input intensity jyj for a fixed value
of T1 � 2 and different values of T2. Curves with red solid line, dark dotted line, and blue dashed line correspond to T2 � 1.5, T2 � 1, and T2 � 0.5,
respectively. Other parameters are the same as those in Fig. 2.
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absorption is reduced to zero, so the hybrid absorptive–
dispersive OB turns to dispersive OB. Although the value of
nonlinear dispersion is smaller than those of T1 � 4 and
T1 � 6, the OB threshold is still reduced. Therefore, it can
be inferred that the nonlinear dispersion can also influence
the threshold of OB.

On the other hand, changing the intensity of tunneling
T2 can also influence OB behavior for δp � 0.3. Figure 6(b)
shows that the decreasing intensity of tunneling T2 leads
to increased slope of the lower branch of OB and the de-
creased threshold of OB. The results can be interpreted in
Figs. 5(b)–5(d). It can be seen in Fig. 5(b) that with decreasing
intensity of tunneling T2, the value of linear absorption is de-
creased, which results in increased slope of the lower branch
of OB. When T2 � 1.5 and T2 � 1, the values of nonlinear ab-
sorption [Fig. 5(c)] are almost the same, but the value of non-
linear dispersion [Fig. 5(d)] of T2 � 1 is larger than that of
T2 � 1.5, which leads to the decreased threshold of OB. When
T2 � 0.5, the value of nonlinear absorption is reduced to zero,
and the value of nonlinear dispersion is smaller than that of
the above two cases, so the OB threshold is reduced. This is
because, with the decreasing value of tunneling T2, the hybrid
absorptive–dispersive OB turns to the dispersive OB.

4. CONCLUSIONS
In this paper, we explored the intensity of double tunneling
coupling and probe detuning on the characteristics of OB
in TQDs by means of a unidirectional ring cavity. We found
that the type, hysteresis loop, and threshold of OB can be flex-
ibly controlled by these parameters. The double tunneling
between the QDs can induce interaction of double dark res-
onances and enhance the nonlinear response of the system,
which is responsible for the behavior of OB. Our scheme
may be used for building more efficient optical switches
and logic-gate optoelectronic devices for optical computing
and quantum information processing.
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