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Abstract 

Blurry images are the bane of many photographers. Although sometimes these images 

could be retaken in the hope that the next exposure will not be blurred, but frequently they are 

of some unique event that could only be captured once. The most common cause of blurry 

images is camera shake. Camera shake means that during the exposure the camera moved. 

This movement may be very small but still creates blurry images. In this paper, a novel blind-

deblurring approach for removing the effect of camera shake from blurry image is proposed. 

Starting with an image that has been blurred by camera shake, we recover the unknown 

shape image in two phases: (i) a kernel estimation phase using Radon transform method, and 

(ii) the shape image recovery based on EM algorithm. Comprehensive comparisons on a 

number of blurry images show that our approach is not only substantially faster, but it also 

leads to better deblurring results. Our experimental results are also shown for comparisons. 

Visually, we find that the restored images are better than those given by the algorithm in 

other methods from previous works. 

 

Keywords: Camera shake, blind deconvolution, blur kernel, radon transform, kernel 

estimation 

 

1. Introduction 

Camera shake is a common effect in many images, since the resulting blur spoils many 

photos taken in low-light conditions. The shake effect can be reduced by using faster 

exposures, but we cannot avoid other effects such as sensor noise or ringing effect. Much 

significant progress has been made recently towards removing this blur from images. The 

model of camera shake that describes the camera motion during exposure is the blur kernel in 

convolution operation. Restoring the sharp latent image from its blurred image without 

knowing the camera motion that took place during the exposure is thus a form of blind image 

deconvolution. Camera shake can be classified into two categories: (i) PSF variation across 

the image, i.e., how point sources would be recorded at different locations on the sensor, and 

(ii) Camera’s motion varies the image and how the depth of the scene varies. 

We assume the scene to be static in our approach, i.e., only the camera moves, and none of 

the photographed objects (no object motion). In this paper, we consider the problem of 

“blind” deblurring, where only a single blurry image is available with assuming that blur is 

uniform blur and camera rotation is negligible. We apply our model within using the Radon 

transform for kernel estimation case and S. Cho et al. [8] for the case of non-blind deblurring. 
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2. Related Work 

Most of the recent work has investigated the automatic estimation of kernel for the blur 

caused by camera shake. Joshi et al. [18] use inertial measurement sensors to estimate the 

motion of the camera over the course of the exposure, the experiment results show a clear 

improvement over the input blurry image but there is still some residually ringing that is 

unavoidable due to frequency loss during blurring. Michael Hirsch et al. [30] proposed a 

forward model based on the efficient filter flow framework, incorporating the particularities 

of camera shake. That approach does not deal with moving or deformable object, or scenes 

with significant depth variation. Stefan Harmeling et al. [31] introduced taxonomy of camera 

shake and constructed a method for blind deconvolution in the case of space-variant blur 

based on a recently introduced framework for space-variant filtering. The disadvantage of 

method is that it can fail if the blurs are too large or if they vary too quickly across the image. 

Sophisticated algorithms for non-blind deconvolution have recently been proposed (Dabov et 

al. [11]; Shan et al. [26]; Yuan et al. [29]), but their application has generally been limited to 

the case of uniform blur. Note however that Tai et al. [27] propose a modified version of the 

Richardson-Lucy algorithm for deblurring scenes under general projective-motion, where the 

temporal sequence of projective transformations which caused the blur is known. Fergus et al. 

[12] used a zero-mean Mixture of Gaussian to fit the heavy-tailed natural image prior. Levin 

et al. [21] showed that common MAP methods involving estimating both the image and 

kernel will likely fail because they favor the trivial solution. Joshi et al. [17] predicted sharp 

edges by first locating step edges and then propagating the local intensity extrema towards 

that edge. When the blur kernel is known, the process of restoring a blurred image is referred 

to as non-blind deconvolution. Richardson-Lucy (RL) or Weiner filtering is known to be 

sensitive to noise. Yuan et al. [29] proposed a progressive multi-scale refinement scheme 

based on an edge preserving bilateral Richardson-Lucy (BRL) method. Joshi et al. [19] 

incorporated a local two-color prior to suppress noise. 

Actually, most of proposed deconvolution methods still have disadvantages in output 

image, for example the ringing effect. In our proposed method, we use EM algorithm to avoid 

these undesirable effects. 

 

3. Blur Model and Proposed Algorithm 
 

3.1. Image and Blur Model 

The blur model can represent a blurred image b as a convolution of the latent image l with 

a blur kernel k plus additional image noise n: 

b k l n                                                                  (1) 

where   is the convolution operator, n denotes sensor noise at each pixel. The problem of 

blind-deconvolution is to recover the latent image l from blurred image b without specific 

knowledge of blur kernel k. 

Blind deconvolution is typically addressed by first estimating the kernel, and then 

estimating the sharp image when the kernel is known. This method is not an exception. The 

deblurring implementation is classified into two main steps. In the first step, the blur kernel is 

estimated by using the Radon transform. Then we apply non-blind deconvolution with the 

outlier handling algorithm [8] for estimating the latent image in the second step. Therefore, 

our algorithm is implemented in following steps: 

Step 1: Detect step edge in the blurry image so as to construct the Radon projection 
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Step 2: Construct the Radon projection of blur kernel using estimated color step edge in 

step 1. 

Step 3: Recover the blur kernel from its projections 

Step 4: Reconstruct the latent image using the estimated blur kernel in step 3   

 

3.2. Blur Kernel Estimation 

 

3.2.1. The Radon Transform 

Applying the Radon transform on an image ( , )f x y  
for a given set of angles can be 

thought of as computing the projection of the image along the given angles. The resulting 

projection is the sum of the intensities of the pixels in each direction, i.e., a line integral. The 

result is a new image ( , , , )R f   . This can be written mathematically by defining 

c o s s inx y                                                          (2) 

after which the Radon transform can be written as 

     , , , co s s inR f f x y x y d xd y     

 

 

                          (3) 

where   is the Dirac delta function. 

 

Figure 1. Model of Radon Transform with Orientations   

The Radon transform is a mapping from the Cartesian rectangular coordinates  ,x y
 

to a distance and an angel  ,  , also known as polar coordinates. The function 

( , , , )R f   can be viewed as projection of ( , )f x y along the direction orthogonal to 

orientation   (in this case,  is fixed). With enough projections of f along different 

orientations  , the original signal f can be recovered. This is known as the inverse 

Radon transform and is computationally inexpensive. For instance, the commonly used 

filtered back-projection method consists of a “ramp filter” (1-D convolutions) applied 
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to each projection, followed by back-projection. One way to implement this method is 

to use 1-D Fourier transforms to convert the 1-D convolutions into products and then 

use a 2-D inverse Fourier transform. 

 

3.2.2. Edges Detection in Blurry Image 

For an accurate kernel reconstruction, we need to find stable, isolated step edges. We 

introduce an image analysis technique that selects stable edges from a blurry image. As a first 

step, we run an edge detector to find an edge map E of candidate edge samples.  

Our goal is to sieve isolated step edges that satisfy four desired characteristics. First, 

selected pixels should correspond to a step edge with enough contrast on either side, which 

ensures that the signal to noise ratio of the blurred profile is high. We enforce this constraint 

by discarding edge samples with a small color difference between two locally dominant 

colors. We measure the edge color 
1

c  , 
2

c  and discard the edge sample if  
1 2

0 .0 3c c   in 

RGB space. Second, the blurred edge profile should not be contaminated by adjacent edges. 

To ensure that two adjacent step edges are sufficiently separated, we take an orthogonal slice 

E
S  of the edge map E at each edge candidate, and we discard edge samples with 1

E
S  . 

Third, a local neighborhood of an edge candidate should conform to a color-line image 

model. In other words, blurred edge profiles should lie between 0 and 1. An edge sample with 

a slice that lies outside of 0   and 1  , where 0 .0 3  , is discarded. Lastly, the edge 

should be locally straight. The “straightness” is measured as the norm of the average 

orientation phasor in the complex domain. At each edge candidate m, we compute the 

following measure: 

 
 

 

e x p 2

1

jj m

j m

i 







                                                           (4) 

where 
2

1i  , and  m  indicates edge candidates in the neighborhood of pixel m. If this 

norm is close to 1, then the edge is locally straight in the neighborhood of pixel m. We discard 

edge samples with the norm less than 0.97. 

Our edge selection algorithm depends on the blur kernel size, which is estimated by 

users. If the estimated blur kernel size is too large, the second and third step of our edge 

selection algorithm would reject many edges since (i) more slices of the edge map E 

would contain more than one edge (ii) the size of the neighborhood in which the color -

line model should hold increases. Therefore, users should ensure that the estimated blur 

size is just enough to contain the blur. 

 

3.2.3. Recovering the Blur Kernel 

For recovering the blur kernel from its projections, we first compute a Radon projection 

from a color step edge. We can formulate the convolution of the kernel with the image of an 

ideal line as a line integral of the kernel. Without loss of generality, our method will be 

implemented with assuming 0  , the situations for other orientation can be derived simply 

by rotating the axes. 

We begin our approach by considering a binary step edge 
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1 0
( , )

0

i f x
H x y

o th e r w is e


 
                     

                          (5) 

Defining an ideal color step edge as  1 2
1E H c H c  

 
we can obtain the convolution 

of the kernel with this edge: 

   1 2
1

E
B c k H c k H    

                                      
(6) 

where 
E

B k E  is blurred version of E , 
1

c  and 2
c

 
have measured from (§3.2.2). 

We seek to retrieve 
H

B k H 
 
that describes the blurred edge independent of its colors: 

at each pixel, we have three equations, one for each RGB channel, of the form 

 1 2
1

E H H
B B c B c   . Since 

H
B

 
is the only unknown, this is an over-constrained linear 

system that can be solved with a least-squares formulation, which in practice is a simple 

average of the solutions from each RGB channel. 

After obtaining scalar description of the blurred edge 
H

B k H  , we seek to derive the 

blurred line response from the blurred edge response. 

From definition of ( , )H x y
 
in (5) we have: 

 ( , )
x

H x y t d t


   

   ,
H

x y x
x




 


                                             (7) 

Taking the derivative of 
H

B
 
in the x direction, we obtain: 

 ,
H

L

B H
B k x y

x x

 
  

 
                                             (8) 

Combining (7) and (8) we obtain: 

H

L x

B
B k

x



  


                                                 (9) 

where    ,
x

x y x  . 

We show that sampling 
L

B horizontally produces a vertical Radon projection of the kernel, 

from (9), we get  ,
L

B x y by expanding 
x

k  (we can omit y  in this case because the 

formula does not depend on it) 

   ( ) ,
L

B x k u v x u d u d v                                          (10) 

Considering equation (2) in the case 0  , we realize that ( )
L

B x is the Radon transform 

in vertical ( , , 0 , )R k x  of blur kernel k . 

To reconstruct an accurate blur kernel, the projections must be consistently aligned with 

each other. For this, we exploit the fact that the center of mass of the kernel projects onto the 

center of mass of each projection. In practice, we compute a first estimate of each projection 

and then shift it to align its center of mass on the origin of the coordinate system.  
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We seek to recover the blur kernel from its projections 
i

R  along the direction 
i


 
by adding 

a priori knowledge about blur kernels. Using Bayesian formulation, we seek to maximize the 

posterior probability  |p k b
 
of the blur kernel k  given the observed image b . We use a 

classical decomposition into a likelihood term and a prior:      | |p k b p b k p k . To 

model the likelihood term  |p b k , we define the linear operator

 that computes a line 

integral in the direction   and seek to satisfy the constraint that the actual projections 
i

k

  

of the blur kernel should match our measured projections 
i

R : 

 
2

2 1

1
| e x p

2
i

N

ii

o b s

p b k R k





 
   

 
                                   (11) 

where N is number of Radon projections 
i

R
 
that were extracted from image, 

2

o b s


 
is the 

variance of observation noise that comes from the inaccuracies in the estimation of the 

orientation  . Because of estimating the projections
i

R with finite differences for first 

derivative, the impact of noise is doubled. A factor ( ) were added to the orientation noise. 

This gives  
2 2

2
o b s im g

    . Use cross-validation for setting  to 1. 

The kernel prior with knowledge the intensity profiles of blur kernel are sparse: 

   
1 2

1 2
e x pp k k k

 

                                          (12) 

In practice, we minimize the negative log-posterior     lo g |p b k p k  with an 

iterative re-weighted least–square method.

 
1

1 .5  ,
2

0 .1   ,

 

1
0 .9  and 

2
0 .5  were 

used in whole experiment.  

In practice, for speeding up the computation, we average out the noise and then behaving 

the optimization by binning projection with similar orientations. 

We define a small set of n orientations ˆ
j

 with n N  and group the measured values ˆ
j


 

according to their nearest ˆ
j

 . This forms sets 
j

P
 
of i  indexes. For each non-empty set, we 

compute the average projection 1ˆ
j j

j ii P
R R

 
  where

j
 is the size of 

j
P . We then 

reformulate the likelihood as:  

2

2
1

12

ˆe x p
j

o b s

n

j jj
R k






 
   

 
                                          (13) 

 

3.3. Image Reconstruction 

After having estimated and fixed the kernel, we recover the final shape image by using 

non-blind deconvolution method proposed by S. Cho et al., [8]. Previous non-blind 

deconvolution methods assume a linear blur model where the blurred image is generated by a 

linear convolution of the latent image and the blur kernel. This assumption often does not 

hold in practice due to various types of outliers in the imaging process. Without proper outlier 
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handling, recent methods may generate results with severe ringing artifacts even when the 

kernel is estimated accurately.  

In previous work, S. Cho et al., [8] demonstrate that outliers violate the linear blur 

assumption and consequently cause severe ringing artifacts to the result image. It is 

inappropriate to use a linear blur model when outliers exist, so it is necessary to avoid the 

violation of outliers, but most sources of the outliers are inevitable unfortunately. The method 

that masks out the outliers, Harmeling et al. [14], involves a threshold which distinguishes the 

outliers for masking out, but there is no guidance on how to find the optimal threshold value, 

so that method is not robust enough. Yuan et al. [29] proposed a directly suppressing artifacts 

approach, that method actually handle the outliers implicitly. We propose an EM method 

which handle the outliers directly, and that is more efficient. 

In this paper, we use the MAP model for computing the most probable latent image l: 

a rg m a x ( | , )L p l k b                                                           (14) 

According to the Bayes's theorem: 

a rg m ax ( | , , ) ( | , ) ( )
l r R

L p b r k l p r k l p l



                                           (15) 

where R is the space of all possible configurations of r. 

We then define the latent image prior p(l) as:                                     

             ( ) e x p ( ( )) /p l l Z                                                          (16) 

where Z is a normalization constant.  Using the sparse prior, we set 

( ) { | ( ) | | ( ) | }
h v

i i

i

l l l
 

     . We use 0 .8   in our experiments 

Use EM method for solving (15), we have: 

 
lo g

[ lo g ( | , , ) lo g ( | , ) ]
E

L E p b r k l p r k l


                                      (17) 

Since we assumed that noise is spatially independent, the likelihood 

( | , , ) ( | , , )
i

i

p b r k l p b r k l  , then, based on our noise model, we define: 

 
ˆ 1( | , )

( | , , )
0

ii i

i

i

ri fN b f
p b r k l

i f rC

 
 



                                      (18) 

where f k l   , N̂  is a Gaussian distribution,   is the standard deviation. C is a constant 

defined as the inverse of the width of the dynamic range in the input image. 

According to the prior model, with assuming r is spatially independent, 

( | , ) ( | )
i i

i

p r k l p r f   , we then define: 

( 1 | )
0

i

i i

i

f RP if
p r f

i f f R


  



                                                  (19) 

app:ds:Bayesian
app:ds:theory
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where R is dynamic range, [0 ,1]P   is the probability that pixel i is inlier . We set 

[0 ,1]R   for our implementation. 

After putting (18), (19) into (17), we have: 

2

lo g 2

[ ]
| |

2

i

E i i

i

E r
L b f




                                               (20) 

where 
0

[ ] ( 1 | , , )
i i

E r p r b k l   , by the Bayes’ theorem, combination of (18) and (19) can be 

obtained: 

0

0

0

0

N̂ ( | , )

ˆ[ ] N ( | , ) C (1 )

0

i i

i

i i i

i

b f P
f Rif

E r b f P P
if f R




   




                      (21) 

where [ ]
i

E r  is approximate 1 if the observed pixel i  is inlier, and otherwise [ ] 0
i

E r    

Use M step for finding the revised estimate L such that: 

                  lo g
a rg m a x lo g ( )

o u tp u t E

l

L L p l


                                      (22) 

The values which computed in E step ( [ ]
i

E r ) are used as pixel weights in the 

deconvolution process.  That process is performed in the M step. As a result, only inliers with 

large weights are used for deconvolution in the M step, while outliers with low weights are 

excluded. 

We use the iteratively re-weighted least squares (IRLS) method for solving (23), which is 

equivalent to minimizing: 

2 2 2
| ( ) | { | ( | ) | ( | ) }

r h h v v

i i i i i i i

i i

L b k l l l  
 

        
 

                (23) 

where
2

[ ] / 2
r

i i
E r    ,

2
| ( ) |

h h

i i
l





   ,

2
| ( ) |

v v

i i
l





   , we finally get the latent 

gradient image by alternating between updating (
h

i
  ;

v

i
 ) and minimizing (23). 

 

3.4. Kernel Size Optimization 

In proposed method for kernel estimation and deconvolution, we can obtain the kernel and 

deblurred image from input blur image but we don’t know which size of kernel is better, and 

when output deblurred image will reach the desired quality. This is also an ill-posed problem 

in recent research about blind deconvolution. The quality of output image depends on size of 

kernel. The optimal size of kernel (corresponding to the best quality of image) is different in 

each blur image.  

The proposed method performed estimation by varying image resolution in a coarse-to-fine 

manner. At the coarsest level, k is 3 x 3 kernel. To ensure a correct start to the algorithm, we 

manually specify the initial 3 x 3 blur kernel to one of two simple patterns. The initial 

estimate for the latent gradient image is then produced by running the inference scheme, 
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while holding k fixed. We then work back up the pyramid running the inference at each level. 

At the finest scale, the inference converges to the full resolution kernel k. 
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Table 1. The Value of Average Difference with Different Size of Kernels 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Experimental Results with Different Size of Kernels, Best Results are 
Obtained in (c), (g), (j) and (n) 

We also use Average Difference parameter (AD) for estimating output image:  

 
',

, ,

1 1

/

M N

j k j k

j k

A D x x M N

 

                                               (24) 

where M x N is size of blur image and deblurred image, after deconvolution process.  

This parameter is used because it is simple to calculate, have a clear physical 

meaning, and is mathematically convenient in the context of optimization. In practice we 

PSF Size Bird.jpg Fishes.jpg Lion.jpg Building.jpg 

11*11 0.0200 0.0293 0.0668 0.4275 

13*13 0.0214 0.0394 0.0786 0.3364 

15*15 0.0126 0.0501 0.0128 0.1929 

17*17 0.0185 0.0532 0.5243 0.4275 

19*19 0.0043 0.0552 4.2777 0.3108 

21*21 0.0047 0.0247 2.7862 0.4861 

23*23 0.0036 0.0263 0.3460 0.7682 

25*25 0.0157 0.0080 0.6935 1.0469 

27*27 0.2444 0.0162 1.0194 1.2087 

29*29 0.2894 0.1040 1.2385 1.5126 

31*31 0.3148 0.1040 2.3672 1.8504 
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found the output deblurred image can reach highest quality with minimum value of Average 

Difference, and the ringing artifacts in deblurred image are serious at large value of AD, as 

illustrated in Table 1 and Figure 2. 

The results of deconvolution with different kernels are present in Figure 2. Figures. 2(c), 

(g) (i), (n) are output deconvolution with (19x19) kernel in “Bird.jpg”, (25x25) kernel in 

“Fishes.jpg”, (11x11) kernel in “Lion.jpg” and (15x15) kernel in “Palace.jpg” respectively. 

Clearly these images are deblurred better than others that are deblurred with another size of 

kernel, the ringing artifacts are suppressed in these cases. 

 

4. Experimental Results and Comparisons 

We have demonstrated proposed algorithm and R. Fergus et al's algorithm [12] with 

the same size of blur kernel in MATLAB and have given some other results for 

comparisons. 

 

 

Figure 3. Comparisons to the Method of Fergus et al 

The input observed images are shown in Figures. 3(a), (d), (g), (j) and (m) (first 

column). We display the restored images by algorithm in [12] in Figures. 3(b), (e), (h), 

(k) and (n) (second column), and the images restored by our algorithm are shown in 

Figures. 3(c), (f) (i), (l) and (o) (third column) respectively. According to the 

restoration results, the proposed algorithm can recover the image quite well. Visually, 

we find that the restored images (third column) are clearer, brighter than those given in 

R. Fergus et al’s., algorithm [12]. 

The shadow around the bird is reduced in Figure 3(b) (R. Fergus et al’s., Algorithm) 

and those effects have almost disappeared in Figure 3(c) (our algorithm). The tree 

branches in Figure. 3(c) are also clearer than those branches in Figures. 3(a) and (b). 
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The shaken effect is also removed completely in Figures 3(f), (i), (l) and (o) (third 

column). In addition, edges of objects are shown clearly in our results. 

We show the closed-up parts of the restored images in Figure 4. We display the 

closed-up parts of restore images by method in [12] and our method, in Figures 3(a), 

(c), (e), (g), Figures 4(b), (d), (f), (h) respectively. Again it is clear that the proposed 

algorithm can restore images quite well. 

We have tested the effects of the proposed algorithms for shaken blurs. We can 

realize the performance of the proposed algorithm is better than other methods. 

 

 

Figure 4. Closed-up Patches of the Restored Images and Comparisons to the 
Method of Fergus et al 

5. Conclusion 

In this paper, an accuracy improvement method for removing shaken effects from 

photographs has been proposed. By using proposed method, we can not only increase the 

robustness of kernel estimation but also obtain an accuracy quality of latent image. However, 

our method does not behave as well when there are not enough edges in different orientations 

or when we do not detect enough edges, this problem cause that we can not retrieve Radon 

projections with enough precision with a sufficient diversity of orientations. Such an 

approach may prove useful in other computational photography problems. The results of our 

method still contain artifacts; most prominently, ringing artifacts occur near saturated regions 

and regions of significant object motion. We suspect that these artifacts can be blamed 

primarily on the non-blind deconvolution step. We believe that there is significant room for 

improvement by applying modern statistical methods to the non-blind deconvolution problem 

in future works. 
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