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This paper presents the combination of topology optimization and optimal control method
to find the optimal match between the material topology and control. In the presented
method, the material topology is determined using the SIMP (Solid Isotropic Material with
Penalization) method, which has been popularly used in topology optimization. In the SIMP
method, the design variable is relaxed and bounded in the interval [0,1], and the evolution
of the design variable is usually implemented by the method of moving asymptotes (MMA),
which can be used to deal with optimization problem with multiple integral constraints
and bound constraint of the design variable. In the combination of topology optimization
and optimal control method, the control variable appears along with the design variable.
In order to evolve the control variable and design variable using MMA simultaneously,
the control variable is regularized using a bound constraint and the corresponding bound
constraint is projected onto the interval [0,1], which is the same as the bound constraint
of the design variable. The optimization problem is analyzed using the adjoint method to
obtain the adjoint sensitivity. During the optimization procedure, the design and control
variables are filtered by the Helmholtz filters to ensure the smoothness of the distribution.
To ensure the minimum scale length and remove the gray area in the material topology, the
filtered design variable is projected by the threshold method. The feasibility and robustness
of the combination of these two methods are demonstrated by several test problems,
including heat transfer, fluid flow and compliance minimization.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

In topology optimization, the optimal topology of materials is computed under the given control. At the same time, the
optimal control is calculated under the fixed material layout in optimal control method. Naturally, one has the question that
is how to find the optimal match of the material topology and control to present the reasonable designs of the material
layout and control simultaneously. Therefore, this paper is focused on the combination of topology optimization and optimal
control method to find the optimal match between the material topology and control. Based on the combination of topology
optimization and optimal control method, the layout and control of a device can be optimized simultaneously, and the
freedom of the engineering design can also be enlarged.

Layout optimization and optimal control method have been interesting fields with respect to theory and application for
several decades [1–5]. The goal of layout optimization is to achieve better performance for a user specified objective. Usually,
layout optimization is categorized into shape optimization and topology optimization. Shape optimization improves the per-
formance of a device by adjusting the positions of structural boundaries, keeping the topology of the structure unchanged.
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Topology optimization is a method used to determine the optimal distribution of materials. Topology optimization can op-
timize the shape and topology, simultaneously. Therefore, topology optimization is a more general optimization technique
than shape optimization. Currently, the topology optimization is mainly implemented using the SIMP method [6–8] and the
level set method [9–12]. Topology optimization based on the SIMP method was first used to design stiffness and compliance
mechanisms [7,13–17] and has been extended to multiple physical problems, such as acoustic, electromagnetic, fluidic, opti-
cal and thermal problems [18–23,25]. The level set method, pioneered by Osher and Sethian [26], accomplishes the change
of topology by evolving and merging the zero contours of the level set function. This method provides a general way to
track the implicit interface between two phases, and it has been applied to shape and topology optimization [27,28]. One of
the major advantages of the level set method lies in expressing continuously moving interfaces and abstracting the material
domains that correspond to the structural topology. Recently, it has been observed that the conventional level set method
may be inadequate for the cases in which the initial shape of the structure has fewer holes than the optimal geometry [10],
especially in two-dimensional cases. The above difficulty can be overcome using topological sensitivity, which was intro-
duced by Sokolowski and Zochowski [29] for linear elasticity and has been extended to several other linear and nonlinear
physical problems [30–33]. Comparing with the level set method, the SIMP method has the merits on rapid and robust
convergency, weak dependence on the initial distribution of the design variable, and dealing with multiple constraints.
Therefore, the SIMP method is chosen to perform the topology optimization in this paper. On the other hand, the optimal
control method has numerous applications spanning many branches of engineering science, such as internal combustion
engines, airbreathing engines, heat exchangers, control of heat rejection devices in computers, flow control problems in
ink jet printers, manufacturing problems in microelectronic chips, control of pollutant transport, control of metal forming,
control of chemical reactors, control of aerodynamic surfaces, and weather prediction [34]. For many years, optimal con-
trol has been an ad-hoc subject in engineering science despite its importance. Advances in high-performance computing
of three-dimensional time dependent problems and recent developments in nonlinear infinite-dimensional systems theory
and nonlinear partial differential equations have set the stage for optimal control theory. The subject has been under rapid
development since the early works in [3–5,35–39]. The impact of this development to continuum mechanics has been es-
sentially in the branch of solid mechanics. Several theorems relating the Navier–Stokes equations and the minimization of
certain functionals were established in [40–44], thus starting the optimal control method in fluid mechanics.

Because the optimal control problem includes two types, i.e. the optimal distribution control and optimal boundary con-
trol, the combination discussed in this paper can be respectively categorized into the combination of topology optimization
with optimal distribution control and optimal boundary control. This paper is organized as follows: the abstract form of the
variational problem and the adjoint analysis are stated in Section 2 for the combination method; the numerical implemen-
tation on solving the corresponding variational problem are presented in Section 3; several test problems are presented in
Section 4 to demonstrate the feasibility and robustness of the combination method; and the paper is concluded in Section 5.
In the following, all the mathematical descriptions are performed in the Cartesian coordinate system.

2. Methodology

2.1. Variational problem and regularization

The variational problem for the combination of topology optimization and optimal control method are typical optimiza-
tion problem constrained by partial differential equations, and it can be written in the following abstract form:

Find: (γ , u)

Min: J (y;γ , u)

S.t. e(y;γ , u) = 0; γ ∈ Kγ , u ∈ Ku (1)

where y ∈ Y is the state variable which can be a scalar or vector; γ ∈ V is the design variable; u ∈ U is the control variable;
y, γ and u are functionals defined on the open and bounded domain Ω with Lipschitz boundary; Kγ ⊂ V and Ku ⊂ U
are sets of the feasible values of γ and u; J : Y × V × U → R and e : Y × V × U → Z are bounded continuous mapping
operator; Y, V, U and Z are Banach spaces; Kγ and Ku are convex sets. A quite common situation is that e : Y × V × U → Z
is continuously Fréchet differentiable and e y(y;γ , u) ∈ L(Y, Z) has the bounded inverse. Then according to the implicit
function theorem [46], the partial differential equation e(y;γ , u) = 0 locally defines a continuously Fréchet differentiable
map (γ , u) �→ y(γ , u), which has the following Fréchet derivative:

y′(γ , u) = −e−1
y (y;γ , u)e(γ ,u)(y;γ , u) (2)

Therefore, the optimization problem in Eqs. (1) is transformed into

Min: Ĵ (γ , u) = J
(

y(γ , u);γ , u
); γ ∈ Kγ , u ∈ Ku (3)

In topology optimization based on the SIMP method, the design variable is relaxed and bounded in a given interval,
typically [0,1], where the values 0 and 1 represent two different materials respectively. Then the set of the feasible values
of the design variable in Eq. (1) is Kγ = [0,1]. Based on the gradient information of the optimization problem, the design
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variable is penalized and evolved to the value 0 or 1 at a fixed point in the design domain. Currently, the evolution of the
design variable in the SIMP optimization is usually achieved using the method of moving asymptotes (MMA) [45], which
can be used to deal with the optimization problem with multiple integral constraints and bound constraint of the design
variable. In the combination of topology optimization and optimal control method, the control variable appears along with
the design variable. In order to evolve the control and design variables using MMA simultaneously, the control variable is
regularized using a bound constraint and the bound constraint is projected onto the interval [0,1], which is the same as
the bound constraint of the design variable in topology optimization. The bound constraint of the control variable is

ul � u � uh (4)

where ul and uh are the lower and upper bounds of the control variable, and the bounds can be determined based on the
engineering requirement. Then the feasible set of the control variable in Eq. (1) is Ku = [ul, uh]. The projection of the bound
constraint of the control variable is carried out using the following substitution:

u(u01) = ul + u01(uh − ul), u01 ∈ [0,1] (5)

where u01 is the projected control variable. Because the mapping between u10 and u is continuous and linear, u10 satisfies
u10 ∈ U. By Eq. (5), the bound constraint of the control variable u ∈ [ul, uh] is projected onto u01 ∈ [0,1].

Based on the above regularization, the optimization problem in Eq. (3) can be transformed furthermore:

Min: Ĵ
(
γ , u(u01)

) = J
(

y
(
γ , u(u01)

);γ , u(u01)
); γ ∈ [0,1], u01 ∈ [0,1] (6)

The gradient information of γ and u10 in Eq. (6) can be obtained after the adjoint analysis. Based on the gradient informa-
tion, the variational problem for the combination of topology optimization and optimal control method can be solved using
iterative approach.

2.2. Adjoint analysis

In this section, the variational problem is analyzed to obtain the gradient information. According to [47–49], the adjoint
method is an efficient approach to derive the derivative of the objective in the partial differential equation constrained
optimization problem. From the Gâteaux derivative of Ĵ , one can obtain〈

Ĵ ′, s
〉
(V×U)∗,V×U = 〈

J y, y′s
〉
Y∗,Y + 〈

( Jγ , Juuu10), s
〉
(V×U)∗,V×U

= 〈
y′ ∗ J y, s

〉
(V×U)∗,V×U + 〈

( Jγ , Juuu10), s
〉
(V×U)∗,V×U

= 〈
y′ ∗ J y + ( Jγ , Juuu10), s

〉
(V×U)∗,V×U

= 〈
(eγ , euuu10)

∗(−e−1
y

)∗
J y + ( Jγ , Juuu10), s

〉
(V×U)∗,V×U; ∀s ∈ V × U (7)

where (·)∗ is the adjoint operator of (·); 〈·,·〉 represents the dual pairing of (V × U)∗ and V × U. By setting

λ = (−e−1
y

)∗
J y = −(

e∗
y

)−1
J y (8)

one can obtain〈
e∗

yλ, v
〉
Y∗,Y = 〈− J y, v〉Y∗,Y, ∀v ∈ Y (9)

where λ ∈ Z∗ is the adjoint variable of y; e∗
y is the adjoint operator of e y . And the Gâteaux derivative of Ĵ can be reduced

to be: 〈
Ĵ ′, s

〉
(V×U)∗,V×U = 〈

(eγ , euuu10)
∗λ + ( Jγ , Juuu10), s

〉
(V×U)∗,V×U, ∀s ∈ V × U (10)

If Ĵ is Fréchet differentiable, the adjoint equation

e∗
yλ = − J y (11)

and the adjoint derivative

Ĵ ′ = (eγ , euuu10)
∗λ + ( Jγ , Juuu10) (12)

can be obtained. According to the Kurash–Kuhn–Tucker condition [47], the solution of the variational problem in Eq. (1)
satisfies the following system:
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Table 1
Procedure of the iterative approach.

1. Give the initial values of the design and control variables;
2. Solve the partial differential equations;
3. Solve the adjoint equations; compute the adjoint derivatives and

corresponding objective and integral constraint values;
4. Update the design and control variables using MMA;
5. Check for convergence; if the stopping conditions are not satisfied, go to 2;
6. Post processing

e
(

y;γ , u(u10)
) = 0

e∗
yλ = − J y

D J

Dγ
= e∗

γ λ + Jγ

⎧⎨
⎩

= 0, if 0 < γ < 1

� 0, if γ = 0

� 0, if γ = 1

D J

Du10
= (euuu10)

∗λ + Juuu10

⎧⎨
⎩

= 0, if 0 < u10 < 1

� 0, if u10 = 0

� 0, if u10 = 1

(13)

In engineering, the variational problem may need to be regularized furthermore by some integral constraints, e.g. volume
constraint. The adjoint analysis of these integral constraints is the same as that for the objective. The equation system in
Eq. (13) usually has strong nonlinearity and it is difficult to solve the system directly. Therefore, the iterative approach is
widely adopted. In the iterative approach, the descent direction can be defined based on the adjoint derivative, where the
state and adjoint variables are obtained by solving the partial differential equations and corresponding adjoint equations
respectively.

3. Numerical implementation

After the adjoint analysis, the variational problem for the combination of topology optimization and optimal control
method can be solved using the iterative approach based on the gradient information. The procedure for the iterative
approach includes the following steps (Table 1): (a) the partial differential equations are solved with the given values
of the design and control variables; (b) the adjoint equations are solved based on the numerical solution of the partial
differential equations; (c) the adjoint derivatives of the objective functional and integral constraint are computed; (d) the
design and control variables are updated using MMA. The above steps are implemented iteratively until the stopping criteria
are satisfied. In this paper, the stopping criteria are specified as the change of the objective values in 5 consecutive iterations
satisfying

4∑
i=0

| Jk−i − Jk−i−1|/| Jk| < ε (14)

in the k-th iteration, where Jk and γk are the objective value and the distribution of the design variable in the k-th iteration,
respectively; ε is the tolerance chosen to be 1 × 10−3. The maximal iterative number is chosen to be 400. If there is an
integral constraint, the relative residual of the integral constraint is required to be less than 1 × 10−3 when the iterative
procedure converges. In the above iterative procedure, the partial differential equations and corresponding adjoint equations
are solved by the finite element method using the commercial finite element software COMSOL Multiphysics (Version 3.5)
[50], where all the numerical implementation are based on the software’s basic module: Comsol Multiphysics → PDE Modes
→ PDE, General Form. For the details on the setting of the PDE Modes and the numerical integrations in the optimization
procedure, one can refer to [51,52].

During the optimization procedure, the design and control variables are filtered by the Helmholtz filters [53,54] to ensure
the distribution smoothness, where the Helmholtz filters are implemented by solving the following Helmholtz equations:

−r2∇ · ∇γ̃ + γ̃ = γ , in Ω

∇γ̃ · n = 0, on ∂Ω (15)

−r2∇ · ∇ũ + ũ = u, in Ω

∇ũ · n = 0, on ∂Ω (16)

where r is the filter radius chosen based on numerical experiments [54]; γ̃ and ũ are the filtered design and control
variables, respectively. The filtered control variable ũ is called physical control in this paper. To ensure the minimum scale
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length and remove the gray area in the obtained material topology, the filtered design variable is projected by the threshold
method [55–57]:

γ̃ (γ̃ ) = tanh(βξ) + tanh(β(γ̃ − ξ))

tanh(βξ) + tanh(β(1 − ξ))
(17)

where γ̃ is the projected design variable called physical density representing the material topology [57]; ξ ∈ [0,1] and β are
the threshold and projection parameters for the threshold projection, respectively. On the choice of the values of ξ and β ,
one can refer to [55,58]. Because the design and control variables are filtered by Helmholtz filters, the Helmholtz equations
are included in the partial differential equation constraints of the variational problem (Eq. (1)). Then γ̃ and ũ are regarded
as two of the components of the state vector y. And the adjoint equations of the Helmholtz equations are included in the
adjoint equations.

In the following, the combination of topology optimization and optimal distribution control method is presented in Sec-
tion 4.1; the combination of topology optimization and optimal boundary control method is demonstrated in Section 4.2;
the combination of topology optimization and optimal control method is exhibited for the transient problem in Section 4.3.
Several problems are defined and tested to verify the feasibility and robustness of the combination of topology optimiza-
tion and optimal control method. The test problems include the heat transfer, fluid flow and compliance minimization. In
these test problems, the partial differential equations are solved using the standard Galerkin finite element method. In the
heat transfer problem, the temperature and its adjoint variable are interpolated quadratically; in the fluid flow problem, the
Navier–Stokes equations and corresponding adjoint equations are solved using Taylor–Hood elements [59], where the fluid
velocity and its adjoint are interpolated quadratically, and the pressure and its adjoint are interpolated linearly; in the com-
pliance minimization, the displacement and its adjoint are interpolated quadratically; in the Helmholtz filters, the filtered
design variable, filtered control variable and the corresponding adjoint variables are solved using linear elements; in addi-
tion, the design and control variables are interpolated linearly. All the computation are performed on a DELL workstation
(DELL PRECISION T5500, two Intel Xeon Quad X5550 CPUs).

4. Test problems

4.1. Combination of topology optimization and optimal distribution control

4.1.1. Heat transfer
The heat transfer problem has been investigated using the topology optimization method [24,25,60,61] and optimal con-

trol method [62] respectively, where the heat source is fixed in topology optimization and the layout of the heat conductive
materials are fixed in optimal control. Based on the intuition, one can conclude that a reasonable match between the layout
of the heat conductive materials and the distribution of the heat source can be more effective. Then the combination of
topology optimization and optimal distribution control is used to achieve this by solving the following variational problem:

Find: (γ , Q )

Min: J (T ;γ , Q ) =
∫
Ω

ω1 A(T ,∇T ; γ̃ , Q̃ )dΩ +
∫

∂Ω

ω2 B(T ; γ̃ , Q̃ )dΓ

S.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎧⎨
⎩

∇ · (−k∇T ) = Q̃ , in Ω

T = T D , on ΓD

k∇T · n = g, on ΓN

(Heat transfer)

{−r2∇ · ∇γ̃ + γ̃ = γ , in Ω

∇γ̃ · n = 0, on ∂Ω
(Filter of γ ){−r2∇ · ∇ Q̃ + Q̃ = Q , in Ω

∇ Q̃ · n = 0, on ∂Ω
(Filter of Q )∫

Ω

γ̃ dΩ � θVol V 0 (Volume constraint)

0 � γ � 1 (Bound of γ )

Q l(x) � Q � Q h(x), x ∈ Ω (Bound of Q )

(18)

where T is the temperature; k is the thermal conductivity; T D is the known temperature on the boundary ΓD ; g is the heat
flux on the boundary ΓN , which is the insulative boundary as g = 0; Ω is the design domain; ω1 and ω2 are the weights of
the two integrations of A and B in the objective; Q l and Q h , chosen based on the engineering requirement, are the lower
and upper bounds of the control variable Q , respectively; the design variable γ and control variable Q are filtered by the
Helmholtz filters; γ̃ and Q̃ are the filtered design variable and filtered control variable, respectively; the filtered control
variable Q̃ is called physical control representing the heating source; γ̃ is the projected design variable (Eq. (17)); the
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optimization problem is regularized by a volume constraint; θV ol is the upper bound of the volume fraction of the thermal
conductive material; V 0 is the volume of the design domain Ω . In the above described variational problem, the control
variable Q corresponds to the variable u in Eq. (1); the temperature T , the filtered variables γ̃ and Q̃ correspond to the
components of the state vector y in Eq. (1).

In the above variational problem (Eq. (18)), the material interpolation of the thermal conductivity k is the same as that
in the topology optimization of heat transfer problem [24]:

k(γ̃ ) = kmin + (kmax − kmin)γ̃
m (19)

where kmin and kmax are the thermal conductivity of the thermal insulative and conductive materials, respectively; m is the
penalty, chosen to be 3. The bound constraint of the control variable is projected onto [0,1] using the following substitution:

Q = Q l + Q 01(Q h − Q l), Q 01 ∈ [0,1] (20)

where Q 01 is the projected control variable. When the iterative procedure is converged, the physical density γ̃ and physical
control Q̃ can be obtained based on the obtained distributions of γ and Q 01, respectively.

The analysis of the variational problem in Eq. (18) can be implemented based on the adjoint method in Section 2.2. Then
the adjoint equation of the heat transfer equation is obtained as:

∇ · (−k∇Ta) = −ω1

(
∂ A

∂T
− ∇ · ∂ A

∂∇T

)
, in Ω

Ta = 0, on ΓD

k∇Ta · n = −
(
ω1

∂ A

∂∇T
· n + ω2

∂ B

∂T

)
, on ΓN (21)

where Ta is the adjoint variable of T . The adjoint equations of the Helmholtz filters for the design and control variables are
obtained as:

−r2∇ · ∇γ̃a + γ̃a = −
(
ω1

∂ A

∂γ̃
+ ∂k

∂γ̃
∇T · ∇Ta

)
∂γ̃

∂γ̃
, in Ω

r2∇γ̃a · n = −ω2
∂ B

∂γ̃

∂γ̃

∂γ̃
, on ∂Ω (22)

−r2∇ · ∇ Q̃ a + Q̃ a = −ω1
∂ A

∂ Q̃
+ Ta, in Ω

r2∇ Q̃ a · n = −ω2
∂ B

∂ Q̃
, on ∂Ω (23)

where γ̃a and Q̃ a are the adjoint variables of γ̃ and Q̃ , respectively. And the adjoint derivatives are obtained as:

D J

Dγ

∣∣∣∣
Ω

= −γ̃a

D J

D Q 01

∣∣∣∣
Ω

= −Q̃ a
∂ Q

∂ Q 01
(24)

It is valuable to notice that the partial differential equations and their corresponding adjoint equations have the same
global stiffness matrix, when the finite element method is used. Therefore, the corresponding global stiffness matrix needs
to be assembled only once in the whole iterative procedure.

One numerical example is presented to demonstrate the combination of topology optimization and optimal distribution
control for the heat transfer problem. By setting the design domain as shown in Fig. 1(a), the thermal compliance as the
objective with A = k∇T · ∇T and B = 0, and the parameters as listed in Table 2, the variational problem is solved, where
the design domain is discretized by 200 × 200 rectangular elements. The projection parameter β with the initial value 1
is doubled every 40 iterations before reaching the maximum value 1024, and the same method for updating β is used in
the following numerical examples. The intention of these setting is to find the optimal match of the material topology and
distribution of the heating source to minimize the thermal compliance. The obtained material topology, distribution of the
heating source and the corresponding distribution of the temperature are shown in Figs. 1(b), 1(c) and 1(d), respectively.
The convergent histories of the objective values and volume fraction are plotted in Fig. 2. Snapshots for the evolution of
the material topology and distribution of the heating source during the iterative procedure are plotted in Figs. 3 and 4,
respectively.

The material topology in Fig. 3 has the multi-branch shape which increases the area of the interface between the thermal
conductive and insulative materials. From the distribution of the heating source and temperature in Figs. 1(c) and 1(d), one
can see that the region with low temperature corresponds to higher power of heating source, and the power of heating
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Fig. 1. (a) Design domain of the heat transfer problem, where the size is 1 × 1; (b) material topology of the optimal match; (c) heating source distribution
of the optimal match; (d) distribution of the temperature corresponding to the optimal match.

Table 2
Parameter setting for solving the variational problem of heat transfer.

T D r θVol m kmin kmax ξ ω1 ω2 Q l Q h

0 1 × 10−2 0.4 3 1 × 10−3 1 × 100 0.5 1 0 1 2

Fig. 2. Convergent histories of the objective values and volume constraint, where the objective values are normalized by the objective value corresponding
to the initial distribution of γ and Q . The cost of CPU time is 5.01 h.

Fig. 3. Snapshots for the evolution of the material topology.

source in the conductive material is higher than that in the insulative material. This is propitious to descend the temperature
gradient and decrease the thermal compliance.

By fixing the heating source distribution as shown in Fig. 1(c), the corresponding optimal material topology shown in
Fig. 5(a) is computed using the topology optimization method. On the other hand, the optimal distribution of the heating
source is computed (Fig. 5(b)) by fixing the material topology as shown in Fig. 1(b). The objective values corresponding to
Figs. 1(b), 5(a) and 5(b) are listed in Table 3. From the consistency of the values in Table 3, the optimality is confirmed for
the obtained match between the material topology and heating source distribution. In order to demonstrate the necessity
of the combination method furthermore, the material topology is computed with the heating source distribution set as
the constant equal to the lower bond 1 (Fig. 6). And the thermal compliance corresponding to the material topology with
constant heating source is 1.3890. Compared with the results shown in Fig. 1, the thermal compliance is decreased up to
18% by the combination method. Therefore, the necessity of the combination method can be confirmed.

To confirm the optimality of the obtained match between the material topology and distribution control, the volume
constraint of the distribution is added to the optimization problem as
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Fig. 4. Snapshots for the evolution of the heating source distribution.

Fig. 5. (a) Optimal material topology computed by fixing the heating source distribution as shown in Fig. 1(c); (b) optimal heating source distribution
computed by fixing the material topology as shown in Fig. 1(b).

Table 3
Objective values corresponding to Figs. 1(b), 5(a) and 5(b).

Fig. 1(b) Fig. 5(a) Fig. 5(b)

1.1456 1.1477 1.1409

Fig. 6. (a) Optimal material topology computed by setting the heating source distribution as the constant equal to the lower bond 1; (b) distribution of the
temperature corresponding to the optimal material topology. The corresponding objective value is 1.3890. Compared with the results shown in Fig. 1, the
combination method decreases the thermal compliance up to 18%.

Table 4
Objective values corresponding to different volume fractions of the distribution control.

θQ̃ = 0.50 θQ̃ = 0.52 θQ̃ = 0.54 θQ̃ = 0.56 θQ̃ = 0.58 θQ̃ = 0.60

1.1842 1.1452 1.2023 1.2823 1.2946 1.3169

∫
Ω

Q̃ dΩ = θQ̃ V Q 0 (25)

where θQ̃ is the volume fraction of the physical control; V Q 0 = ∫
Ω

Q h dΩ . For different volume fraction of the physical
control, the optimization is solved and the corresponding objective values are listed in Table 4. The optimal match in Fig. 1
corresponds to the volume fraction θQ̃ = 0.52. Then based on the objective values listed in Table 4, the optimality of the
match between the material topology and distribution control, obtained by solving the optimization Problem (18), can be
confirmed furthermore.
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4.1.2. Fluid flow
In this section, the combination of topology optimization and optimal distribution control method is tested for the

fluid flow problem. The flow of the Newtonian fluid is described by the Navier–Stokes equations widely [63]. Topology
optimization using the SIMP method for fluid problems was first researched for Stokes flows [19,64,65] and Darcy–Stokes
flows [66,67]. It was later extended to Navier–Stokes flows [27,28,51,68,69] and non-Newtonian flows [70]. Additionally,
the topology optimization method has been applied to design fluid devices [71–76]. In the topology optimization of fluid
flow, the artificial Darcy force is added to the Navier–Stokes equations, where the solid and fluid phases are approxi-
mated by the porous media with high and low impermeability respectively [19]. In the optimal distribution control of
the fluid flow, the control variable is the distribution of the body force in a specified domain, and this has been inves-
tigated for several engineering applications, i.e. velocity tracking problem [77,78]. At the same time, the better match
between the topology of the fluid domain and distribution control can be more effective for achieving the desired per-
formance of the fluid flow. Therefore, the following variational problem is constructed for the fluid flow to find the optimal
match:

Find: (γ , f)

Min: J (u, p;γ , f) =
∫
Ω

ω1 A(u,∇u, p; γ̃ ,̃ f)dΩ +
∫

∂Ω

ω2 B(u, p; γ̃ ,̃ f)dΓ

S.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ρu · ∇u − ∇ · [η(∇u + ∇uT)] + ∇p = −αu + f̃γ̃ m, in Ω

−∇ · u = 0, in Ω

u = uD , on ΓD[
pI − η

(∇u + ∇uT)] · n = g, on ΓN

(Navier–Stokes equations)

{−r2∇ · ∇γ̃ + γ̃ = γ , in Ω

∇γ̃ · n = 0, on ∂Ω
(Filter of γ ){−r2∇ · ∇̃f + f̃ = f, in Ω

∇̃f · n = 0, on ∂Ω
(Filter of f)∫

Ω

γ̃ dΩ � θVol V 0 (Volume constraint)

0 � γ � 1 (Bound of γ )

fl i(x) � f i � fhi(x), x ∈ Ω, i = 1,2 or 3
(
Bound of f = ( f1, f2) or f = ( f1, f2, f3)

)

(26)

where ρ and η are the density and dynamic viscosity of the fluid, respectively; u is the fluid velocity; p is the pressure; −αu
is the artificial Darcy force; uD is the known velocity distribution on the boundary ΓD ; g is the known stress distribution on
the boundary ΓN ; Ω is the design domain; ω1 and ω2 are the weights of the two integrations of A and B in the objective;
θV ol is the upper bound of the volume fraction of the fluid; fl i and fh i , chosen based on the engineering requirement,
are the lower and upper bounds of the i-th component of the control variable f, respectively; the control variable f is
filtered by the Helmholtz filter; f̃ is the filtered control variable; the filtered design variable is projected by the threshold
method (Eq. (17)) and γ̃ is the projected design variable. In Eq. (26), the control variable f corresponds to the variable u in
Eq. (1); the velocity u, the pressure p, the filtered variables γ̃ and f̃ correspond to the components of the state variable y
in Eq. (1).

In order to avoid the fluid flow driven by the body force in the approximated solid region, the physical control is
penalized using the power-law approach, i.e. f̃ γ̃ m , where m is the penalty chosen to be 3 [79]. The penalized filtered
control variable f̃ γ̃ m is called physical control representing the body force loaded on the fluid. In the design domain, the
interpolation of the impermeability α is [19]

α(γ̃ ) = αS
[
1 − γ̃ (1 + q)/(q + γ̃ )

]
(27)

where αS , chosen as a high but finite number to approximate the solid and ensure the numerical stability, is the imperme-
ability of the solid phase; q is a positive number used to tune the convexity of the interpolation. According to Eq. (5), the
following substitution is performed for the control variable:

f i = fl i + f01i ( fhi − fl i), f01i ∈ [0,1], i = 1,2 or 3 (28)

where f01i is the i-th component of the projected control variable. When the iterative procedure is converged, the physical
density γ̃ and filtered control f̃ can be obtained based on the obtained distributions of γ and f01, respectively.
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Fig. 7. (a) Design domain of the fluid flow problem, where the size is 2 × 1; (b) topology of the four-terminal fluid channel in the optimal match, where the
blue arrows and red arrows represent the physical control vectors and velocity vectors respectively; (c) distribution of the physical control in the optimal
match. (For interpretation of the references to color in this figure, the reader is referred to the web version of this article.)

Based on the adjoint method in Section 2.2, the adjoint equations of the Navier–Stokes equations are obtained as:

ρ(∇u · ua) − ρu · ∇ua − ∇ · [η(∇ua + ∇uT
a

)] + ∇pa = −ω1

(
∂ A

∂u
− ∇ · ∂ A

∂∇u

)
− αua, in Ω

−∇ · ua = −ω1
∂ A

∂ p
, in Ω

ua = −ω2
∂ B

∂ p
n, on ΓD

[
paI − η

(∇ua + ∇uT
a

)] · n = ω1
∂ A

∂∇u
· n + ω2

∂ B

∂u
+ ρ(u · n)ua, on ΓN (29)

where ua and pa are the adjoint variables of u and p, respectively. The adjoint equations of the Helmholtz filters for the
design and control variables are obtained as:

−r2∇ · ∇γ̃a + γ̃a = −
(
ω1

∂ A

∂γ̃
+ ∂α

∂γ̃
u · ua − mγ̃ m−1̃f · ua

)
∂γ̃

∂γ̃
, in Ω

r2∇γ̃a · n = −ω2
∂ B

∂γ̃

∂γ̃

∂γ̃
, on ∂Ω (30)

−r2∇ · ∇̃fa + f̃a = −ω1
∂ A

∂̃f
+ γ̃ mua, in Ω

r2∇̃fa · n = −ω2
∂ B

∂̃f
, on ∂Ω (31)

where γ̃a and f̃a are the adjoint variables of γ̃ and f̃, respectively. And the adjoint derivatives are obtained as:

D J

Dγ

∣∣∣∣
Ω

= −γ̃a

D J

Df01

∣∣∣∣
Ω

= −̃fa · ∂f

∂f01
(32)

In the following, one four-terminal fluid channel is optimized to demonstrate the combination of topology optimization
and optimal distribution control method for the fluid flow problem. The design domain, discretized by 200×100 rectangular
elements, is shown in Fig. 7(a). The objective is to maximize the kinetic energy of the fluid and the flux of the flow by setting
A = −1/2ρu2 in Ω and B = u · n on the inlet boundaries. The parameter choices are listed in Table 5. The optimal match is
obtained with the fluid topology and distribution of the physical control variable shown in Figs. 7(b) and 7(c) respectively.
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Table 5
Parameter setting for solving the variational problem of fluid flow in the four-terminal channel. s is the reference coordinate on the inlet boundary.

ρ η uD g m r θVol αS q ξ ω1 ω2 fl 1 fh 1 fl 2 fh 2

1 1 (4s(1 − s),0) 0 3 1 × 10−2 0.4 1 × 104 1 0.5 0.9 0.1 −1 1 −1 1

Fig. 8. Convergent histories of the objective values and volume constraint. The cost of CPU time is 1.55 h.

Fig. 9. Snapshots for the evolution of the physical density.

The convergent histories of the objective values and volume fraction are plotted in Fig. 8. Snapshots for the evolution of the
physical density and physical control are shown in Figs. 9, 10 and 11, respectively.

From the distribution of the physical control vectors representing the body force (blue arrows in Fig. 7(b)) and the
velocity vectors (red arrows in Fig. 7(b)) in the fluid topology, one can see that the physical control tries to reach the
maximum value of the bound constraint of the control and the fluid topology makes the direction of the velocity vectors
trend to be consistent with the direction of the physical control to maximize the kinetic energy of the fluid and the flux at
the inlet boundaries. On the physical realizability, the obtained physical control as a body force can be realized by imposing
electromagnetic force on the ions in the liquid solution [34,80,81].

To check the optimality of the obtained match of the topology and control in Fig. 7, the similar method is adopted as
that in Section 4.1.1. The optimal topology in Fig. 12(a) is obtained using the topology optimization method by fixing the
physical control as shown in Fig. 7(c); the optimal control in Fig. 12(b) is obtained using the optimal distribution control
method by fixing the physical density as shown in Fig. 7(b); and the objective values corresponding to Figs. 7(b), 12(a) and
12(c) are listed in Table 6. Based on the consistency of the values in Table 6, the optimality is confirmed for the obtained
match between the topology and control.
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Fig. 10. Snapshots for the evolution of f̃1γ̃
3.

Fig. 11. Snapshots for the evolution of f̃2γ̃
3.

4.2. Combination of topology optimization and optimal boundary control

4.2.1. Fluid flow
In this section, the combination of topology optimization and optimal boundary control method is tested for the fluid

flow problem. At present, the work of the topology optimization in the area of fluid flow was performed in a design domain
with fixed boundary condition [19,51,68]. Meanwhile, the optimal boundary control of fluid flow was implemented in a
fixed fluid domain [82–84]. Therefore, the problem, on how to find the reasonable match between the topology of the fluid
domain and boundary control, is encountered. Then the following variational problem is constructed for the fluid flow to
find the optimal match between the fluid topology and boundary control:
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)

Fig. 12. (a) Optimal topology computed by fixing the physical distribution control as shown in Fig. 7(d); (b) optimal distribution of the physical control
computed by fixing the topology as shown in Fig. 7(b).

Table 6
Objective values corresponding to Figs. 7(b), 12(a) and 12(b).

Fig. 7(b) Fig. 12(a) Fig. 12(b)

1.6802 × 10−4 1.6815 × 10−4 1.6745 × 10−4

Find: (γ ,uC )

Min: J (u, p;γ ,uC ) =
∫
Ω

ω1 A(u,∇u, p; γ̃ )dΩ +
∫

ΓD∪ΓN

ω2 B(u, p; γ̃ )dΓ +
∫
ΓC

ω3C(p; γ̃ ,uC )dΓ

S.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ρu · ∇u − ∇ · [η(∇u + ∇uT)] + ∇p = −αu, in Ω

−∇ · u = 0, in Ω

u = uD , on ΓD

u = uC , on ΓC[
pI − η

(∇u + ∇uT)] · n = g, on ΓN

(Navier–Stokes equations)

{−r2∇ · ∇γ̃ + γ̃ = γ , in Ω

∇γ̃ · n = 0, on ∂Ω
(Filter of γ )∫

Ω

γ̃ dΩ � θVol V 0 (Volume constraint)

0 � γ � 1 (Bound of γ )

uC li(x)� uC i � uC hi(x), x ∈ ΓC and i = 1,2 or 3
(
Bound of uC = (uC 1, uC 2) or uC = (uC 1, uC 2, uC 3)

)

(33

where the topology optimization of the flow is also implemented by adding the artificial Darcy force to the Navier–Stokes
equations; ω1, ω2 and ω3 are the weights of the three integrations of A, B and C in the objective; uC is the control variable
on the boundary ΓC ; uC li and uC hi , chosen based on the engineering requirement, are the lower and upper bounds of the
i-th component of the control variable uC , respectively. In Eq. (33), the boundary control variable uC corresponds to the
variable u in Eq. (1); the velocity u, the pressure p and filtered design variable γ̃ correspond to the components of the
state variable y in Eq. (1). The design variable γ is filtered by the Helmholtz filter. The filtered design variable is projected
by the threshold method (Eq. (17)). The interpolation of the impermeability α is the same as that in Eq. (27). According to
Eq. (5), the following projection is performed for the boundary control variable:

uC i = uC li + uC 01i(uC hi − uC li), uC 01i ∈ [0,1], i = 1,2 or 3 (34)

where uC 01 is the i-th component of the projected boundary control variable.

i
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Based on the adjoint method in Section 2.2, the adjoint equations of the Navier–Stokes equations are obtained as:

ρ(∇u · ua) − ρu · ∇ua − ∇ · [η(∇ua + ∇uT
a

)] + ∇pa = −ω1

(
∂ A

∂u
− ∇ · ∂ A

∂∇u

)
− αua, in Ω

−∇ · ua = −ω1
∂ A

∂ p
, in Ω

ua = −ω2
∂ B

∂ p
n, on ΓD

ua = −ω3
∂C

∂ p
n, on ΓC

[
paI − η

(∇ua + ∇uT
a

)] · n = ω1
∂ A

∂∇u
· n + ω2

∂ B

∂u
+ ρ(u · n)ua, on ΓN (35)

The adjoint equation of the Helmholtz filter for the design variable is obtained as:

−r2∇ · ∇γ̃a + γ̃a = −
(
ω1

∂ A

∂γ̃
+ ∂α

∂γ̃
u · ua

)
∂γ̃

∂γ̃
, in Ω

r2∇γ̃a · n = −ω2
∂ B

∂γ̃

∂γ̃

∂γ̃
, on ΓD ∪ ΓN

r2∇γ̃a · n = −ω3
∂C

∂γ̃

∂γ̃

∂γ̃
, on ΓC (36)

And the adjoint derivatives are obtained as:

D J

Dγ

∣∣∣∣
Ω

= −γ̃a

D J

DuC 01

∣∣∣∣
ΓC

=
[
ω3

∂C

∂uC
+ η

(∇ua + ∇uT
a

) · n − pan
]

· ∂uC

∂uC 01
(37)

To demonstrate the combination of topology optimization and optimal boundary control method for the fluid flow prob-
lem, the backstep flow with Reynolds number 100 is optimized. In the optimal boundary control of the backstep flow, the
objective is usually chosen to damp out the vorticity development near the corner [34]. At the same time, the dissipation of
the backstep flow is usually considered to ensure the smoothness of the fluid channel in topology optimization. Therefore,
the objective of the variational problem in Eq. (33) is set to be A = [η/2(∇u+∇uT) : (∇u+∇uT)+αu2]+ (∇ ×u)2/2, B = 0
and C = u2

C /2 to find the optimal match between the fluid topology of the corner region and the boundary control. The
design domain is set as shown in Fig. 13(a), discretized by 8100 rectangular elements. The parameter choices are listed in
Table 7. By solving the variational problem, the fluid topology (Fig. 13(b)) and the matched boundary control are obtained
(Fig. 13(c)). The convergent histories of the objective values and volume constraint are shown in Fig. 14. Snapshots for the
evolution of the physical density and boundary control are shown in Figs. 15 and 16, respectively. From the streamline
distribution in Fig. 17(b), one can conclude that the optimal match between the fluid topology and boundary control has
damped out the vorticity development near the corner of the backstep flow effectively.

The optimality is checked for the obtained match between the fluid topology and boundary control. When the bound-
ary control on ΓC is fixed (Fig. 13(c)), the topology optimization is performed and the topology is obtained as shown in
Fig. 18(a); when the topology is fixed (Fig. 13(b)), the optimal boundary control method is implemented and the boundary
control is derived as shown in Fig. 18(b). The objective values corresponding to the results in Figs. 13, 18(a) and 18(b)
are listed in Table 8. Based on the results in Fig. 13 and Fig. 18 and the consistency of the objective values in Table 8,
the optimality is confirmed for the obtained match between the fluid topology and boundary control. When the topology
optimization and optimal boundary control methods are utilized for the backstep flow separately, the optimal topology and
optimal boundary control as well as the streamline distribution are obtained as shown in Figs. 19 and 20.

4.2.2. Compliance minimization
Compliance minimization has been the most mature area in topology optimization [7,13–17]. In most of the published

papers, the compliance minimization is performed under the specified load, i.e. the optimal design is found to fit the given
load. In this section, the combination of topology optimization and optimal boundary control method is used to find the
optimal match between the material topology of compliant structure and distribution of the surface force loaded on the
boundary. The corresponding variational problem is constructed as:
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Fig. 13. (a) Design domain of the backstep flow, where ΩD defined with the design variable γ is the design domain and Ω = ΩC ∪ΩD is the computational
domain; (b) fluid topology of the corner region in the optimal match; (c) boundary control of the optimal match.

Table 7
Parameter setting for the optimization of the backstep flow. s is the reference coordinate on the corresponding boundary.

ρ η uD g r θVol αS q ξ ω1 ω2 ω3

1 1 (400s(1 − s),0) 0 1 × 10−2 0.8 1 × 104 1 0.5 0.4 0 0.2

uC l1 uC h 1 uC l2 uC h 2

−400s(1 − s) 400s(1 − s) −400s(1 − s) 400s(1 − s)

Find: (γ ,σ C )

Min: J (v;γ ,σ C ) =
∫
Ω

ω1 A(v,∇v; γ̃ )dΩ +
∫

ΓD∪ΓN

ω2 B(v; γ̃ )dΓ +
∫
ΓC

ω3C(v; γ̃ ,σ C )dΓ

S.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∇ · [−K
(∇v + ∇vT)] = 0, in Ω

v = vD , on ΓD

K
(∇v + ∇vT) · n = σ C , on ΓC

K
(∇v + ∇vT) · n = σ , on ΓN

(Elastics)

{−r2∇ · ∇γ̃ + γ̃ = γ , in Ω

∇γ̃ · n = 0, on ∂Ω
(Filter of γ )∫

Ω

γ̃ dΩ � θVol V 0 (Volume constraint)

0 � γ � 1 (Bound of γ )

σC l i(x) � σC i � σC hi(x), x ∈ ΓC , i = 1,2 or 3
(
Bound of σ C = (σC 1,σC 2) or σ C = (σC 1,σC 2,σC 3)

)

(38)

where the topology optimization of the compliance is implemented using the SIMP method [7,16]; K is the stiffness tensor
of the isotropic linear elastic material; v is the displacement; vD is the known displacement on ΓD ; σ C , representing
stress distribution, is the control variable on the boundary ΓC ; σ is the known stress distribution on the boundary ΓN ;
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Fig. 14. Convergent histories of the objective values and volume constraint. The objective value corresponding to the optimality is 1.0016 × 105. The cost
of CPU time is 5.08 h.

Fig. 15. Snapshots for the evolution of the physical density.

σC l i and σC hi , chosen based on the engineering requirement, are the lower and upper bounds of the i-th component of
the boundary control variable σ C , respectively. In Eq. (38), the boundary control variable σ C corresponds to the control
variable u in Eq. (1); the displacement v and filtered design variable γ̃ correspond to the components of the state variable
y in Eq. (1). The design variable γ is filtered and projected with the same method as that in the former sections. The
interpolation of Young’s module E in the stiffness tensor K is:

E = E0γ̃
m (39)

where E0 is the Young’s module of the material; m is the penalty chosen to be 3 [16]. For the boundary control variable,
the following projection is performed according to Eq. (5):

σC i = σC l i + σC 01i(σC hi − σC l i), σC 01i ∈ [0,1], i = 1,2 or 3 (40)

where σC 01 i is the i-th component of the projected boundary control variable.
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Fig. 16. Snapshots for the evolution of uC on ΓC .

Fig. 17. (a) Streamline distribution in the backstep flow optimized by combining the topology optimization and optimal boundary control method;
(b) streamline distribution in the backstep flow without optimization.

Fig. 18. (a) Optimal topology of the backstep flow obtained by the topology optimization method, where the boundary control on ΓC is fixed as shown in
Fig. 13(c); (b) optimal boundary control obtained by the optimal boundary control method, where the topology of the backstep flow is fixed as shown in
Fig. 13(b).

Based on the adjoint method in Section 2.2, the adjoint equation of the elastics equation is obtained as:

∇ · [−K
(∇va + ∇vT

a

)] = −ω1

(
∂ A

∂v
− ∇ · ∂ A

∂∇v

)
, in Ω

va = 0, on ΓD

K
(∇va + ∇vT

a

) · n = −
(
ω1

∂ A

∂∇v
· n + ω2

∂ B

∂v

)
, on ΓN

K
(∇va + ∇vT

a

) · n = −
(
ω1

∂ A

∂∇v
· n + ω3

∂C

∂v

)
, on ΓC (41)

where va is the adjoint variable of the displacement v. The adjoint equation of the Helmholtz filter for the design variable
is:
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Table 8
Objective values corresponding to Figs. 13(b), 18(a) and 18(b).

Fig. 13(b) Fig. 18(a) Fig. 18(b)

1.0008 × 105 1.0011 × 105 1.0009 × 105

Fig. 19. Topology and streamline distribution of the backstep flow obtained by the topology optimization method.

Fig. 20. (a) Optimal control of the backstep flow obtained by the optimal boundary control method; (b) streamline distribution of the backstep flow with
the optimal control.

−r2∇ · ∇γ̃a + γ̃a = −
[
ω1

∂ A

∂γ̃
+ ∂K

∂γ̃

(∇v + ∇vT) : ∇va

]
∂γ̃

∂γ̃
, in Ω

r2∇γ̃a · n = −ω2
∂ B

∂γ̃

∂γ̃

∂γ̃
, on ΓD ∪ ΓN

r2∇γ̃a · n = −ω3
∂C

∂γ̃

∂γ̃

∂γ̃
, on ΓC (42)

And the adjoint derivatives are:

D J

Dγ

∣∣∣∣
Ω

= −γ̃a

D J

Dσ C 01

∣∣∣∣
ΓC

=
(
ω3

∂C

∂σ C
− va

)
· ∂σ C

∂σ C 01
(43)

To demonstrate the combination of topology optimization and optimal boundary control method for compliant mech-
anism design, a cantilever is optimized to find the optimal match between the material topology and distribution of the
surface force. The design domain of the cantilever is shown in Fig. 21(a) discretized by 80 × 40 rectangular elements, and
the parameter choices are listed in Table 9. The objective is chosen to minimize the strain energy in the cantilever, by
setting A = 1/2K(∇v + ∇vT) : (∇v + ∇vT), B = 0 and C = 0. After solving the variational problem, the optimal match of
the material topology and distribution of the surface force are obtained as shown in Figs. 21(b) and 21(c). The convergent
histories of the objective values and volume constraint are shown in Fig. 22. Snapshots for the evolution of the physical
density is shown in Fig. 23.

The schematic of the controlled surface force in Fig. 21(b) and the bending moments of σC 1 and σC 2 in Fig. 21(d)
demonstrate that the bending moment of σC 1 counteracts that of σC 2 and the bending moment of σC 2 exceeds that of
σC 1. Therefore, σC 2 takes the value of the lower limit σl2 and σC 1 takes the upper and lower limits to try its best to
balance the bending moment of σC 2 and decrease the strain energy of the deformed cantilever. As the bound of σC 1 is
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Fig. 21. (a) Design domain of the cantilever, where the size is 2 × 1; (b) material topology of the cantilever; (c) distribution of the surface force σ C =
(σC 1, σC 2); (d) bending moments of σC 1 and σC 2. The objective value corresponding to the optimality is 1.2685 × 10−10. The cost of CPU time is 0.2141 h.

Table 9
Parameter setting for solving the variational problem corresponding to the compliance minimization of the cantilever.

vD σ E0 ν m r θVol ξ ω1 ω2 ω3 σl 1 σh 1 σl 2 σh 2

0 0 2.0 × 1011 0.33 3 1 × 10−2 0.5 0.5 1 0 0 −1 1 1 2

relaxed to be σl1 = −8 and σh1 = 8, the material topology and the matched distribution of the surface force are shown in
Fig. 24. Fig. 24(b) shows that the upper and lower limits of σC 1 are not reached, i.e. the bound of σC 1 is inactive. Then
the counteraction of σC 1 to σC 2 reaches the maximum. This can be confirmed from the objective value 7.3620 × 10−11,
which is 41.96% lower than 1.2685 × 10−10 corresponding to the bound active case in Fig. 21. This example shows that the
inactivity of the bound of the control variable can be ensured by respectively choosing reasonable high and low values for
the upper and lower limits in the bound constraint.

4.3. Test for transient problem

Transient problems are ubiquitous in engineering. This section is focused on the combination of topology optimization
and optimal control method for the transient problem. The topology optimization and optimal control method have been
developed for the transient problem, respectively. For the transient problems, the topology optimization is performed in
the interpolated design domain with fixed distribution and boundary inputs; and optimal control is implemented in the
fixed domain defined with physical field. To find the optimal match of the material topology and control variable for the
transient problem, the topology optimization and optimal control method are combined and tested for the unsteady fluid
flow problem in this paper. Topology optimization method for the unsteady flow has been developed in [52,85], recently.
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Fig. 22. Convergent histories of the objective values and volume constraint.

Fig. 23. Snapshots for the evolution of the material topology.

Then based on the topology optimization and optimal control method for the unsteady flow, the following variational
problem is constructed to find the optimal match:

Find: (γ , f,uC )

Min: J (u, p;γ , f,uC ) =
Θ∫

0

∫
Ω

ω1 A(u,∇u, p; γ̃ ,̃ f)dΩ dt +
Θ∫

0

∫
ΓD∪ΓN

ω2 B(u, p; γ̃ ,̃ f)dΓ dt

+
Θ∫ ∫

ω3C(p; γ̃ ,̃ f,uC )dΓ dt
0 ΓC
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Fig. 24. (a) Material topology of the cantilever; (b) distribution of the surface force σ C = (σC 1, σC 2). The objective value corresponding to the optimality is
7.3620 × 10−11. The cost of CPU time is 0.6109 h.

S.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ρ ∂u
∂t + ρu · ∇u − ∇ · [η(∇u + ∇uT

)] + ∇p = −αu + f̃γ̃ m, in Ω

−∇ · u = 0, in Ω

u|t=0 = u0, in Ω

u = uD , on ΓD

u = uC , on ΓC[
pI − η

(∇u + ∇uT
)] · n = g, on ΓN

(Navier–Stokes equations)

{−r2∇ · ∇γ̃ + γ̃ = γ , in Ω

∇γ̃ · n = 0, on ∂Ω
(Filter of γ ){−r2∇ · ∇̃f + f̃ = f, in Ω

∇̃f · n = 0, on ∂Ω
(Filter of f)∫

Ω
γ̃ dΩ � θVol V 0 (Volume constraint)

0 � γ � 1 (Bound of γ )

fl i(x) � f i � fhi(x), x ∈ Ω, i = 1,2 or 3
(
Bound of f = ( f1, f2) or f = ( f1, f2, f3)

)
uC li(x) � uC i � uC hi(x), x ∈ ΓC , i = 1,2 or 3

(
Bound ofuC = (uC 1, uC 2) or uC = (uC 1, uC 2, uC 3)

)

(44)

where t is the time; [0,Θ] is the considered time interval; u0 is the initial distribution of the fluid velocity. When solving
the unsteady incompressible Navier–Stokes equations, the design variable γ is time independent because the layout of the
fluid domain is kept unchanged; and f and uC are time dependent, because different velocity distributions at different time
needs different distributions of the controls. The design variable γ and the control variable f are filtered by Helmholtz
filters. The projection of the filtered design variable γ̃ is performed by the threshold method as in Eq. (17). The physical
distribution control is penalized by γ̃ m , where the penalty m is chosen to be 3. And the bound constraints of the distribution
control f and boundary control uc are projected using Eqs. (28) and (34), respectively.

Based on the adjoint method in Section 2.2, the adjoint equations of the Navier–Stokes equations are obtained as:

−ρ
∂ua

∂t
+ ρ(∇u · ua) − ρu · ∇ua − ∇ · [η(∇ua + ∇uT

a

)] + ∇pa = −ω1

(
∂ A

∂u
− ∇ · ∂ A

∂∇u

)
− αua, in Ω

−∇ · ua = −ω1
∂ A

∂ p
, in Ω

ua|t=Θ = 0, in Ω
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Table 10
Parameter setting for solving the variational problem of the unsteady flow rectifier. s is the reference coordinate on the corresponding boundary; U (t) and
h(t) are functions of the time t as shown in Fig. 25.

ρ η uD g Θ m r θVol αS q ξ ω1 ω2 ω3

1 1 (4s(1 − s)U (t),0) 0 1 3 1 × 10−2 0.4 1 × 104 1 0.5 1 × 10−5 1 − 2ω1 ω1

fl 1 fh 1 fl 2 fh 2 uC l1 uC h 1 uC l2 uC h 2

−1 1 −1 1 −4s(1 − s)h(t) 4s(1 − s)h(t) −4s(1 − s)h(t) 4s(1 − s)h(t)

ua = −ω2
∂ B

∂ p
n, on ΓD

ua = −ω3
∂C

∂ p
n, on ΓC

[
paI − η

(∇ua + ∇uT
a

)] · n = ω1
∂ A

∂∇u
· n + ω2

∂ B

∂u
+ ρ(u · n)ua, on ΓN (45)

The transient adjoint Eqs. (45) are terminal value problems, where the value of ua at the terminal time Θ is specified and
the transient solver is implemented from the time Θ to 0. The adjoint equations of the Helmholtz filters can be obtained
as:

−r2∇ · ∇γ̃a + γ̃a = − 1

Θ

Θ∫
0

(
ω1

∂ A

∂γ̃
+ ∂α

∂γ̃
u · ua − mγ̃ m−1̃f · ua

)
∂γ̃

∂γ̃
dt, in Ω

r2∇γ̃a · n = − 1

Θ

Θ∫
0

ω2
∂ B

∂γ̃

∂γ̃

∂γ̃
dt, on ΓD ∪ ΓN

r2∇γ̃a · n = − 1

Θ

Θ∫
0

ω3
∂C

∂γ̃

∂γ̃

∂γ̃
dt, on ΓC (46)

−r2∇ · ∇̃fa + f̃a = −ω1
∂ A

∂̃f
+ γ̃ mua, in Ω

r2∇̃fa · n = −ω2
∂ B

∂̃f
, on ΓD ∪ ΓN

r2∇̃fa · n = −ω3
∂C

∂̃f
, on ΓC (47)

From Eqs. (46) and (47), one can see that the adjoint variable γ̃a is time independent and f̃a is time dependent. The adjoint
derivatives of the objective functional in Eq. (44) are:

D J

Dγ

∣∣∣∣
Ω

= −Θγ̃a

D J

Df01

∣∣∣∣
Ω

= −̃fa · ∂f

∂f01

D J

DuC 01

∣∣∣∣
ΓC

=
[
ω3

∂C

∂uC
+ η

(∇ua + ∇uT
a

) · n − pan
]

· ∂uC

∂uC 01
(48)

In the following, a flow rectifier is optimized to demonstrate the combination of topology optimization and optimal
control method for the transient problem. The design domain is shown in Fig. 26(a) discretized by 100 × 100 rectan-
gular elements. The parameter choices are listed in Table 10. The integrated functionals in the objective are set to be
A = 1/2η(∇u +∇uT) : (∇u +∇uT)+αu2 + (̃fγ̃ )2 in Ω , B = (u · n − urn)2 on ΓN and C = u2

C on ΓC , where urn is the desired
velocity distribution in the outward normal direction of the outlet ΓN . This setting of the multi-objective is to rectify the
outward normal velocity distribution on ΓN approaching the desired distribution urn and minimize the dissipation power of
the flow and the scope of the physical control f̃ and uC , simultaneously. urn is set as 4s(1 − s)V (t), where s is the reference
coordinate on ΓN and V (t) represents the time dependent relation shown in Fig. 25. The known velocity imposed on the
inlet is uD = (4s(1 − s)U (t),0), where U (t) represents the time dependent relation shown in Fig. 25.

By solving the variational problem in the time interval [0,1], the optimal match of the fluid topology (Fig. 26(b)), phys-
ical distribution control (Figs. 27 and 28) and boundary control (Fig. 29) are obtained. From the obtained fluid topology
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Fig. 25. Plotting of the functions U (t), V (t) and h(t).

Fig. 26. (a) Design domain of the flow rectifier; (b) topology of the flow rectifier in the optimal match. The objective value corresponding to the optimality
is 2.9663 × 10−4. The CPU time cost is 49.9901 h.

Fig. 27. Physical distribution control f̃1γ̃
m at different time.

(Fig. 26(b)) and boundary control (Fig. 29), one can see that a ramose channel connected to the boundary ΓC is produced to
compensate the difference of the flux at the inlet ΓD and outlet ΓN and enforce the flux rate at the outlet ΓN to be consis-
tent with that of the desired velocity distribution. From the physical distribution control in Figs. 27 and 28, one can see that
the physical distribution control mainly distributes near the outlet ΓN to enforce the outward normal velocity distribution
to be consistent with the desired case.
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Fig. 28. Physical distribution control f̃2γ̃
m at different time.

Fig. 29. Boundary control uC at different time.

5. Conclusion

The combination of topology optimization and optimal control method has been presented in this paper. By the pre-
sented combination, the optimal match between the material topology and control has been achieved. In this combination,
the control variable is constrained by a bound constraint and the bound constraint is projected onto [0,1], which is the
same as the bound constraint for the design variable in topology optimization, and this is convenient to use the method of
moving asymptotes to evolve the design and control variables simultaneously. The corresponding variational problems are
analyzed and solved using the adjoint method and iterative approach, respectively. In the numerical examples, the com-
bination of topology optimization and optimal distribution control has been tested for the heat transfer and steady flow
problems; the combination of topology optimization and optimal boundary control has been demonstrated by the steady
flow and compliance minimization problems; and the combination method for the transient problem has been also dis-
cussed and demonstrated by the unsteady flow problem. Based on the combination of topology optimization and optimal
control method, the freedom of the engineering design is enlarged, and the designer can give more reasonable design to
cater for the engineering requirement.
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