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Abstract

In this paper, we have proposed a robust super-resolution high-frequency component estimation (RS-
HFCE) method, which can efficiently estimate lost high-frequency components and correct aliasing effects
of low-frequency components of an image. The fundamental principle of operation of the proposed method
is based on the idea that, when a baseband band-limited image signal of known bandwidth in a high-
resolution lattice is iteratively low-pass filtered in the frequency domain, the unknown values in the lattice
can be interpolated, thus correcting the aliasing for the low-frequency components. If this process is done
along with adjusting the amplitudes of the known pixel values, some high-frequency components of an
image are automatically extrapolated. In order to provide simultaneous edge preservation and noise removal
capabilities of the super-resolved images, an improved version of an adaptive Perona–Malik (PM) model is
incorporated into the process. One of the characteristics of the proposed method is its high level of tolerance
capabilities to reconstruction errors and noise caused by an increase in the reconstruction scaling factors.
High quality images of higher resolution are still appreciably reconstructed when greater magnification
factors are used. From a couple of experiments on real images, and using both subjective and objective
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image quality assessment measures, it is demonstrated that the proposed method outperforms most of other
classical methods.
& 2013 The Franklin Institute. Published by Elsevier Ltd. All rights reserved.
1. Introduction

1.1. A brief overview of the super-resolution technology

Super-resolution (SR), one of the most active and open-ended areas of research, can be defined
as a digital image processing technology that can be used to reconstruct a High-Resolution (HR)
image from at least one low-resolution (LR) image [1]. This branch of image processing closely
relates to interpolation (see [2,3]) because it generally deals with enlargement and enhancement
of low resolution and degraded images. There are a good number of applications of the SR
technology. One of the typical applications of this technology can be observed in web browsers,
where high resolution images and streaming videos are naturally required [4]. In the near future,
we think the applications of the SR technology can be extended to the Engineering control
feedback systems, so that the feedback information contains the super-resolved images rather
than complicated networks (see [5–8]). Two main types of SR methods are known, namely
classical multi-image SR, which involve reconstruction of a HR image from multiple LR images
of the same scene but different sub-pixel alignment, and Example-Based SR, which deals with
learning the correspondence between low and high resolution patches from a database [9]. Our
paper implements a classical multi-image SR and, in the rest of the paper, SR refers to a classical
multi-image super-resolution.
Generally, an SR problem can be broken down into two major parts: registration and

reconstruction. Registration is the very early stage that involves acquisition of a sequence of images
of the same scene, estimation of the relative motion parameters between each image and a reference
image, and finally re-arrangement of the images into a sub-pixel grid using the calculated motion
parameters. If an image to be registered is exactly the same in every aspect with the reference image,
and all relative motion elements between this image and a reference image are zero, then registration
is meaningless. However, with an assumption that there exist camera movements and time
difference during image acquisition, the motion parameters are usually non-zero entities, thereby
making registration necessary. Registration is a critical stage to the overall success of reconstruction
of a HR scene [10]. The reconstruction process follows just after the registration process. Here, the
information available on a sub-pixel grid is directly projected on a high resolution grid. Additional
processes which are done under this final stage are image denoising, where noise is minimized using
sophisticated techniques, and further image enhancement. Fig. 1 in [11] illustrates the two steps of
SR, namely registration and reconstruction. From the figure, sequence of images is captured in “A”
and aligned in a common grid called sub-pixel grid in “B”. The geometrical arrangement of pixels in
a sub-pixel grid depends on the method used to capture the images. Finally, a sub-pixel grid is
projected on a high resolution grid in “C”. Following this simple and straightforward illustration, we
can therefore divide SR algorithms into two major categories: registration and reconstruction
algorithms. This paper examines the reconstruction algorithms. In order to complete the SR
framework (see Fig. 1), and test the performance of our method, we use a registration algorithm by
Vandewalle et al. [12] to estimate the roto-translation motions in a sub-pixel grid. Other registration
algorithms, however, may be used to test the performance attributes of our method.



Fig. 1. Registration and reconstruction stages of SR.
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One of the examples of the SR reconstruction method is called the RSR (robust super-
resolution) method, which was originally realized by Zomet et al. [13]. This is an improved
version of the Iterative Back Projection (IBP) method [14]. The major difference between the
two methods relies on the computation of the optimal image gradient in the observation model.
While the IBP computes the gradient by summation of the errors, the RSR uses the median of the
errors. This makes the RSR more robust against the outliers in the LR images. The RSR method,
just like the IBP method, is fast and can be easily understood, however, it does not efficiently
solve the problem of loss of high-frequency spatial information caused by the imaging process
operations. Furthermore, the method dramatically degrades its performance as reconstruction
scaling factors get larger.
1.2. The SR observation model

The term observation model, in the context of an image reconstruction problem, can be
defined as a framework which establishes the relationship between the desired HR image and the
observed LR images [15]. This model shows all events a desired HR image undergoes from an
instant it is acquired by an imaging device to the point it is observed as a LR image. The
observation models can be broadly divided into two main parts, namely observation models for
still images and for video sequence. In the discussion of this paper, we have employed the
observation model for still images. However, it is straightforward to extend the idea to the video
sequence model.

Fig. 2 illustrates a general structure of the SR observation model. In order to comprehensively
understand this observation model, consider a desired HR image I of size L1N1 � L2N2, where
L1 and L2 are scaling factors and N1 and N2 are the pixel dimensions in the horizontal and vertical
directions of the corresponding observed LR image. The image I is discrete and is obtained by
sampling at Nyquist frequency (without aliasing) a continuous scene by sampler A. It then
undergoes warping process in part B, which includes rotations and translations, to form a warped
HR image Ik. The operation for warping an image I is performed by a warping matrix Mk. In part
C, the image Ik is passed through a blurring function Bk. The blurring operator can be due to
motion, sensor Point Spread Function (PSF) or optical characteristics. In part D, the resulting
image from C is downsampled using a subsampling matrix Dk with factors L1 and L2. Finally, an
additive noise Nk is added to an image in step E to form an observed image Zk.



Fig. 2. The observation model for a SR reconstruction problem.
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1.3. Background of SR methods

The RSR method presented in [13] was established using the concepts presented from [14,16,17]. It
combines a robust median estimator in an iterative process to achieve a SR algorithm. Unlike other
reconstruction methods, the RSR method applies a robust median-based estimator to disregard
measurements which are not in agreement with the imaging model. With this technique, the RSR
becomes more robust against motion errors, inaccurate blur models, moving objects and motion blur.
Consider a conceptual image formation model in [18] shown in Eq. (1), where Zk

!
is the kth

input image reordered in a vector, Dk is the decimation matrix, Bk is the blurring matrix,Mk is the
geometric warp matrix, I

!
is the high resolution image reordered in a vector, and Nk

�!
is the

normally distributed additive noise reordered in a vector:

Zk
!¼DkBkMk I

!þ Nk
�!

: ð1Þ
The main objective is to minimize Nk

�!
. Thus, the total error due to resampling of a high

resolution image I
!

is given by

L I
!� �

¼ 1
2

∑
n

k ¼ 1
‖Zk
!�DkBkMk I

!‖22: ð2Þ

If we take the gradient of L with respect to I
!

, we get

Pk
!¼ BT

k M
T
k D

T
k ðDkBkMk I

!�Zk
!Þ;

∇Lð I!Þ¼ ∑
n

k ¼ 1
Pk
!

: ð3Þ

The optimum solution of Eq. (3) can be iteratively obtained using Eq. (4), where λ defines the
step size in the direction of the gradient:

I
!nþ1

¼ In
!þ λ∇Lð I!Þ: ð4Þ

The IBP method uses (3) and (4) to approximate the high resolution image I
!

. In the case of
the IBP method, estimation is done by iteratively resampling an assumed high resolution image
in the lattice of the input images. Each time, the difference between the resampled image and the
input image is calculated and projected back to the high resolution lattice. The RSR method
undergoes very similar processes as the IBP method, only that it computes the error function
differently. While the IBP method uses an error-summation estimator, the RSR method uses
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error-median estimator. The robustness of the RSR method against the outliers of the input image
sequence emanates from the way the error function is computed. In Eq. (5), the sum of the error
function in Eq. (3) has been replaced by a scaled pixel-wise median to increase robustness:

∇Lð I!Þðx; yÞ � n� medianfPk
!ðx; yÞg

n

k : ð5Þ
Our analysis on Eq. (5), using several experiments, indicates that the RSR method produces

relatively nice results when a reconstruction factor of two is used. However, in typical real world
applications, one would prefer to achieve higher resolutions from very low resolution images. In such a
situation, higher reconstruction factors are required. The results from experiments further indicate that
the RSR method does not perform well for this demand. The reason can be due to loss or degradation
of high spectral components and amplification of errors and noise as the scaling factors get large. In
[19], a method called NCxx that attempts to reconstruct HR images with significantly improved
qualities at higher reconstruction factors was proposed. This method employs the strategies of
Normalized Convolution (NC) [20], where estimation of a local function is achieved through a
projection onto a subspace. Empirical results from NCxx show better results when compared to several
classical methods, including the PG [11], IBP [14] and POCS [21]. The problems with this method,
however, are larger computational times and lack of mechanisms to compensate for the lost details of
an image as a result of low-pass filtering from the imaging model. In addition, the NCxx does not
provide reliable solution for dealing with outliers and noisy data.

Recently, various regularization techniques have been proposed to solve a super-resolution
problem. These methods incorporate some prior information into the existing SR models to address
the challenge of ill-posedness encountered in several SR methods. In [22], for example, the authors
propose a Total Variational (TV) prior (see [23,24]) based on Bayesian approach. The Bayesian TV
SR method reconstructs a HR image while simultaneously performs noise removal and edge
preservation. Similar approaches which also use Bayesian techniques were proposed in [25], where
ℓ1-norm was used as prior, and in [26], where ℓ1-norm and SAR model combination is used. In spite
of the advantages of simultaneously improving edges and removing noise during reconstruction
process, SR regularized methods do not properly address the problem of aliasing effects and loss of
high frequency components for hyper-resolved images. Motivated by these rather obvious
challenges, we propose a method that can estimate missing structures of an image caused by
degradation processes of an imaging model, and also regulates aliasing effects.

The proposed method improves the adaptive Perona–Malik (PM) regularization model [27],
which is based on a traditional PM scheme [28], by incorporating a median filter for robust
outlier detection. Moreover, our method provides an algorithm for estimating missing details and
correcting aliasing effects. Several experiments performed demonstrates that the method
produces stable and better results even at higher reconstruction factors.

The remainder of paper is sectionalized as follows. In Section 2, a proposed reconstruction
method is provided. The experimental results are detailed in Section 3. The paper is concluded in
Section 4 with recommendations and possible future research directions.
2. The proposed reconstruction method

2.1. High frequency components estimation and aliasing effects correction

Consider a band-limited signal, IAL2ðRÞ, with some known knowledge about its bandwidth
½�ϖϖ�. Then, by definition, the Fourier Transform (FT) of I, IðωÞ ¼ 0; 8ω=2½�ϖϖ�.
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Consequently, IðωÞ of I is finite and taken over a definition domain of I. In our situation, I is a 2D
image and more specifically, consider I as an initial guess for an HR image in a simulated
imaging process.
It is required to iteratively resample I and compare the resampled LR images to the observed LR

images from the real imaging model, and then update I on the basis of the resulting effect of
comparison. This process, however, has a disadvantage of causing degradation of the spatial
characteristics and fine details of a final HR image. Because of this, category of SR methods which
use this approach may not achieve better quality output images. The proposed method extends the
applications of the methods proposed in [29,30] to solve the addressed challenges and limitations.
The engine of the algorithm can be explained as follows. An image signal is passed through a

low-pass filter within the known bandwidth to assign values to its unknown pixels. Since the
amplitudes of the known pixel values decrease as a result of low-pass filtering operation, a
mechanism is developed to force these pixels to attain their original amplitudes. While in the
frequency domain, the frequency components outside the passband are set to zero. As a result, a
signal becomes no longer bandlimited. Furthermore, an automatic extrapolation of some of the
high frequency components of an image is encountered. These steps are done iteratively until
desired convergence is attained. Therefore, the proposed method can be summarized by Eq. (6),
where β is constant, Γηð�Þ is the low-pass filtering operator of order η, Iðφ; ζÞ is the image
(assumed to be continuous in this case), Ξð�Þ is an operator that adjusts low-pass filtered
amplitude values, and Υ is the simulated imaging process:

ψðφ; ζÞ ¼ β

Z
ω
Ξ Γη

Z
Ω
Iðφ; ζÞe� jωΩ dΩ

� �
ejωΩ

� �
dω

� �
Υ

: ð6Þ

From Eq. (6), an image (updated HR image from a simulated imaging model) is initially
passed through a low-pass filter and integrated over the image domain Ω. This is followed by
forcing the pixel amplitudes to their original values and recovering a corresponding spatial
domain image signal.
In order to transform Eq. (6) into a computer program to simulate and test the proposed

algorithm, the following notations are used, and further Algorithm 1 is developed; Fð�Þ is a
Fourier Transform operator, F�1ð�Þ is a Inverse Fourier Transform operator, Ik is an updated
estimate of a HR image, Pω is a result of low pass filtering of an updated HR image in a
frequency domain, PΨ

ω is Pω with adjusted amplitude values, ωn are frequency components
outside an image defined bandwidth, and Ξð�Þ is an operator that forces Pω amplitude values to
their original magnitudes.

Algorithm 1. The RS-HFCE engine.
Input: Ik
Output: I

while krN do
IkðωÞ ¼ FðIkÞ
Pω ¼ ΓηðIkðωnÞÞ
PΨ
ω ¼ ΞðPωÞ

Ik ¼ F�1ðPΨ
ω Þ

end while
returnI
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2.2. Regularization on RS-HFCE

Several drawbacks of non-regularized methods for solving a SR problem have already been
discussed in Section 1. However, it is important to add that regularization approaches have been
proposed from literatures, since they give promising solution to the challenges inherent in non-
regularized methods. Of a large class of regularization methods available, PM [28] and TV [23,24]
approaches have drawn more attention from various researchers. This is due to the capabilities
these methods have in sharpening and enhancing crucial image features such as edges.
Furthermore, the mathematical formulation of the TV and PM models can fairly be understood and
analyzed. However, the TV regularization method suffers from false edge generation and staircase
effects for images severely degraded by noise (see [31]) while PM regularization suffers from
speckles in the final generated images. In [27], an adaptive approach is provided to automatically
switch between the PM, linear isotropic diffusion [32], and Charbonnier [33] models, on the basis
of the local image structures. Nevertheless, this method, despite its adaptive nature, still does not
address and solve the problems attributed to either of the methods. The new method proposed
in this paper introduces a regularizing median filter [34] into the model proposed in [27].
In comparison to other types of filters, such as the one recently discussed in [35], the median filter
has been proved to have high performance against the outliers [36].

Now, we propose an evolution equation from which an optimal estimate of I can be
determined. If we let Jkð�Þ be the transformation operator with entities Bk;Mk ;Dk still as
described in Section 1.3, an evolution equation which also takes into account the proposed
algorithm in Section 2.1 can be realized in Eq. (7), where Γf�g is the median operator, δI ¼ I� Io,
functional Rm is defined in Eq. (8), p(x) is an adaptive parameter with range of values determined
by the local image features, and ψðφ; ζÞ is the high frequency component estimator shown in Eq.
(6). The formulation of the RS-HFCE method in Eq. (7) is summarized in Fig. 3:

∂I
∂t

¼ ∑
n

k ¼ 1
fðJTk ðZk

!Þ�JTk Jkð I
!ÞÞgψ þ γ1nΓ ∇:Rm

j∇Ij
K

	 
pðxÞ !( )
�γ2δI ð7Þ

Rm �ð Þ ¼ ∇I

1þ j∇Ij
K

� �pðxÞ ð8Þ

The value of p(x) is defined in a range 0rpðxÞr2 by the equation:

pðj∇GsnIjÞ ¼ 2� 2

1þ κj∇Gs n Ij2½27� ð9Þ

where Gs is the Gaussian kernel.
It is easy to see that the regularization part of the formulation in Eq. (7) is either linear

isotropic, similar to charbonnier, or PM, for values of p(x) equal to 0, 1, and 2. This adaptive
behavior, which is automatically controlled by Eq. (9), makes our method flexible, and thus
providing an effective reconstruction while simultaneously preserving crucial image details, such
as contours and edges.

2.3. Convergence criterion determination

Since the method is iterative, we must set a convergence condition to arrive at a solution.
We realized from experiments that choice of a convergence condition also affects the results of



Fig. 3. Flow chart of the proposed algorithm.
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the final solution. If not properly chosen, the whole iteration process of the algorithm may
become unstable and in some cases one ends up with far too many iterations, unnecessarily. In
our method, we use a Mean Structural SIMilarity (MSSIM) [37] aspect, unlike the norm-2
criterion used by other reconstruction methods, as a convergence condition for two main reasons.
One, it integrates parameters which simulate the Human Vision System (HVS) and two, it proved
to converge to a final solution faster compared to the norm-2 convergence criterion. The norm-2
convergence criterion did not provide reliable and stable results in particular cases, especially
when large reconstruction scaling factors were used.
Let MSSIMðIn; In�1Þ be the Mean Structural Similarity measure between two images, In and

In�1, then the convergence condition can be defined by Eq. (10), where ɛ is an convergence error
limit and distð�Þ is a positive distance operator:

distð1�MSSIMðIn; In�1ÞÞoɛ: ð10Þ
The MSSIM is defined by Eq. (11), where μin and μin� 1 are the averages, and s2in and s2

in� 1 are
the variances, and sinin� 1 is the covariance, of In and In�1, respectively. The constants, C1 and
C2, are used to stabilize the division with weak denominator

MSSIM In; In�1
� �¼ ð2μinμin� 1 þ C1Þð2sinin� 1 þ C2Þ

ðμ2in þ μ2
in� 1 þ C1Þðs2in þ s2

in� 1 þ C2Þ
: ð11Þ



Fig. 4. Decomposition of a HR image of a Pot into sequence of LR images.

Fig. 5. Decomposition of a HR image of an Elephant into sequence of LR images.
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The boundaries of an MSSIM measure are between zero and one inclusive. The maximum
value is one when the images under comparison are exactly equal (100% match) and, when the
match is 0%, the MSSIM index value is zero.
3. Experiment results1

In this section, we present summary of the experimental results along with the comparison
made between our method and the state of the art methods L1-SAR [26], TV-SR [22], and L1-
Norm [25]. Quantitative comparison results using the Peak Signal to Noise Ratio (PSNR) and
Mean Structural SIMilarity (MSSIM) are also given. In addition, convergence speed of each of
the methods is determined using the overall CPU computational time and the total number of
iteration an algorithm takes to attain an optimal solution. Using this measuring criteria, we
intuitively determine whether a given method converges or diverges from an actual solution. The
machine we used in all experiments was Intel(R) Core(TM)2 Duo CPU T5870 @2.00 GHz
running on 64-bit Windows 7 Professional, and installed RAM of 2 GB. The software used to
generate results of the methods L1-SAR, TV-SR and L1-Norm was taken from [38]. Notice that,
in this software, the deconvolution type chosen was Gaussian of variance 1.00 and kernel size of
3, and the MODE/RESET type selected was Real.

In the first experiment, ten sequences of LR images of Pots, each 60� 60 pixel dimension and
simulated rotations and translations, were generated from a corresponding real HR image of a Pot
of dimension 240� 240 (see Fig. 4). The methods L1-SAR, TV-Prior, L1-Norm and RS-HFCE,
one after another, were applied to reconstruct a HR image for scaling factors of two and four.
The second experiment involved similar procedures, but using an Elephant image (see Fig. 5).
The super-resolution results for the two sets of experiments are illustrated in Tables 1 and 2.
1Images taken from Berkeley benchmark: http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/
segbench/



Table 1
SR results for different methods (factor¼ two). Images scaled to page.

Original image Method

L1-Norm TV-Prior L1-SAR RS-HFCE

Table 2
SR results for different methods (factor¼four). Images scaled to page.

Original image Method

L1-Norm TV-Prior L1-SAR RS-HFCE
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From the tables, red-colored markings were added in portions of the images which indicated
some obvious visible artifacts. We can see that the visual results from figures show that the
proposed method outperforms other methods. The images generated by the new method are
smooth and more natural.
In order to quantify the performance of our method, the PSNR and MSSIM for each of the

methods were computed as illustrated in Tables 3 and 4, respectively, under different conditions
of the experiments. We can see from the table of results that the RS-HFCE provides higher
PSNR and MSSIM values in comparison to the L1-SAR, TV-Prior and L1-Norm methods. It
should be noted that higher PSNR signals higher signal content in the super-resolved image, and



Table 3
PSNR comparison results table.

Image Factor PSNR

L1-SAR TV-Prior L1-Norm RS-HFCE

Pot 2 14.2148 13.2317 13.6033 27.8150
4 14.6794 14.4691 14.4859 28.1117

Elephant 2 19.3595 18.1116 17.7153 25.0805
4 20.9133 20.2947 20.3466 26.0934

Mean 17.2918 16.5268 16.5378 26.7752
Standard deviation 3.3508 3.2558 3.0938 1.4381

Table 4
MSSIM comparison results table.

Image Factor MSSIM

L1-SAR TV-Prior L1-Norm RS-HFCE

Pot 2 0.6536 0.3583 0.4863 0.8370
4 0.6762 0.5848 0.5769 0.8138

Elephant 2 0.7503 0.6174 0.5732 0.8168
4 0.7119 0.6172 0.6190 0.7235

Mean 0.6980 0.5444 0.5638 0.7978
Standard deviation 0.0423 0.1250 0.0557 0.0506
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higher MSSIM index means that the final output image is close to the original image in terms of
the visual perception of the human vision system.

We also performed the computational complexity analysis of the proposed method and
compared it with other methods. Two main aspects were used in this case, namely the CPU
running time and the effective number of iteration for a given algorithm to complete execution
and generate the final result. As it can be observed in the analysis (Table 5), the RS-HFCE
method takes shorter time and uses relatively lower number of iterations to complete execution.
In addition to this analysis, we observed the stability and convergence issues of the intermediate
results of the methods during the iteration processes. This was, however, judged subjectively as
high, low, or lowest, depending on the behavior of the experiments in the generation of the
intermediate results. We realized that the intermediate images produced by the proposed method
were stable in all conditions of the experiment. This means that, starting from the minimum
iteration number, the generated images were linearly improving. On the other hand, the
relationship of the scale space images of other methods was observed to be inconsistent and
nonlinear. For instance, in some situations an image In was visually poor than an image In�1.
The stability subjective analysis for various methods is also shown in Table 5.

Lastly, we performed experiments to reconstruct a HR image from a set of ten colored LR images
of Pots (see Fig. 6) for reconstruction factors of six, eight, nine and ten. The methods L1-SAR,



Table 5
Computational complexity and stability analysis table.

Image Factor Attribute Method

L1-SAR TV-Prior L1-Norm RS-HFCE

Pot 2 No. iteration 26 482 82 5
CPU time (s) 573.3679 1848.9651 1604.6802 7.4305
Stability High Lowest Lowest High

4 No. iteration 51 58 64 5
CPU time (s) 2199.5002 2752.6595 2935.7636 28.2871
Stability Medium Low Low High

Elephant 2 No. iteration 24 35 52 5
CPU time (s) 445.0268 719.5215 951.6411 4.0203
Stability High Medium Medium High

4 No. iteration 47 70 73 5
CPU time (s) 3713.5331 3290.7645 2945.4689 10.1120
Stability High Medium Medium High

Fig. 6. Sequence of ten colored LR images of POTS, each 60� 60, with simulated roto-translation parameters.
(For interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)

Fig. 7. Reconstruction using RS-HFCE method for factors (a) six, (b) eight, (c) nine, and (d) ten. Images are � 0.15
scaled to page.
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TV-Prior and L1-Norm did not work for this condition. The RS-HFCE method, on the other hand,
showed better results for these higher reconstruction factors. From Fig. 7, one can
see that the output HR images generated using the RS-HFCE maintain their local structures and
visual artifacts are considerably low. The quantitative results from Table 6 demonstrate capabilities
of the proposed method under these conditions.



Table 6
Results table of RS-HFCE using factors six, eight, nine and ten.

Image Factor No. iteration CPU time (s) PSNR MSSIM

POT 6 5 23.6104 25.4608 0.6178
8 6 54.0892 25.0874 0.5997
9 6 65.1582 24.9704 0.6058
10 7 103.2732 24.8907 0.5994

Mean 61.5328 25.1023 0.6057
Standard deviation 32.9086 0.2523 0.0086
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4. Conclusion

A more efficient and robust reconstruction technique for recovering fine details of a final HR
image has been proposed in this paper. The method takes advantage of the definition of low-pass
filtering in a high-resolution lattice to interpolate the unknown pixel values in the lattice, thus
correcting the aliasing for the low frequency components. In order to approximate the values of
the high frequency components in the grid, a low-pass filtering process was done along with
forcing the amplitude values of the known pixel components. In addition, the proposed method
incorporates an improved adaptive Perona–Malik regularization model into the SR degradation
model to sharpen and enhance edges of the output images. Several experiments performed, some
of which are presented in this paper, provide a proof, both from the visual appeal and objective
metrics perspectives, that our method outperforms most of the classical SR reconstruction
methods.

A few research opportunities are available as noted from this research work. Firstly, due to
convergence criterion used, it might be interesting to explore the performance of the proposed
method when implemented in real hardware platforms. The MSSIM convergence criterion
provides quick, stable and reliable convergence as practically observed from various types of
experiments. Secondly, we can extend the method to video applications. This will involve
generation of High Definition (HD) video from low resolution video. The proposed method has
proven higher orders of reconstruction at minimum degradation levels, which provides a hope to
reconstruct beyond high definition movies from noisy and low-resolution video frames. Lastly,
output images observed using the proposed method contain some blur information and the
contrast is relatively low. We can improve the current results if a proper deblurring model is
incorporated into our method.
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