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aState Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of
Sciences, Changchun, Jilin, P.R. China; bUniversity of Chinese Academy of Sciences, Beijing, P.R. China

(Received 30 August 2013; accepted 30 September 2013)

Anisotropic waveguide theory is developed for electrically tunable distributed feedback (DFB) laser from dye-
doped holographic polymer dispersed liquid crystal (HPDLC) grating. The period grating structure, optical
anisotropy of the liquid crystal (LC) and practical light propagation path in the HPDLC have been considered.
The emitted lasing wavelength is deduced on basis of the dielectric anisotropy of the LC, transverse-magnetic
(TM) light wave propagation in the core layer and DFB laser theory. An experimental method to determine the
tilt angle of the LC and the lasing behaviours under different electric fields are used to verify the validity of the
anisotropic numerical analysis. The results show that a more accurate agreement between the theoretical calcula-
tions and the experimental data is achieved. The anisotropic numerical analysis presented here is very useful when
designing and optimising tunable lasers for optical communications and integrated optics.

Keywords: holographic polymer dispersed liquid crystal; anisotropic waveguide; distributed feedback; electrically
tunable laser

1. Introduction

Distributed feedback (DFB) waveguide lasers based
on organic materials have attracted considerable
attention recently because they are potentially used
as compact components in optical communications
and integrated optics [1–5]. Selective light amplifica-
tion at specific wavelengths can be provided from the
Bragg scattering in the DFB waveguide configuration.
To be more functional and competitive, electrically
tunable lasers were proposed by introducing liquid
crystals (LCs) as active materials in the waveguide
configurations [6–11]. As an efficient method to rea-
lise tunable lasers, holographic polymer dispersed
liquid crystal (HPDLC) configuration has been devel-
oped. The HPDLC grating is fabricated by a mixture
of LC and monomers exposed to two or multiple
interfering laser beams. The monomers undergo a
fast free-radical photopolymerisation in the bright
regions of the interference pattern; counter-diffusions
of the LC and monomers are initialised due to the
resulting concentration gradient and alternating layers
of the polymer in the bright fringes, and the LCs are
formed in the dark fringes [12–24]. The formed peri-
odic structure can be regarded as a one-dimensional
photonic crystal that as optical resonator for emitted
lasers [25,26]. Besides by electrical field, the HPDLC
lasers can be tuned by other methods, such as thermal
[27] and optical [28] effects. The former is caused by
the decrease of the anisotropy of LC with the increase
of temperature, and the latter is induced by the

photoisomerisable dye changing the LC orientation
under lights with different wavelengths.

The electrically tunable lasers based on dye-doped
HPDLC grating have been reported before
[26,29–32]. Although the experimental results are
remarkable, no detailed theoretical or numerical ana-
lyses are given for electrically tunable dye-doped
HPDLC lasers while the tunable lasing behaviours
are only simply attributed to the reorientation of LC
molecules upon the external electric field. In dye-
doped HPDLC lasers, both polymer and LC should
be considered because they are both in the light pro-
pagation path in the core layer. In our previous work,
the electrically tunable transverse-magnetic (TM)
mode laser was obtained, and the isotropic waveguide
theory was adopted to explain the tunable lasing [32].
In that assumption, the different light modes would
experience the same effective refractive index of the
LC when propagating parallel with the cladding glass
substrate. However, it cannot describe the practical
situation since the different light modes will experi-
ence different refractive indices of the LC when they
propagate in the different directions in the core layer,
due to the LC optical anisotropy.

In this work, we take account of the LC optical
anisotropic properties and develop anisotropic wave-
guide theory for dye-doped HPDLC laser. Previously
such anisotropic analysis was only used to investigate
the guide-mode composed by pure LC waveguides
[33–35], while we introduce it to the DFB dye-doped
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HPDLC laser system. The anisotropic waveguide the-
ory is deduced and verified by the experiments of
electrically tunable lasing behaviours and measurable
reorientation degree of the LC in our HPDLC. The
obtained anisotropic waveguide theory can be used to
predict the lasing actions more precisely in different
conditions such as the core layer thickness, LC bire-
fringence and phase-separated LC amount.

2. Theory and experiment

2.1 Anisotropic waveguide theory for HPDLC

The HPDLC grating with polymer scaffolding mor-
phology is mainly composed of polymer matrix and
pure LC layer [23,36], as shown in Figure 1(a). In the
polymer matrix, some trapped LC molecules are ran-
domly aligned and not free to rotate by the external
electric field [37]. In the pure LC layer, the LC align-
ment is parallel to the grating vector on average due
to the polymer filaments. A parameter α is introduced
to indicate the amount of the phase-separated LC,
i.e., the ratio of pure LC layers in the whole grating.
α can be obtained by birefringence measurement [23],
and it is 19.16% in this work. A symmetric slab
waveguide is consisted of the HPDLC configuration
as the core and the two glass plates as the cladding
substrates (Figure 1(b)). Here, the thickness of the
indium-tin-oxide (ITO) layer is 30 nm, which is too
thin to be considered in the waveguide structure [32].

When an electric field is applied, the LC molecules
are rotated in x–z plane with a tilt angle θ, as shown in
Figure 1(b). The refractive index of the LC experienced
by the TM mode is different when the LC tilt angle is
changed, and the TM mode laser can be tuned. On the
other hand, the reorientation of the LC molecules has
no influence on the transverse-electric (TE) mode since
the TE mode always passes through the LC ordinary
refractive index (no), no TE mode can be tuned.
Taking TM0 and TM1 modes as examples (Figure 1
(b)), different TM mode lights propagate with different
angles (θ0 and θ1) in the waveguide. When these modes
pass through the pure LC layer, they will experience
different refractive indices due to the LC optical

anisotropy. We can see that in the core layer, the
practical refractive index of TM mode in the LC
layer is not only dependent on the Bragg condition
but also on the LC tilt angle. Therefore, anisotropic
waveguide theory needs to be developed for dye-doped
HPDLC lasers to describe the true situation.

If the LC tilt angle θ is achievable, the relative
permittivity of the pure LC layer can be expressed in
a tensor form for optical anisotropy [34]:

εLC ¼
εe sin

2 θ þ εo cos2 θ 0 εa sin θ cos θ
0 εo 0

εa sin θ cos θ 0 εe cos2 θ þ εo sin
2 θ

2
4

3
5;
(1)

where εa = εe – εo, εo = n2o, εe = n2e, in which no and ne
are the ordinary and extraordinary LC refractive
indices. Conversely, the polymer matrix with trapped
LC is isotropic and constant, so its relative permittiv-
ity is given by:

εp ¼ 2n2o þ n2e
3

� �
1� ’pp � α

1� α
þ n2pp

’pp

1� α
; (2)

where npp is the refractive index of the pure polymer
and φpp is the volume proportion of the pure polymer
in HPDLC grating. Therefore, the average relative
permittivity of the HPDLC core layer εcore_layer is:

εcore layer ¼
εxx 0 εxz
0 εyy 0
εzx 0 εzz

2
4

3
5 ¼ ð1� αÞεp þ αεLC:

(3)

Considering that the off-diagonal elements εxz and εzx
are so small, compared with the diagonal ones, and
there is no combination of TE and TM modes in our
case, εcore_layer can be simplified as:

εcore layer ¼
εxx 0 0
0 εyy 0
0 0 εzz

2
4

3
5: (4)

DCM

Polymer

θo θ1 zθ

Glass

(a) (b)
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x

Figure 1. (colour online) (a) Schematic diagram of HPDLC grating and (b) propagation of TM mode lights in sample cell.
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For the TM-polarised light wave (H= (0,Hy, 0),E= (Ex,
0, Ez)) propagating in the HPDLC core layer along the z
direction, its magnetic field can be expressed by:

H ¼ HyðxÞ exp½iðk0Nz� ωtÞ�; (5)

where k0 and ω are the wave vector and angular
frequency of the light, respectively, and N is the effec-
tive refractive index of TM mode. By substituting
Equation (5) in the Maxwell’s equation:

�ð� �HÞ � �2H ¼ �μ0ε0εcore layer
@2H
@t2

; (6)

where μ0 and ε0 are the permeability and permittivity
of vacuum, we will find the solution:

HyðxÞ ¼ cos½k0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
εzz
εxx

ðεxx � N2Þ
r

x�: (7)

Then, considering a symmetric waveguide composed
of the anisotropic HPDLC as the core and the two
isotropic glass plates with refractive index of ng as
substrates, the magnetic fields in these three regions
can be expressed by [38]:

where d is the thickness of the core layer,Φ is a constant
about phase and HyI, HyII and HyIII are the magnetic
fields in the core layer (–d/2 ≤ x ≤ d/2), bottom glass
substrate (x < –d/2) and upper glass substrate (x > d/2),
respectively. According to the boundary conditions for
transverse field components [39], we have:

1

εzz

@HyI

@x

�
� d

2

�
¼ 1

n2g

@HyII

@x

�
� d

2

�

1

εzz

@HyI

@x

�
d

2

�
¼ 1

n2g

@HyIII

@x

�
d

2

� (9)

Thus an anisotropic waveguide equation for TM
mode can be solved:

2 tan�1 εzz
n2g

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
εxxðN 2 � n2gÞ
εzzðεxx � N2Þ

s2
4

3
5þ mπ ¼ k0d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
εzz
εxx

ðεxx � N2Þ
r

;

(10)

where m is the mode number. Furthermore, according
to the DFB laser theory [40], a TM mode in the
waveguide will oscillate at a wavelength λlaser so that
its effective refractive index N obeys:

N ¼ Mλlaser
2Λ

; (11)

where λlaser is the emitted lasing wavelength, Λ is the
grating period and M is the Bragg order. Combining
Equations (4), (10) and (11), we have built a connec-
tion between the tilt angle θ and the lasing wavelength
λlaser and developed the anisotropic waveguide theory
for dye-doped HPDLC laser.

2.2 Experiment

Two kinds of monomers were selected in our mixture.
One was the dipentaerythritol hydroxyl pentaacrylate
(DPHPA, Aldrich), and the other was the phthalic
diglycol diacrylate (PDDA, Eastern Acrylic Chem).

Photoinitiator Rose Bengal (RB, Aldrich) and coin-
itiator N-phenylglycine (NPG, Aldrich) were used to
provide the sensitivity to green (532 nm) laser beam to
form HPDLC grating. The LC TEB30A (Slichem,
no = 1.522 and ne = 1.692) and chain extender
N-vinylpyrrolidinone (NVP, Aldrich) were also
added. The laser dye 4-(dicyanomethylene)-2-methyl-
6-(p-dimethylaminostyryl)-4H-pyran (DCM, Aldrich)
was used as a gain medium for lasing action. These
ingredients were mixed together with weight ratios of
27.3, 27.3, 0.5, 1.8, 33.0, 9.1 and 1.0 wt%, respec-
tively, and then the pre-polymer syrup was injected
into a sandwiched ITO glass cell by capillary action.
A 532 nm Nd:YAG laser was used for the holo-
graphic recording. Two coherent s-polarised laser

HyIðxÞ ¼ cos

�
k0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
εzz
εxx

ðεxx � N2Þ
r

xþf
� �

� d

2
� x � d

2

�

HyIIðxÞ ¼ cos

�
� k0

d

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
εzz
εxx

ðεxx � N 2Þ
r

þf
�
exp

�
k0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N 2 � n2g

q �
xþ d

2

�� �
x <� d

2

�
;

HyIIIðxÞ ¼ cos

�
k0

d

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
εzz
εxx

ðεxx � N 2Þ
r

þf
�
exp

�
k0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N 2 � n2g

q �
d

2
� x

�� �
x >

d

2

�
(8)
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beams were incident on one side of the sample cell
with specific angle to create the transmission HPDLC
grating. The grating pitch Λ is chosen at 804.8 nm, the
cell thickness d is 2.5 μm and the refractive indices of
the glass substrate ng and pure polymer npp are 1.516
and 1.525, respectively.

The pump laser source for lasing action was a Q-
switched 532 nm Nd:YAG pulsed laser with a pulse
duration of 8 ns and repetition of 10 Hz. The laser
beam was focused by a cylindrical lens on the sample
to form a narrow strip gain area (7mm long and 0.1mm
wide) along the grating vector to ensure sufficient DFB.
In order to enable electrical modulation of the lasing
wavelength, a square-wave voltage of 1 kHz frequency
was applied on the sample. A polariser was placed
before the fibre detector so that only TM mode laser
can be collected from the edge of sample cell into a
spectrometer (resolution: 0.25 nm). The detailed grating
fabrication process and set-up for lasing measurement
can be found elsewhere [23,24].

3. Results and discussion

3.1 LC reorientation upon electric field

A characterisation method, which was always applied
to measure the pretilt angle of LC [41], is used here to
determine the LC tilt angle under different electric
fields, as shown in Figure 2. The HPDLC sample is

mounted between a pair of mutually orthogonal
polariser and analyser. A square-wave voltage is
applied on the sample to reorientate the LC mole-
cules. A probe light of 633 nm from He–Ne laser
(744 μW) passes through the 45° polariser with
respect to the y-axis and irradiates perpendicularly
on the sample. The transmitted light will undergo a
phase retardation caused by the LC existing in
HPDLC grating and enter a photodetector.

The intensity of the transmitted light experienced
a phase retardation caused by the birefringence effect
of LC molecules in the pure LC layer [42] can be
described by:

IT ¼ I0 sin
2 πdα

λ
Δn

� �
; (12)

where λ and I0 are the wavelength and intensity of the
incident light, respectively, Δn is the birefringence of
the LC molecules which varies with the LC tilt angle θ
and it can be written as:

Δn ¼ noneffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2e sin

2 θ þ n2o cos
2 θ

q � no: (13)

From Equations (12) and (13), we can find that:

noneffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2e sin

2 θ þ n2o cos
2 θ

q ¼ λ
πdα

arcsin

ffiffiffiffi
IT
I0

r
þno: (14)

It can be seen that from Equation (14) that the tilt
angle θ can be determined by measuring the intensity
IT and I0 experimentally under arbitrary electric field.

The transmitted light was measured under differ-
ent electric fields, as shown in Figure 3(a). It can be
found that the intensity of the transmitted light

Sample

Analyser

Photodetector

y

z x

Polariser

45° –45°

He–Ne
Laser

Figure 2. (colour online) Optical set-up to determine the tilt
angle of LC.
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Figure 3. (a) Transmitted light and (b) LC tilt angle under different electric fields.
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decreases with the increasing electric field, which
means that the birefringence effect of the sample is
weakened when the LC molecules tend to align their
long axes to the field direction. According to
Equation (14), the tilt angle was calculated and
shown in Figure 3(b). As expected, the higher the
electric field, the larger the tilt angle. Due to the
thin cell gap that the sample could not bear the higher
electric field, we did not drive the LC molecules to the
saturation situation (90°). Upon the electric field of
14.0 Vμm−1, the tilt angle can reach 71.6° in our
measurement. We will use the measured LC tilt
angle to verify our anisotropic waveguide theory.

3.2 Electrically tunable lasing behaviours

Figure 4(a) shows the emission spectra of the dye-doped
HPDLC laser under different electric fields. Multi-
wavelength DFB lasing behaviours were observed
from the sample. In the absence of the electric field,
the lasing wavelengths were located at 615.4 nm and
612.6 nm for TM0 and TM1 modes, respectively. When
the electric field exceeded the threshold 2.0 Vμm−1, the
lasing wavelengths started to be tuned at the
Freedericksz transition of the LC molecules. Above
the electric field of 4.0 Vμm−1, TM2 mode appeared at
610.6 nm. Themaximum red-shift of lasing wavelengths
was observed at 14.0 Vμm−1, whereas the higher electric
field will exceed the bearing capability of our HPDLC
sample with 2.5 μm cell gap. The relationship between

the lasing wavelengths and the electric fields is sum-
marised in Figure 4(b). As the electric field is increased,
all TM modes are tuned to the longer wavelengths, and
the spectral tuning of TM0, TM1 and TM2 modes are
12.0 nm, 10.6 nm and 5.9 nm, respectively. Compared
to the 8.0 nm reported in our previous work [32], the
wider electrically tuning range is attributed to the higher
phase-separation degree of LC (current 19.16% to pre-
vious 11.0%), since bigger grating period is chosen in
this work. However, the bigger grating period needs a
higher Bragg order to activate the lasing action accord-
ing to Equation (11), which will result in a higher thresh-
old energy and lower conversion efficiency [43,44].

3.3 Lasing behaviours and anisotropic waveguide
theory

According to the LC tilt angle measured in Section
3.1, we summarised the experimental and calculated
lasing wavelengths of the TM modes based on
Equations (4), (10) and (11) in Table 1. From
Table 1, we can find that a good agreement between
the experimental data and theoretical calculations for
all the TM modes, verifying the validity of the aniso-
tropic waveguide theory for electrically tunable dye-
doped HPDLC laser. However, due to the lower
efficiency of the confinement for the higher-order
mode in waveguide [43,44], we did not detect the
TM3 mode experimentally at 610.1 nm predicted by
the theory.

0605
0.0

0.0

0.0

0.0

0.0

0.5

0.5

0.5

L
as

in
g 

in
te

ns
ity

 (
ar

b.
un

it)

0.5

0.5

1.0

1.0

1.0

1.0

1.0

610 615 620

Wavelength (nm)

625 635630
610

615

620

L
as

in
g 

w
av

el
en

gt
h 

(n
m

)

625

630
TM0

TM0

TM1
TM1

TM2

TM2

E = 0.0Vμm–1

E = 2.0Vμm–1

E = 4.0Vμm–1

E = 10.0Vμm–1

E = 14.0Vμm–1

(b)(a)

2 4

Electric field (Vμm–1)

6 8 10 12 14 16

Figure 4. (colour online) (a) Emission spectra of the dye-doped HPDLC laser under different electric fields and (b) the
relationship between the lasing wavelengths and electric fields.

Table 1. Experimental and theoretical lasing wavelengths under different electric fieldsa.

TM0 (nm) TM1 (nm) TM2 (nm) TM3 (nm)

Electric field (Vμm−1) Tilt angle (°) λlaser λ�laser λlaser λ�laser λlaser λ�laser λlaser λ�laser

0 0 615.4 615.5 612.6 612.6 – – – –

4 24.6 617.7 617.8 614.2 614.5 610.6 610.2 – –

10 56.5 625.1 624.6 620.9 620.5 614.7 614.7 – –

14 71.6 627.4 627.4 623.2 622.8 616.5 616.9 – 610.1

Note: aλlaser is the experimental data, and λ*laser is the theoretical calculation.
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Furthermore, we perform the comparison between
the anisotropic waveguide theory proposed in this
work and isotropic waveguide theory used in our
previous work [32], for dye-doped HPDLC laser in
Figure 5. It can be found that, although the difference
between the blue solid line (anisotropic) and red
dashed line (isotropic) is small, more experimental
data show the trends in accordance with anisotropic
waveguide theory. It indicates that the anisotropic

waveguide theory is more accurate to describe the
lasing behaviours of dye-doped HPDLC laser.

3.4 Predicable lasing action by anisotropic waveguide
theory

More meaningfully, the anisotropic waveguide theory
we develop here for dye-doped HPDLC laser would
be very useful to design tunable lasers, predict and
optimise their electro-tunable properties. For exam-
ple, in this system, many factors can be considered to
improve the tunable lasing action, such as the core
layer thickness (d), LC birefringence (Δn) and phase-
separated LC amount (α). If the grating period, LC
birefringence and phase-separation degree of the LC
are fixed same with our experiment, the tunable lasing
action with different core layer thickness can be pre-
dicted, as shown in Figure 6(a) and 6(b). From this
prediction, we can design and achieve a single-mode
electrically tunable laser when the core layer thickness
is smaller than 0.75 μm. If the core layer thickness is
fixed and different LC with bigger birefringence such
as 0.25 or 0.35 [45] is used to optimise the TM0 lasing
action, a higher Δn can lead to a wider tunable lasing
range, as shown in Figure 6(c), in which the max-
imum shift of lasing wavelength can reach 29 nm
when designing Δn is 0.35 and no is 1.522. If the
phase-separation degree is optimised, it can be found
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that not only the tunable lasing range but also the
initial lasing wavelength position without applying
the electric field can be designed and optimised, as
shown in Figure 6(d). These three examples further
show that the anisotropic waveguide theory can be
utilised to design, predict and optimise the tunable
lasing behaviours for optical communications and
integrated optics. The optimal work of electrically
tunable DFB dye-doped HPDLC laser based on our
anisotropic analysis is undergoing.

4. Conclusions

In conclusion, the anisotropic waveguide theory has
been developed for electrically tunable DFB dye-
doped HPDLC laser based on the lasing properties
and LC optical anisotropic properties. The LC tilt
angle is obtained experimentally to verify the validity
of the anisotropic waveguide theory. The results show
that the better agreement between the anisotropic
theoretical calculations and experimental data is
achieved, which provide more accurate numerical
analysis to describe the electrically tunable lasing
behaviours, compared with isotropic analysis.
Moreover, this accurate anisotropic analysis will pre-
dict the lasing action when designing or optimising
the tunable lasers for practical applications.
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