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In this paper, we have presented a wave theory method to study 1D photonic crystals (PCs), and give the new transfer
matrix, dispersion relation, and transmissivity. We have calculated the dispersion relation and transmissivity with the
new wave theory and the transfer matrix method, and find the dispersion relation and transmissivity are identical for the
two kinds of methods. The new wave method can be also used to study 2D and 3D PCs.
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1. Introduction

Photonic crystals (PCs) are artificial materials with periodic
variations in refractive index, which control photons in a
way comparable to the way semiconductors control elec-
trons, and have inspired extensive study since their
emergence in the late 1980s [1,2]. PCs are designed to
affect the propagation of light [3–6]. An important feature
of the PCs is that there are allowed and forbidden ranges
of frequencies at which light propagates in the direction of
index periodicity. Due to the forbidden frequency range,
known as photonic band gap [7,8], which prevents light
from propagating in certain directions at specific frequen-
cies, it is analogous to the electron band gap in semicon-
ductors.

Thus, numerous applications of PCs have been proposed
in improving the performance of optoelectronic and
microwave devices such as high-efficiency semiconductor
lasers, right emitting diodes, wave guides, optical filters,
high-Q resonators, antennas, frequency-selective surface,
optical wave guides and sharp bends [9], WDM-devices
[10,11], splitters and combiners [12]. optical limiters and
amplifiers [13,14].

At present, there are some numerical methods to study
PCs, such as: the plane-wave expansion method [15–17],
the finite-difference time-domain method [18–21], the
transfer matrix method (TMM) [22,23], the finite element
method (FE) [24–26], the scattering matrix method [27], the
Green’s function method [28], and so on. In Refs. [29,30],
the authors give the quantum wave equation of a single
photon. In Ref. [31], we have given the quantum wave

∗Corresponding author. Email: wlxy@jlnu.edu.cn

equations of free and non-free photon. In this paper, we
study the 1D PCs by the wave equations of photon [31],
and give the new dispersion relation, transmissivity, and
reflectivity. By calculation, we find the results are identical
to the transfer matrix method [22,23].The new wave method
can be also used to study 2D and 3D PCs.

The paper is organized as follows. In Section 2, the wave
equation and probability current density of photon are given.
In Section 3, with the wave theory of photon, the transmis-
sivity and reflectivity of 1D PCs are given. In Section 4,
we give the dispersion relation and transfer matrix. In
Section 5, we give the numerical analysis and compare the
results of wave theory of photon with the transfer matrix
method. Finally, a summary is given in Section 6.

2. The wave equation and probability current density
of a photon

The wave equations of a free and non-free photon have been
obtained in Ref. [31], they are

i�
∂

∂t
�ψ(�r , t) = c�∇ × �ψ(�r , t), (1)

and

i�
∂

∂t
�ψ(�r , t) = c�∇ × �ψ(�r , t)+ V �ψ(�r , t), (2)

where �ψ(�r , t) is the vector wave function of photon, and V
is the potential energy of photon in medium. In the medium
of refractive index n, the photon’s potential energy V is
[31]

© 2014 Taylor & Francis
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V = �ω(1 − n). (3)

The conjugate of Equation (2) is

−i�
∂

∂t
�ψ∗(�r , t) = c�∇ × �ψ∗(�r , t)+ V �ψ∗(�r , t). (4)

Multiplying the Equation (2) by �ψ∗, the Equation (4) by �ψ ,
and taking the difference, we get

i�
∂

∂t

( �ψ∗ · �ψ
)

= c�

( �ψ∗ · ∇ × �ψ − �ψ · ∇ × �ψ∗)
= c�∇ ·

( �ψ × �ψ∗) , (5)

i.e.
∂ρ

∂t
+ ∇ · J = 0, (6)

where
ρ = �ψ∗ · �ψ, (7)

and
J = ic �ψ × �ψ∗, (8)

are the probability density and probability current density,
respectively.

By the method of separation variable

�ψ(�r , t) = �ψ(�r) f (t), (9)

the time-dependent Equation (2) becomes the time-
independent equation

c�∇ × �ψ(�r)+ V �ψ(�r) = E �ψ(�r), (10)

where E is the energy of photon in medium.
By taking curl in (10), when ∂V

∂xi
= 0, (i = 1, 2, 3), the

Equation (10) becomes

(�c)2(∇(∇ · �ψ(�r))− ∇2 �ψ(�r)) = (E − V )2 �ψ(�r). (11)

Choosing transverse gange

∇ · �ψ(�r) = 0, (12)

the Equation (11) becomes

∇2 �ψ(�r)+
(

E − V

�c

)2
�ψ(�r) = 0. (13)

With Equations (12) and (13), we should study 1D PCs by
the wave theory approach.

3. The new wave theory of 1D PCs

For 1D PCs, we should define and calculate its new dis-
persion relation and transmissivity. The 1D PCs structure is
shown in Figure 1.

In Figure 1, �ψI , �ψR , �ψT are the wave functions of inci-
dent, reflection, and transmission photon, respectively, and
they can be written as

�ψ(�r , t) = �ψ0ei(�k·�r−ωt) = ψx�i + ψy �j + ψz �k, (14)

By transverse gange ∇ · �ψ(�r) = 0, we get

kxψx + kyψy + kzψz = 0. (15)

Figure 1. The structure of 1D PCs.

In Figure 1, the photon travels along with the x-axis, the
wave vector ky = kz = 0 and kx �= 0. By Equation (15),
we have

ψx = 0, (16)

so the total wave function of the photon is

�ψ = �ψy �j + �ψz �k, (17)

the Equation (13) becomes two component equations

∇2ψy +
(

E − V

�c

)2

ψy = 0, (18)

and

∇2ψz +
(

E − V

�c

)2

ψz = 0. (19)

In Figure 1, the wave functions of incident, reflection, and
transmission photon can be written as:

�ψI = Fyei(�k·�r−ωt) �j + Fzei(�k·�r−ωt)�k, (20)

�ψR = F
′
yei(�k·�r−ωt) �j + F

′
zei(�k·�r−ωt)�k, (21)

�ψT = Dyei(�k·�r−ωt) �j + Dzei(�k·�r−ωt)�k, (22)

where Fy , Fz , F
′
y , F

′
z , Dy , and Dz are their amplitudes.

The component form of Equation (1) is⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

i� ∂
∂tψx = �c

(
∂ψz
∂y − ∂ψy

∂z

)
i� ∂
∂tψy = �c

(
∂ψx
∂z − ∂ψz

∂x

)
i� ∂
∂tψz = �c

(
∂ψy
∂x − ∂ψx

∂y

) , (23)

substituting Equations (14) and (16) into (23), we have

ψz = iψy, (24)

the probability current density becomes

J = ic �ψ × �ψ∗ = 2c|ψz |2�i = 2c|ψ0z |2�i, (25)

where

ψz = ψ0zei(�k·�r−ωt), (26)

the ψ0z is ψz amplitude.
For the incident, reflection, and transmission photon,

their probability current density JI , JR , JT are

JI = 2c|Fz |2, (27)

JR = 2c|F ′
z |2, (28)

JT = 2c|Dz |2, (29)
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1058 X.-J. Liu et al.

We can define a new wave transmissivity T and reflectivity
R as

T = JT

JI
=
∣∣∣∣Dz

Fz

∣∣∣∣
2

, (30)

R = JR

JI
=
∣∣∣∣ F ′

z

Fz

∣∣∣∣
2

. (31)

4. A new wave transmissivity and dispersion relation

Since the probability current densities are relevant to the z
component amplitudes of wave function, we should only
solve the z component equation (19) for the 1D PCs, which
is shown in Figure 2.

With Equation (19), the photon’s new wave equation in
mediums A and B are

∂2ψA

∂x2
+ k2

AψA = 0 (0 < x < a), (32)

∂2ψB

∂x2
+ k2

BψB = 0 (a < x < a + b), (33)

where

kA = E − Va

�c
= E − �ω(1 − na)

�c
= ω

c
na = 2π

λ
na,

(34)

kB = E − Vb

�c
= E − �ω(1 − nb)

�c
= ω

c
nb = 2π

λ
nb,

(35)

where λ = 2πc/ω is the photon wave length in vacuum,
Va = �ω(1−na) (Vb = �ω(1−nb)) is the potential energy
of the photon in medium A(B), and na(nb) is refractive
index of medium A(B). In order to simplify, the index z is
omitted, i.e. ψz A(ψzB) is written as ψA(ψB).

The solutions of Equations (32) and (33) are

ψA = A1eikAx + A2e−ikAx (0 < x < a), (36)

ψB = B1eikB x + B2e−ikB x (a < x < a + b). (37)

By Bloch law, there is

ψ(a + b < x < 2a + b)

= ψ(0 < x < a)eik(a+b)

=
(

A1eikA(x−(a+b)) + A2e−ikA(x−(a+b))
)

eik(a+b),

(38)

where k is Bloch wave vector.

Figure 2. The structure of 1D PCs.

At x = a, by the continuation of wave function and its
derivative, we have

A1eikAa + A2e−ikAa = B1eikB a + B2e−ikB a, (39)

ikA A1eikAa − ikA A2e−ikAa = ikB B1eikB a − ikB B2e−ikB a,

(40)

At x = a + b, by the continuation of wave function and its
derivative, we have

A1eik(a+b) + A2eik(a+b) = B1eikB (a+b) + B2e−ikB (a+b),

(41)

ikA A1eik(a+b) − ikA A2eik(a+b)

= ikB B1eikB (a+b) − ikB B2e−ikB (a+b), (42)

and we obtain the follows equations set⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

A1eikAa + A2e−ikAa = B1eikB a + B2e−ikB a

ikA A1eikAa − ikA A2e−ikAa = ikB B1eikB a − ikB B2e−ikB a

A1eik(a+b) + A2eik(a+b) = B1eikB (a+b) + B2e−ikB (a+b)

ikA A1eik(a+b) − ikA A2eik(a+b) = ikB B1eikB (a+b)

− ikB B2e−ikB (a+b),

(43)

the necessary and sufficient condition of Equation (43) non-
zero solution is its coefficient determinant equal to zero∣∣∣∣∣∣∣∣

eikAa e−ikAa −eikB a −e−ikB a

kAeikAa −kAe−ikAa −kBeikB a kB e−ikB a

eik(a+b) eik(a+b) −eikB (a+b) −e−ikB (a+b)

kAeik(a+b) −kAeik(a+b) −kBeikB (a+b) kB e−ikB (a+b)

∣∣∣∣∣∣∣∣
= 0,

(44)

simplifying Equation (44), we obtain the new wave disper-
sion relation

cos(k(a + b)) = cos(kAa) cos(kBb)

− 1

2

(
1

kA
+ 1

kB

)
sin(kAa) sin(kBb).

(45)

In the following, we should give the wave function of pho-
ton in every medium, and the transmission wave function. In
Figure 3, we give the simplification form of wave function
in every medium, such as symbols A1

kA
and A1−kA

express
simplifying wave function of medium A in the first period,
it express wave function

ψA1(x) = A1
kA

eikAx + A1−kA
e−ikAx , (46)

in medium B of first period, the symbols B1
kA

and B1−kA
express wave function

ψB1(x) = B1
kB

eikB x + B1−kB
e−ikB x , (47)

in medium A of second period, the symbols A2
kA

and A2−kA
express wave function

ψA2(x) = A2
kA

eikAx + A2−kA
e−ikAx , (48)

similarly, in medium B of second period, the symbols B2
kA

and B2−kA
express wave function

ψB2(x) = B2
kB

eikB x + B2−kB
e−ikB x , (49)
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Journal of Modern Optics 1059

Figure 3. The wave method structure (AB)N of 1D PCs.

and so on.
In the incident area, the total wave function ψtot (x) is

the superposition of incident and reflection wave function,
it is where K is the wave vector of incident, reflection, and
transmission photon. In the following, we should use the
condition of wave function and its derivative continuation
at interface of two mediums.

(1) At x = 0, by the continuation of wave function and
its derivative, we have

F + F ′ = A1
kA

+ A1−kA
, (50)

i K F − i K F ′ = ikA A1
kA

− ikA A1−kA
, (51)

we obtain

A1
kA

= 1

2

[(
1 + K

kA

)
F +

(
1 − K

kA

)
F ′
]
, (52)

A1−kA
= 1

2

[(
1 − K

kA

)
F +

(
1 + K

kA

)
F ′
]
, (53)

the Equations (53) and (54) can be written as matrix form(
A1

kA

A1−kA

)
= 1

2

(
1 + K/kA 1 − K/kA

1 − K/kA 1 + K/kA

)(
F
F ′
)

= M1
A

(
F
F ′
)
, (54)

where M1
A is the wave transfer matrix of the first period

medium A, it is

M1
A = 1

2

(
1 + K/kA 1 − K/kA

1 − K/kA 1 + K/kA

)
, (55)

(2) At x = a, by the continuation of wave function and
its derivative, we have

A1
kA

eikAa + A1−kA
e−ikAa = B1

kB
eikB a + B1−kB

e−ikB a, (56)
kA

kB

(
A1

kA
eikAa − A1−kA

e−ikAa
)

= B1
kB

eikB a − B1−kB
e−ikB a,

(57)

we get

B1
kB

= 1

2
ei(kA−kB )a

(
1 + kA

kB

)
A1

kA

+ 1

2
e−i(kA+kB )a

(
1 − kA

kB

)
A1−kA

, (58)

B1−kB
= 1

2
ei(kA+kB )a

(
1 − kA

kB

)
A1

kA

+ 1

2
ei(kB−kA)a

(
1 + kA

kB

)
A1−kA

, (59)

the Equations (59) and (60) can be written as matrix
form
⎛
⎝ B1

kB

B1−kB

⎞
⎠

= 1

2

(
ei(kA−kB )a(1 + kA/kB) e−i(kA+kB )a(1 − kA/kB)

ei(kA+kB )a(1 − kA/kB) ei(kB−kA)a(1 + kA/kB)

)

×
(

A1
k A

A1−k A

)
= M1

B

(
A1

k A

A1−k A

)
, (60)

where M1
B is the wave transfer matrix of the first period

medium B, it is

M1
B = 1

2

(
ei(kA−kB )a(1 + kA/kB) e−i(kA+kB )a(1 − kA/kB)

ei(kA+kB )a(1 − kA/kB) ei(kB−kA)a(1 + kA/kB)

)
(61)

ψtot (x) = ψI (x)+ ψR(x) = Fei K x + F ′e−i K x , (62)

(3) At x = a + b, by the continuation of wave function
and its derivative, we have

B1
kB

eikB (a+b) + B1−kB
e−ikB (a+b)

= A2
kA

eikA(a+b) + A2−kA
e−ikA(a+b), (63)

kB

kA

(
B1

kB
eikB (a+b) − B1−kB

e−ikB (a+b)
)

= A2
kA

eikA(a+b) − A2−kA
e−ikA(a+b), (64)

we get

A2
kA

= 1

2
ei(kB−kA)(a+b)

(
1 + kB

kA

)
B1

kB

+ 1

2
e−i(kA+kB )(a+b)

(
1 − kB

kA

)
B1−kB

, (65)

A2−kA
= 1

2
ei(kA+kB )(a+b)

(
1 − kB

kA

)
B1

kB

+ 1

2
ei(kA−kB )(a+b)

(
1 + kB

kA

)
B1−kB

, (66)

the Equations (65) and (66) can be written as matrix form

⎛
⎝ A2

kA

A2−kA

⎞
⎠ = 1

2

×
(

ei(kB−kA)(a+b)(1 + kB/kA) e−i(kA+kB )(a+b)(1 − kB/kA)

ei(kA+kB )(a+b)(1 − kB/kA) ei(kA−kB )(a+b)(1 + kB/kA)

)

×
(

B1
k B

B1−k B

)
= M2

A

(
B1

k B

B1−k B

)
, (67)

where M2
A is the wave transfer matrix of the second period

medium A, it is

M2
A = 1

2

×
(

ei(kB−kA)(a+b)(1 + kB/kA) e−i(kA+kB )(a+b)(1 − kB/kA)

ei(kA+kB )(a+b)(1 − kB/kA) ei(kA−kB )(a+b)(1 + kB/kA)

)
,

(68)
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1060 X.-J. Liu et al.

(4) at x = 2a + b, by the continuation of wave function
and its derivative, we get⎛
⎝ B2

kB

B2−kB

⎞
⎠ = 1

2

×
(

ei(kA−kB )(2a+b)(1 + kA/kB ) e−i(kA+kB )(2a+b)(1 − kA/kB )

ei(kA+kB )(2a+b)(1 − kA/kB ) ei(kB−kA)(2a+b)(1 + kA/kB )

)

×
(

A2
k A

A2−k A

)
= M2

B

(
A2

k A

A2−k A

)
, (69)

where M2
B is the wave transfer matrix of the second period

medium B, it is

M2
B = 1

2

×
(

ei(kA−kB )(2a+b)(1 + kA/kB ) e−i(kA+kB )(2a+b)(1 − kA/kB )

ei(kA+kB )(2a+b)(1 − kA/kB ) ei(kB−kA)(2a+b)(1 + kA/kB )

)
,

(70)

(5) at x = 2(a +b), by the continuation of wave function
and its derivative, we get⎛
⎝ A3

kA

A3−kA

⎞
⎠ = 1

2

×
(

ei(kB−kA)2(a+b)(1 + kB/kA) e−i(kA+kB )2(a+b)(1 − kB/kA)

ei(kA+kB )2(a+b)(1 − kB/kA) ei(kA−kB )2(a+b)(1 + kB/kA)

)

×
(

B2
k B

B2−k B

)
= M3

A

(
B2

k B

B2−k B

)
, (71)

where M3
A is the wave transfer matrix of the third period

medium A, it is

M3
A = 1

2

×
(

ei(kB−kA)2(a+b)(1 + kB/kA) e−i(kA+kB )2(a+b)(1 − kB/kA)

ei(kA+kB )2(a+b)(1 − kB/kA) ei(kA−kB )2(a+b)(1 + kB/kA)

)
(72)

(6) similarly, at x = 3a+2b, by the continuation of wave
function and its derivative, we get⎛
⎝ B3

kB

B3−kB

⎞
⎠ = 1

2

×
(

ei(kA−kB )(3a+2b)(1 + kA/kB ) e−i(kA+kB )(3a+2b)(1 − kA/kB )

ei(kA+kB )(3a+2b)(1 − kA/kB ) ei(kB−kA)(3a+2b)(1 + kA/kB )

)

×
(

A3
k A

A3−k A

)
= M3

B

(
A3

k A

A3−k A

)
, (73)

where M3
B is the wave transfer matrix of the third period

medium B, it is

M3
B = 1

2

×
(

ei(kA−kB )(3a+2b)(1 + kA/kB ) e−i(kA+kB )(3a+2b)(1 − kA/kB )

ei(kA+kB )(3a+2b)(1 − kA/kB ) ei(kB−kA)(3a+2b)(1 + kA/kB )

)
.

(74)

By the above calculation, we can obtain the results of trans-
fer matrixes:

(1) For the transfer matrix M1
A of the first period, medium

A is independent form. (2) For the transfer matrixes M N
A of

(a)

(b)

Figure 4. Comparing wave method dispersion relation (a) with
transfer matrix dispersion relation (b).

(a)

(b)

Figure 5. Comparing wave method transmissivity (a) with
transfer matrix transmissivity (b).

the Nth period (N ≥ 2), they can be written as:

M N
A = 1

2

×
(

ei(kB −kA)(N−1)(a+b)(1 + kB/kA) e−i(kA+kB )(N−1)(a+b)(1 − kB/kA)

ei(kA+kB )(N−1)(a+b)(1 − kB/kA) ei(kA−kB )(N−1)(a+b)(1 + kB/kA)

)
,

(75)

(3) For the transfer matrixes M N
B of the Nth period (N ≥

1), they can be written as:

M N
B = 1

2

×
(

ei(kA−kB )(N (a+b)−b)(1 + kA/kB ) e−i(kA+kB )(N (a+b)−b)(1 − kA/kB )

ei(kA+kB )(N (a+b)−b)(1 − kA/kB ) ei(kB −kA)(N (a+b)−b)(1 + kA/kB )

)
.

(76)
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(a)

(b)

Figure 6. Comparing wave method transmissivity (a) with
transfer matrix transmissivity (b).

(a)

(b)

Figure 7. Comparing wave method transmissivity (a) with
transfer matrix transmissivity (b) for the structure (AB)4 D(AB)4.

By the wave transfer matrixes, we can give their relations:
(1) The representation of the first period wave transfer

matrixes are⎛
⎝ A1

kA

A1−kA

⎞
⎠ = M1

A

(
F
F ′
)
, (77)

⎛
⎝ B1

kB

B1−kB

⎞
⎠ = M1

B

(
A1

k A

A1−k A

)
= M1

B M1
A

(
F
F ′
)

= M1
(

F
F ′
)
.

(78)

(a)

(b)

Figure 8. Comparing wave method transmissivity (a) with trans-
fer matrix transmissivity (b) for the structure (AB)4 D2(AB)4.

(2) The representation of the second period wave transfer
matrixes are(

A2
kA

A2−kA

)
= M2

A

(
B1

k B
B1−k B

)

= M2
A M1

B M1
A

(
F
F ′
)

= M2
A M1

(
F
F ′
)
, (79)(

B2
kB

B2−kB

)
= M2

B

(
A2

k A
A2−k A

)

= M2
B M2

A M1
B M1

A

(
F
F ′
)

= M2 M1
(

F
F ′
)
.

(80)

(3) Similarly, the representation of the N th period wave
transfer matrixes are(

AN
kA

AN−kA

)
= M N

A M N−1
B M N−1

A · · · M2
A M1

B M1
A

(
F
F ′
)

= M N
A M N−1 · · · M2 M1

(
F
F ′
)
, (81)(

B N
kB

B N−kB

)
= M N

B M N
A M N−1

B M N−1
A · · · M2

A M1
B M1

A

(
F
F ′
)

= M N M N−1 · · · M2 M1
(

F
F ′
)

= M

(
F
F ′
)
,

(82)

where

M = M N M N−1 · · · M2 M1 =
(

m1 m2
m3 m4

)
, (83)

is the total wave transfer matrix of N period, and M1 = M1
B

M1
A is the first period wave transfer matrix, M2 = M2

B M2
A is
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(a)

(b)

Figure 9. Comparing wave method transmissivity (a) with trans-
fer matrix transmissivity (b) for the structure (AB)4 D1 D2(AB)4.

the second period wave transfer matrix, and M N = M N
B M N

A
is the Nth period wave transfer matrix.

By Equations (82) and (83), we can give the wave func-
tion of Nth period in medium B, it is

ψN
B (x) = B N

k BeikB x + B N−k Be−ikB x

= (
m1 F + m2 F ′) eikB x + (

m3 F + m4 F ′) e−ikB x .

(84)

In Figure 3, the transmission wave function is

ψD(x) = Dei K x . (85)

At x = N (a +b), by the continuation of wave function and
its derivative, we have(

m1 F + m2 F ′) eikB N (a+b)

+ (
m3 F + m4 F ′) e−ikB N (a+b) = Dei K N (a+b), (86)

and
kB

K

(
m1 F + m2 F ′) eikB N (a+b)

− kB

K

(
m3 F + m4 F ′) e−ikB N (a+b) = Dei K N (a+b), (87)

we can obtain

F ′
F

= m1(K − kB)e
ikB N (a+b) + m3(K + kB)e

−ikB N (a+b)

m2(kB − K )eikB N (a+b) − m4(K + kB)e−ikB N (a+b)
,

(88)

By Equations (86)–(88), we have

t = D

F
=
(

m1 + m2
F ′

F

)
ei(kB−K )N (a+b)

+
(

m3 + m4
F ′

F

)
e−i(kB+K )N (a+b), (89)

and the wave transmissivity T is

T = |t |2. (90)

For the structure (AB)m D(AB)N−m , i.e. including the
defect layer D, its transfer matrix is

MD = 1

2

×
(

ei(kB−kD)m(a+b)(1 + kB/kD) e−i(kD+kB )m(a+b)(1 − kB/kD)

ei(kD+kB )m(a+b)(1 − kB/kD) ei(kD−kB )m(a+b)(1 + kB/kD)

)
,

(91)

the total transfer matrix is

M = M N M N−1 · · · MD · · · M2 M1 =
(

p1 p2
p3 p4

)
, (92)

we can obtain the ratio of F ′/F including defect layer D,
it is

F ′
F

=
p1(K − kB)e

ikB (N (a+b)+d) + p3(K + kB)e
−ikB (N (a+b)+d)

p2(kB − K )eikB (N (a+b)+d) − p4(K + kB)e−ikB (N (a+b)+d)
,

(93)

where kD = 2πnd/λ, d is the thickness of defect layer D,
and we have

tD = D

F
=
(

p1 + p2
F ′

F

)
ei(kB−K )(N (a+b)+d)

+
(

p3 + p4
F ′

F

)
e−i(kB+K )(N (a+b)+d), (94)

and the wave transmissivity TD of including defect layer D,
it is

TD = |t |2. (95)

5. Numerical result

In this section, we report our numerical results of the new
transmissivity and dispersion relation with and without de-
fect layer. The main parameters are: medium B is Na3 Al F6,
its refractive indexes is nb = 1.35, and its thickness is
b = 574 nm. The medium A is Ga As, its refractive in-
dexes is na = 3.59, and its thickness is a = 216 nm. The
central frequency is ω0 = 271 THz, and the periodicity
N = 8. In numerical calculation, we compare the new
dispersion relation and transmissivity with the dispersion
relation and transmissivity of transfer matrix. With Equation
(45), we can calculate the new dispersion relation and com-
pare it with the transfer matrix dispersion relation, which
are shown in Figure 4. The Figure 4(a) and (b) are new
dispersion relation and transfer matrix dispersion relation,
respectively. We can find the two dispersion relation are
identical. With Equations (89) and (90), we can calculate
the new transmissivity and compare it with transfer matrix
transmissivity. In Figure 5(a) and (b) are new transmissivity
and transfer matrix transmissivity, respectively. We can find
the two transmissivity are identical. In Figure 6, we take
the refractive indexes na = 2.35. We can find when the
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refractive indexes na decrease the band gaps width decrease
and the number of band gaps invariant for the two trans-
missivity, and also find the two kinds of transmissivity 6(a)
and 6(b) are identical. With Equations (91) and (95), we can
study the structure including defect layer. In Figures 7–9, we
consider the effect of defect layer on the transmissivity for
the two kinds of calculation results. In Figure 7, the structure
is (AB)4 D(AB)4. The defect layer D parameters are: the
thickness d = 300 nm, the refractive indexes is nd = 2.58.
We can find there is a defect mode in the band gap, and the
wave method transmissivity 7(a) and the transfer method
transmissivity 7(b) are identical. In Figure 8, the structure is
(AB)4 D2(AB)4, i.e. there are two same defect layers D. We
can find there are two defect mode in the band gap, and the
wave method transmissivity 8(a) and the transfer method
transmissivity 8(b) are identical. In Figure 9, the structure is
(AB)4 D1 D2(AB)4, i.e. there are two different defect layers
D1 and D2. We can find there are two defect mode in the
band gap, and the wave method transmissivity 9(a) and the
transfer method transmissivity 9(b) are identical.

6. Conclusion

In the paper, we apply the new wave theory of a photon
(from Equation (1) to Equation (10)) in 1D PCs. Since
Equation (2) is a partial differential equation, it is difficult
to find its solution, so we transfer it into Equations (12) and
(13), or Equations (32) and (33) in the alternating media,
which are identical with the wave equation of electromag-
netic field. With the new wave theory method, we calcu-
late the probability current density of incidence, reflection
and transmission. By the continuation of the wave function
and its derivative, we provide the new analysis formula of
the dispersion relation and transmissivity. In the numerical
calculation, we compare the new dispersion relation and
transmissivity with those of the TMM. We also find that
the dispersion relation and transmissivity with and without
the defect layer are identical for the both methods. The new
wave method can be also used to study 2D and 3D PCs.
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