
A new improved krill herd algorithm for global numerical optimization

Lihong Guo a, Gai-Ge Wang b,n, Amir H. Gandomi c,1, Amir H. Alavi d,2, Hong Duan e

a Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
b School of Computer Science and Technology, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, China
c Department of Civil Engineering, University of Akron, Akron, OH 443253905, USA
d Department of Civil and Environmental Engineering, Engineering Building, Michigan State University, East Lansing, MI 48824, USA
e Education College, Shihezi University, Shihezi, Xinjiang, 832000, China

a r t i c l e i n f o

Article history:
Received 13 October 2012
Received in revised form
12 January 2013
Accepted 23 January 2014
Communicated by: A. Abraham
Available online 15 February 2014

Keywords:
Global optimization problem
Krill herd
Exchange information
Multimodal function

a b s t r a c t

This study presents an improved krill herd (IKH) approach to solve global optimization problems. The
main improvement pertains to the exchange of information between top krill during motion calculation
process to generate better candidate solutions. Furthermore, the proposed IKH method uses a new Lévy
flight distribution and elitism scheme to update the KH motion calculation. This novel meta-heuristic
approach can accelerate the global convergence speed while preserving the robustness of the basic KH
algorithm. Besides, the detailed implementation procedure for the IKH method is described. Several
standard benchmark functions are used to verify the efficiency of IKH. Based on the results, the
performance of IKH is superior to or highly competitive with the standard KH and other robust
population-based optimization methods.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

In computer science, mathematics, and computational science,
the process of optimization is searching for a vector in a function
that produces an optimal solution. All of feasible values are
available solutions and the extreme value is optimal solution. In
general, optimization algorithms have been applied to solve
optimization problems [1]. A simple classification way for optimi-
zation algorithms is considering the nature of the algorithms. The
optimization algorithms can be divided into two main categories:
deterministic algorithms, and stochastic algorithms. Deterministic
algorithms using gradient such as hill-climbing have a rigorous
move, and will generate the same set of solutions if the iterations
commence with the same initial starting point. On the other hand,
stochastic algorithms without using gradient often generate dif-
ferent solutions even with the same initial value. However,
generally speaking, the final values, though slightly different, will
converge to the same optimal solutions within a given accuracy.

The recently nature-inspired meta-heuristic algorithms perform
powerfully and efficiently in solving modern nonlinear numerical
global optimization problems. To some extent, all meta-heuristic
algorithms strive for making balance between randomization
(global search) and local search [2].

Inspired by nature, the strong meta-heuristic algorithms are
applied to solve NP-hard problems such as parameter estimation
[3], system identification [4], WSN dynamic deployment [5], UCAV
path planning [6,7], test-sheet composition [8], and water, geotech-
nical and transport engineering [9,10]. During the 1950s and 1960s,
computer scientists studied the possibility of conceptualizing evo-
lution as an optimization tool and this generated a subset of
gradient free approaches named genetic algorithms (GAs) [11,12].
Since then many other nature-inspired meta-heuristic algorithms
have emerged, such as ant colony optimization (ACO) [13], differ-
ential evolution (DE) [14,15], bat algorithm (BA) [16,17], harmony
search (HS) [18], and particle swarm optimization (PSO) [19].

Recently, Gandomi and Alavi [20] proposed krill herd (KH)
algorithm which is based on the simulation of the herding
behavior of krill individuals in nature. In KH, the objective function
for the krill movement is determined by the minimum distances of
each individual krill from food and from highest density of the
herd. The time-dependent position of the krill individuals is
comprised of three main components: (i) movement induced by
other individuals (ii) foraging motion, and (iii) random physical
diffusion. One of remarkable advantage of the KH algorithm is that
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the derivative information is not necessary because it uses a
stochastic random search rather than a gradient search. The other
important advantage of the KH algorithm is its simplicity. Comparing
with other population-based meta-heuristic algorithms, this new
approach requires few control variables, in essence only a single
parameter Ct (time interval) to regulate (apart from the population
size). This feature makes KH easy to implement, more robust, and
very appropriate for parallel computation.

KH is a powerful algorithm in exploitation (i.e., local search) but
at times it may trap into some local optima so that it cannot
perform global search well [20]. For KH, the search depends
completely on random walks, so a fast convergence cannot be
guaranteed. In order to better KH in optimization problems, two
methods have been proposed [21,22], which introduces mutation
scheme into KH to add the diversity of population.

Cuckoo search (CS) is another new meta-heuristic search
algorithm based on the obligate brood parasitic behavior of some
cuckoo species in combination with the Lévy flight behavior of
some birds and fruit flies [23]. Walton et al. [24] improved the
basic CS algorithm and introduced modified CS (MCS) method. The
fist improvement was to adopt the size of the Lévy flight step size
instead of a constant step size used in the CS method. The second
improvement was to add information exchange between the eggs
in an effort to accelerate convergence to the best solutions. In MCS,
a fraction of the eggs with the best fitness were put together to
form a group of top eggs. Also, all the cuckoos could exchange
information through top eggs [24].

The described information exchange concept is introduced to
the KH algorithm to develop an improved KH (IKH) method. The
main goal is to speed up the algorithm convergence and therefore
to provide a more efficient tool for a wider range of practical
applications while preserving the attractive characteristics of the
basic KH method. Besides, IKH adopts a new Lévy flight distribu-
tion and elitism scheme to update the KH motion calculation. The
proposed approach is evaluated on 14 standard benchmark func-
tions. Experimental results show that IKH performs better than the
basic KH, GA, BA, CS, DE, HS, PSO, probability-based incremental
learning (PBIL), and artificial bee colony (ABC) optimization
methods.

The structure of this paper is organized as follows: Section 2
describes global numerical optimization problem and the basic KH
algorithm in brief. The proposed IKH approach is presented in
detail in Section 3. Subsequently, Section 4 presents the validity
verification of IKH against different benchmark functions and
various optimization algorithms. Finally, Section 5 consists of the
conclusion and proposals for future work.

2. Preliminary

In this section, we will provide a brief background on the
optimization problem and KH algorithm.

2.1. Optimization problem

In computer science, mathematics, and management science,
optimization means the selection of an optimal solution from
some set of feasible alternatives. In general, an optimization
problem includes minimizing or maximizing a function by system-
atically selecting input values from a given feasible set and
calculating the value of the function. More generally, optimization
consists of finding the optimal values of some objective function
within a given domain, including a number of different types of
domains and different types of objective functions.

A global optimization problem can be described as follows:
Given: a function f: S-R from some set S to the real numbers

Sought: a parameter x0 in S such that f(x0)rf(x) for all x
in S (“minimization”) or such that f(x0)Zf(x) for all x in S
(“maximization”).

Such a formulation is named a numerical optimization pro-
blem. Many theoretical and practical problems may be modeled in
this general framework. In general, S is some subset of the
Euclidean space Rn, often specified by a group of constraints,
equalities or inequalities that the components of S have to satisfy.
The domain S of f is named the search space, while the elements of
S are named feasible solutions or candidate solutions. In general,
the function f is called an objective function, utility function
(maximization), or cost function (minimization). An optimal solu-
tion is an available solution that is the extreme of (minimum or
maximum) the objective function.

Conventionally, the standard formulation of an optimization
problem is stated in accordance with minimization. In general,
unless both the feasible region and the objective function are
convex in a minimization problem, there may be more than one
local minima. A global minimum x* is defined as a point for which
the following expression

f ðx*Þr f ðxÞ ð1Þ
holds [21].

A variety of algorithms have been proposed to solve non-
convex problems. Among them, heuristics algorithms can evaluate
approximate solutions to some optimization problems, as
described in introduction.

2.2. Krill herd algorithm

KH is a novel meta-heuristic swarm intelligence optimization
method for solving optimization problems [20]. This method is
based on the simulation of the herding of the krill swarms in
response to specific biological and environmental processes.
The time-dependent position of an individual krill in two-
dimensional surface is determined by three main actions described
as follows:

(i) movement induced by other krill individuals;
(ii) foraging action; and
(iii) random diffusion.

In KH, the Lagrangian model is used in a d-dimensional
decision space as shown in Eq. (2) [20].

dXi

dt
¼NiþFiþDi ð2Þ

where Ni is the motion induced by other krill individuals; Fi is the
foraging motion, and Di is the physical diffusion of the ith krill
individuals.

2.2.1. Motion induced by other krill individuals
The direction of motion induced, α, is approximately

evaluated by the target swarm density (target effect), a local
swarm density (local effect), and a repulsive swarm density
(repulsive effect). For a krill individual, this movement can be
defined as [20]:

Nnew
i ¼NmaxαiþωnN

old
i ð3Þ

where

αi ¼ αlocal
i þαtarget

i ð4Þ
and Nmax is the maximum induced speed, ωn is the inertia
weight of the motion induced in [0, 1], Nold

i is the last motion
induced, αlocal

i is the local effect provided by the neighbors and
αtarget
i is the target direction effect provided by the best krill
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individual. According to the experimental values of the max-
imum induced speed, we set Nmax to 0.01 (ms�1) in our study
[20].

2.2.2. Foraging motion
The foraging motion is influenced by the two main factors. One

factor is the food location and the other one is the previous
experience about the food location. For the ith krill individual, this
motion can be expressed as follows [20]:

Fi ¼ Vfβiþωf F
old
i ð5Þ

where

βi ¼ βf ood
i þβbest

i ð6Þ
and Vf is the foraging speed, ωf is the inertia weight of the foraging
motion between 0 and 1, Foldi is the last foraging motion, βf ood

i is
the food attractive and βbest

i is the effect of the best fitness of the
ith krill so far. In our study, we set Vf to 0.02 [20].

In KH, the virtual center of food concentration is approximately
calculated according to the fitness distribution of the krill indivi-
duals, which is inspired from “center of mass”. The center of food
for each iteration is estimated as follows [20]:

Xfood ¼∑N
i ¼ 1ð1=KiÞXi

∑N
i ¼ 11=Ki

ð7Þ

where Ki represents the fitness or the objective function value of
the ith krill individual.

2.2.3. Physical diffusion
The physical diffusion of the krill individuals is considered to be

a random process. This motion can be expressed in terms of a
maximum diffusion speed and a random directional vector. It can
be formulated as follows [20]:

Di ¼Dmaxδ ð8Þ
where Dmax is the maximum diffusion speed, and δ is the random
directional vector and its arrays are random values in [�1, 1]. The
better the position of the krill is, the less random the motion is.
The effects of the motion induced by other krill individuals and
foraging motion gradually decrease with increasing the time
(iterations). Thus, another term (Eq. (9)) [20] is added to Eq. (8).
This term linearly decreases the random speed with the time and
performs on the basis of a geometrical annealing schedule [25]:

Di ¼Dmax 1� 1
Imax

� �
δ ð9Þ

2.2.4. Main procedure of the KH algorithm
In general, the defined motions frequently change the position

of a krill individual toward the best fitness. The foraging motion
and the motion induced by other krill individuals contain two
global and two local strategies. These are working in parallel
which make KH a powerful algorithm. Using different effective
parameters of the motion during the time, the position vector of a
krill individual during the interval t to tþΔt is expressed by the
following equation [20]:

XiðtþΔtÞ ¼ XiðtÞþΔt
dXi

dt
ð10Þ

It should be noted that Δt is one of the most important
constants and should be carefully set according to the optimiza-
tion problem. This is because this parameter works as a scale
factor of the speed vector.

In addition, to improve the performance of the KH, genetic
reproduction mechanisms are incorporated into the algorithm. The

introduced adaptive genetic reproduction mechanisms are crossover
and mutation which are inspired from the classical DE algorithm.

Algorithm 1. Krill herd algorithm.

Begin
Step 1: Initialization. Set the generation counter G¼1;

initialize the population P of NP krill individuals randomly and
each krill corresponds to a potential solution to the given
problem; set the foraging speed Vf, the maximum diffusion speed
Dmax, and the maximum induced speed Nmax.

Step 2: Fitness evaluation. Evaluate each krill individual
according to its position.

Step 3: While the termination criteria is not satisfied or
GoMaxGeneration do

Sort the population/krill from best to worst.
for i¼1:NP (all krill) do
Perform the following motion calculation.

Motion induced by the presence of other individuals
Foraging motion
Physical diffusion

Implement the genetic operators.
Update the krill individual position in the search space.
Evaluate each krill individual according to its position.

end for i
Sort the population/krill from best to worst and find the

current best.
G¼Gþ1.

Step 4: end while
Step 5: Post-processing the results and visualization.

End.

Various krill-inspired algorithms can be developed by idealiz-
ing the motion characteristics of the krill individuals. Generally,
the KH algorithm can be described by the following steps:

(I) Data structures: define the simple bounds; determine the
algorithm parameter(s) etc.

(II) Initialization: randomly create the initial population in the
search space.

(III) Fitness evaluation: evaluate each krill individual according
to its position.

(IV) Motion calculation:
� Motion induced by other krill individuals,
� Foraging motion
� Physical diffusion

(V) Perform the genetic operators
(VI) Updating: update the krill individual position in the

search space.
(VII) Repeating: go to step III until the stop criteria is reached.
(VIII) Post-processing the results and visualization.

The basic representation of the KH can be summarized as
shown in Algorithm 1. More details about the three main motions
and KH algorithm can be found in [20].

3. The proposed IKH approach

Similar to the strategy proposed in [24] for improving CS, this
study introduces an information exchange concept between top
krill during the motion calculation process. This results in improv-
ing the IKH method while it keeps the attractive features of the
original KH method.
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Algorithm 2. The algorithm of exchanging information among
top krill.

Begin
Step 1: Set max Lévy flight step size A and golden ratio φ.
Step 2: for i¼1:NoTop (all top krill) do
Current krill at position xi
Pick another krill from the top krill at random xj
if xi¼xj then

Calculate Lévy flight step sizeφ’A/G2

Perform Lévy flight from xi to generate new krill xk
Evaluate the fitness fk for krill xk
Choose a random krill l from all krill
if (fk4 fl)
Move krill k towards l;

end if
else

dx¼ |xi�xj|/φ
Move distance dx from the worst krill to the best krill to

find xk
Evaluate the fitness fk for krill xk
Choose a random krill l from all krill
if (fk4 fl) then

Move krill k towards l;
end if

end if
Step 3: end for i

End.

For the KH algorithm, the search depends completely on
random walks, thus a fast convergence cannot be guaranteed. To
cope with this issue, new features are added to KH.

The first improvement is adding Lévy flight to KH with the step
size α. Moreover, in the IKH, the value of α declines as the
procedure proceeds (increasing generations). This is done for the
similar reasons that the inertia constant is declined in the PSO [19]
and basic KH algorithm [20], i.e., to stimulate more localized
searching as the krill, get closer to the solution.

Algorithm 3. Improved KH algorithm.

Begin
Step 1: Initialization. Set the generation counter t¼1;
initialize the population P of NP krill individuals randomly and
each krill corresponding to a potential solution to the given
problem; set the foraging speed Vf, the maximum diffusion speed
Dmax, and the maximum induced speed Nmax; set max Lévy flight

step size A, golden ratio φ and the fraction of krill placed in the
top krill group pa; set elitism parameter KEEP: how many of the
best krill to keep from one generation to the next, here
KEEP¼⌈NPnð1�paÞ⌉
Step 2: Fitness evaluation. Evaluate each krill individual
according to its position.
Step 3: While the termination criteria is not satisfied or
toMaxGeneration do

Sort the population/krill from best to worst.
Store the KEEP best krill as KEEPKRILL.
for i¼1: ⌈NPnpa⌉(all top frill) do
Perform the following motion calculation.

Motion induced by the presence of other individuals
Forage motion

Exchange information between top krill by Algorithm 2
Update the krill individual position in the search space.
Evaluate each krill individual according to its position.

end for i
Replace the KEEP worst krill with the KEEP best krill stored

in KEEPKRILL.
Sort the population/krill from best to worst and find the

current best.
t¼tþ1;

Step 4: end while
Step 5: Post-processing the results and visualization;

End.

The second improvement is to add information exchange
between the krill in an attempt to accelerate the convergence
speed to the best solution. In KH, there is no information exchange
between krill and the searches are implemented independently in
essence, i.e., different krill work almost independently [20]. In the
IKH, portions of the krill with the best fitness are made up of a
group of top krill. For every top krill, a second krill in this group is
selected randomly and a new krill is then produced on the line
connecting these two top krill. The distance along this line at
which the new krill is situated is calculated, using the inverse of
the golden ratio φ¼ ð1þ

ffiffiffi
5

p
Þ=2, such that it is closer to the krill

with the best fitness. In the case that both krill have the same
fitness, the new krill is produced at the middle point. In this step,
there is a possibility that, the same krill is selected twice. In this
case, a local Lévy flight search is carried out from the randomly
selected krill with step size α¼A/G2. The detailed procedure for
exchanging information between top krill involved in the
improved krill herd algorithm is presented in Algorithm 2, and
the basic framework of improved krill herd algorithm can be
simply described as shown in Algorithm 3. In IKH, ⌈NPnpa⌉ is an
integer number whose value is not more than NPnpa. From
Algorithm 2 and Algorithm 3, it is clear that there is only one
parameter, the parameter of the fraction of krill to make up the
top krill, which needs to be regulated in IKH. Through testing on
benchmarking functions, it was found that setting the parameter
of the fraction of krill placed in the top krill group to
0.25 produced the best results through a series of simulation
experiments.

The third improvement is the addition of elitism scheme into
IKH. As considered for other population-based optimization algo-
rithms, we typically incorporate some sort of elitism in order to
retain the best solutions in the population. This prevents the best
solutions from being corrupted by motion calculation operator.
Note that we use an elitism approach to save the property of the
krill that has the best fitness in the IKH process. Hence, even if the
motion calculation operation ruins its corresponding krill, we have
saved it and can revert back to it if needed.

4. Simulation experiments

In this section, we test the performance of the proposed meta-
heuristic IKH algorithm through a series of experiments. In the
following experiments, IKH1, IKH2, and IKH3 are corresponding to
the three improvements discussed in Section 3, respectively.

To allow a fair comparison of running times, all the experi-
ments were conducted on a PC with a Pentium IV processor
running at 2.0 GHz, 512 MB of RAM and a hard drive of 160 Gbytes.
Our implementation was compiled using MATLAB R2012a (7.14)
running under Windows XP3. No commercial KH tool was used in
the following experiments.
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4.1. General performance of IKH

In order to explore the benefits of IKH, we compared with nine
other population-based optimization methods, which are ABC, BA,
CS, DE, GA, HS, PBIL, and PSO. [26] is a classical swarm intelligence
method based on the smart behavior of honey bee swarm. BA [27]
is a novel powerful meta-heuristic optimization method inspired
by the echolocation behavior of bats with varying pulse rates of
emission and loudness. CS [23,28] is a meta-heuristic optimization
approach inspired by the obligate brood parasitism of some
cuckoo species by laying their eggs in the nests of other host
birds. DE [14,29,30] is a simple but excellent optimization method
that uses the difference between two solutions to probabilistically
adapt a third solution. An ES [31,32] is an algorithm that generally
distributes equal importance to mutation and recombination, and
that allows two or more parents to reproduce an offspring. A GA
[11] is a search heuristic that mimics the process of natural
evolution. HS [33] is a new meta-heuristic method inspired by
behavior of musician' improvisation process. PBIL [34] is a type
of genetic algorithm where the genotype of an entire popula-
tion (probability vector) is evolved rather than individual
members. PSO [19,35] is also a swarm intelligence algorithm
which is based on the swarm behavior of fish, and bird
schooling in nature. It is worth mentioning that according to
Gandomi and Alavi [20], the KH II (KH with crossover operator)
has the best performance. Therefore, in this study, we use KH II
as the basic KH algorithm.

In all experiments, we will use the same parameters for KH and
IKH that are the fraction of krill placed in the top krill group
pa¼0.25, the foraging speed Vf¼0.02, the maximum diffusion
speed Dmax¼0.005, the maximum induced speed Nmax¼0.01. In
addition, the inertia weights (ωn, ωf) are equal to 0.9 at the

beginning of the search to emphasize exploration. These two
parameters are linearly decreased to 0.1 at the end to encourage
exploitation [20]. For DE, GA, PBIL and PSO, we set the parameters
as follows [36]. For ABC, the number of colony size (employed bees
and onlooker bees) NP¼50, the number of food sources Food
Number¼NP/2, maximum search times limit¼100 (a food source
which could not be improved through “limit” trials is abandoned
by its employed bee). For BA, we set loudness A¼0.95, pulse rate
r¼0.5, and scaling factor ε¼0.1; for CS, a discovery rate p¼0.25.
For HS, we set harmony memory accepting rate¼0.75, and pitch
adjusting rate¼0.7.

Well-defined problem sets are favorable for evaluating the
performance of optimization methods proposed in this paper.
Based on mathematical functions, benchmark functions can be
applied as objective functions to perform such tests. The proper-
ties of these benchmark functions can be easily achieved from
their definitions. Fourteen different benchmark functions are
applied to verify our proposed meta-heuristic IKH algorithm. The
benchmark functions described in Table 1 are standard testing
functions. The properties of the benchmark functions are given in
Table 2. The modality property means the number of the best
solutions in the search space. More details of all the benchmark
functions can be found in [37].

We set population size NP¼50 and maximum generation
Maxgen¼50 for each algorithm. We ran 100 Monte Carlo simula-
tions of each algorithm on each benchmark function to get
representative performances. Tables 3 and 4 illustrate the results
of the simulations. Table 3 shows the average minima found by
each algorithm, averaged over 100 Monte Carlo runs. Table 4
shows the absolute best minima found by each algorithm over 100
Monte Carlo runs. In other words, Table 3 shows the average
performance of each algorithm, while Table 4 shows the best

Table 1
Benchmark functions.

No Name Definition

F01 Ackley
f ð x!Þ¼ 20þe�20Ue�0:2U

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n∑

n
i ¼ 1x

2
i

p
�e

1
n∑

n
i ¼ 1 cos ð2πxi Þ

F02 Fletcher–Powell f ð x!Þ¼∑n
i ¼ 1ðAi�BiÞ2 ;Ai ¼∑n

j ¼ 1ðaij sin αjþbij cos αjÞ
Bi ¼∑n

j ¼ 1ðaij sin xjþbij cos xjÞ
F03 Griewank f ð x!Þ¼∑n

i ¼ 1
x2i

4000�∏n
i ¼ 1 cos

xiffi
i

p
� �

þ1

F04 Penalty #1 f ð x!Þ¼ π
30 10 sin 2ðπy1Þþ∑n�1

i ¼ 1ðyi�1Þ2d½1þ10 sin 2ðπyiþ1Þ�
n

þðyn�1Þ2
o
þ∑n

i ¼ 1uðxi ;10;100;4Þ; yi ¼ 1þ0:25ðxiþ1Þ
F05 Penalty #2 f ð x!Þ¼ 0:1 sin 2ð3πx1Þþ∑n�1

i ¼ 1ðxi�1Þ2d½1þ sin 2ð3πxiþ1Þ�
n

þðxn�1Þ2½1þ sin 2ð2πxnÞ�
o
þ∑n

i ¼ 1uðxi;5;100;4Þ
F06 Quartic with noise f ð x!Þ¼∑n

i ¼ 1ðiUx4i þUð0;1ÞÞ
F07 Rastrigin f ð x!Þ¼ 10Unþ∑n

i ¼ 1ðx2i �10U cos ð2πxiÞÞ
F08 Rosenbrock f ð x!Þ¼∑n�1

i ¼ 1½100ðxiþ1�x2i Þ2þðxi�1Þ2�
F09 Schwefel 2.26 f ð x!Þ¼ 418:9829� D�∑D

i ¼ 1xi sin ðjxij1=2Þ
F10 Schwefel 1.2

f ð x!Þ¼∑n
i ¼ 1 ∑i

j ¼ 1xj
� �2

F11 Schwefel 2.22 f ð x!Þ¼∑n
i ¼ 1jxijþ∏n

i ¼ 1jxij
F12 Schwefel 2.21 f ð x!Þ¼max

i
jxij;1r irn

� �
F13 Sphere f ð x!Þ¼∑n

i ¼ 1x
2
i

F14 Step f ð x!Þ¼ 6Unþ∑n
i ¼ 1 xib c

*In benchmark function F02, the matrix elements an�n;bn�nAð�100;100Þ;αn�1Að�π; πÞ are drawn from uniform distribution.
*In benchmark functions F04 and F05, the definition of the function u(xi,a,k,m) is as follows:

uðxi ; a; k;mÞ ¼
kðxi�aÞm ; xi4a

0; �arxira

kð�xi�aÞm ; xio�a

8><
>:
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performance of each algorithm. The best value achieved for each
test problem is shown in bold. Note that the normalizations in the
tables are based on different scales, so values cannot be compared
between the two tables. Each of the functions in this study has 20
independent variables (i.e., d¼20).

From Table 3, we see that, on average, IKH1 and IKH2 perform
slightly different and are the most effective at finding objective
function minimum on six of the 14 benchmarks (F06, F07, F10, F11,
F13-F14 and F02-F05, F08, F14). IKH3 is the second most effective,
performing best on two of the 14 benchmarks (F01 and F12); while

Table 2
Properties of benchmark functions, lb denotes lower bound, ub denotes upper bound, opt denotes optimum point.

No. Function lb ub opt Continuity Modality

F01 Ackley �32.768 32.768 0 Continuous Multimodal
F02 Fletcher–Powell �π π 0 Continuous Multimodal
F03 Griewangk �600 600 0 Continuous Multimodal
F04 Penalty #1 �50 50 0 Continuous Multimodal
F05 Penalty #2 �50 50 0 Continuous Multimodal
F06 Quartic with noise �1.28 1.28 1 Continuous Multimodal
F07 Rastrigin �5.12 5.12 0 Continuous Multimodal
F08 Rosenbrock �2.048 2.048 0 Continuous Unimodal
F09 Schwefel 2.26 �512 512 0 Continuous Multimodal
F10 Schwefel 1.2 �100 100 0 Continuous Unimodal
F11 Schwefel 2.22 �10 10 0 Continuous Unimodal
F12 Schwefel 2.21 �100 100 0 Continuous Unimodal
F13 Sphere �5.12 5.12 0 Continuous Unimodal
F14 Step �5.12 5.12 0 Discontinuous Unimodal

Table 3
Mean normalized optimization results in 14 benchmark functions. The values shown are the minimum objective function values found by each algorithm, averaged over 100
Monte Carlo simulations.

ABC BA CS DE GA HS IKH1 IKH2 IKH3 KH PBIL PSO

F01 3.08 4.49 2.54 2.85 3.91 4.46 1.11 1.16 1.00 1.23 4.54 3.75
F02 1.44 7.51 1.17 2.15 2.26 5.06 1.04 1.00 1.98 7.51 4.99 4.65
F03 9.25 50.73 3.56 5.05 9.64 46.64 1.01 1.00 1.40 7.44 55.33 18.97
F04 3.6E5 1.9E7 1.5E3 7.1E4 1.9E5 1.4E7 5.53 1.00 3.5E3 1.2E6 1.8E7 1.4E6
F05 914.27 2.6E4 33.73 340.31 411.80 1.9E4 1.01 1.00 24.63 2.0E3 2.3E4 2.9E3
F06 85.26 1.4E3 10.36 34.89 75.12 1.2E3 1.00 1.26 10.46 202.64 1.4E3 231.00
F07 2.58 7.35 3.01 4.28 4.55 6.50 1.00 1.02 2.61 5.02 7.05 5.07
F08 8.96 54.64 2.86 7.30 13.41 42.93 1.08 1.00 3.15 14.41 52.03 14.97
F09 1.90 4.39 2.05 2.44 1.00 3.68 1.41 1.44 2.36 4.18 3.82 3.66
F10 9.26 18.68 2.48 11.00 8.33 11.69 1.00 1.02 5.53 9.97 12.05 8.65
F11 2.99 12.80 2.66 3.26 5.87 9.75 1.00 1.11 4.53 11.66 9.82 7.28
F12 6.48 6.95 2.75 5.28 5.39 6.62 1.17 1.09 1.00 1.41 6.78 5.27
F13 11.41 66.67 4.68 6.43 23.79 60.99 1.00 1.02 1.80 9.72 70.54 25.08
F14 7.46 42.69 3.06 3.86 7.14 37.56 1.00 1.00 1.02 6.07 45.14 14.87
Total 0 0 0 0 1 0 6 6 2 0 0 0

*The values are normalized so that the minimum in each row is 1.00. These are not the absolute minima found by each algorithm, but the average minima found by each
algorithm.

Table 4
Best normalized optimization results in 14 benchmark functions. The values shown are the minimum objective function values found by each algorithm.

ABC BA CS DE GA HS IKH1 IKH2 IKH3 KH PBIL PSO

F01 4.26 7.32 3.10 4.36 5.72 7.22 1.42 1.37 1.00 1.14 7.50 5.94
F02 2.43 10.45 1.54 3.01 1.60 10.64 1.06 1.00 3.35 12.98 6.53 7.85
F03 7.06 36.55 3.29 5.16 6.24 60.35 1.02 1.00 1.23 8.38 66.77 22.73
F04 3.2E3 7.8E6 7.92 7.5E3 15.08 1.2E7 1.11 1.00 13.01 1.2E6 2.5E7 6.0E5
F05 5.7E4 5.0E6 530.77 8.2E3 2.9E3 5.2E6 1.27 1.00 868.43 9.9E5 1.2E7 6.8E5
F06 13.92 3.6E3 23.02 133.00 21.16 5.4E3 1.49 1.00 30.25 765.35 7.1E3 399.65
F07 3.33 12.03 4.66 7.44 6.81 10.90 1.02 1.00 3.32 8.45 12.76 7.57
F08 7.17 26.15 2.07 7.06 7.39 40.91 1.00 1.02 3.23 14.27 41.82 12.59
F09 3.61 9.75 3.56 5.05 1.00 8.29 2.05 2.40 4.62 8.58 8.43 6.90
F10 26.22 26.28 4.19 31.86 16.39 32.18 1.96 1.00 13.94 27.80 26.58 23.26
F11 4.29 18.73 1.98 4.76 6.76 16.12 1.00 1.29 4.51 16.12 16.34 8.99
F12 12.37 12.43 4.52 11.80 8.78 12.37 1.72 1.47 1.00 2.11 12.93 8.27
F13 8.66 64.92 6.16 11.16 19.90 65.99 1.13 1.00 2.07 15.02 134.42 40.88
F14 13.05 91.79 6.39 8.68 3.19 82.29 1.52 1.00 1.39 13.21 110.11 32.75
Total 0 0 0 0 1 0 2 9 2 0 0 0

nThe values are normalized so that the minimum in each row is 1.00. These are the absolute best minima found by each algorithm.
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GA is the third most effective, performing best on one benchmark
(F09) when multiple runs are made. For the best solutions, Table 4
shows that IKH2 has the best performance on nine of the 14
benchmarks (F02-F07, F10, F13, and F14). IKH1 and IKH3 are the
second most effective, performing the best on two of the 14
benchmarks F08, F11 and F01, F12 when multiple runs are made
respectively. GA is the third most effective, performing the best on
only one benchmark F09 when multiple runs are made. In
addition, statistical analysis on these values obtained by the
10 methods on 14 benchmark functions based on the Friedman's
test [38] reveals that the differences in the obtained average and
best function minima are statistically significant (p¼1.64�10�17

and p¼7.06�10�17, respectively) at the confidence level of 5%.
Furthermore, to further prove the merits of the proposed IKH

method, convergence plots of ABC, BA, CS, DE, GA, HS, IKH1, IKH2,
IKH3, KH, PBIL, and PSO are illustrated in this section. However,
here only some most representative benchmarks are illustrated
Figs. 1–7. The solutions shown in Figs. 1–7 are the average
objective function minimum obtained from 100 Monte Carlo
simulations, which are the accurate objective function solution,
not normalized. In addition, note that the best solutions of the
benchmarks (F04, F05, and F14) are represented in the form of the
semi-logarithmic convergence plots. We use KH short for KH II in
the legend of Figs. 1–7.

Fig. 1 shows the results obtained for the 12 methods when the
F01 Ackley function is applied. This is a multimodal function with
a narrow global minimum basin (F01min¼0) and many minor local
optima. From Fig. 1, we can draw the conclusion that, IKH3 is
significantly superior to the other algorithms during the process of
optimization, while IKH1 and IKH2 performs the second and the
third best in this multimodal benchmark function, respectively.

Fig. 2 shows the results for F04 Penalty #1 function. From Fig. 2,
apparently, IKH2 outperforms all other methods in this example.
At last, IKH1 converges to the value that is very close to IKH2's.
While, IKH1 performs the fourth best that is inferior to CS.

Fig. 3 shows the results for F05 Penalty #2 function. From Fig. 3,
for this multimodal function, very similar to F02 Penalty #1
function, IKH2 performs the best that outperforms all other
methods during the process of optimization, and IKH1 performs
the second best that slightly inferior to IKH2 among 12 methods.

Fig. 4 shows the optimization results for the F07 Rastrigin
function, which is a complex multimodal problem with a unique
global minimum of F07min¼0 and a large number of local optima.
When attempting to solve F07, methods may easily trap into a
local optimum. Hence, a method capable of maintaining a larger
diversity is likely to produce better results. As can be seen in Fig. 4,
there is little difference between the performance of IKH1 and
IKH2. However, carefully studying Table 3 and Fig. 4, we can
conclude that, IKH1 performs slightly better than IKH2 in this
multimodal function. For the other algorithms, similar to IKH1 and
IKH2, there is little difference between the performance of ABC
and IKH3. In effect, ABC performs slightly better than IKH3 in this
multimodal function.

Fig. 5 shows the results for F10 Schwefel 1.2 function. From
Fig. 5, similar to F07 Rastrigin function as shown in Fig. 4, the
figure shows that there is little difference between the perfor-
mance of IKH1 and IKH2. However, carefully studying Table 3 and
Fig. 5, we can conclude that, IKH1 performs slightly better than
IKH2 in this relative simple unimodal benchmark function. For
other algorithms, CS works very well, because it ranks 3 among
twelve methods.

Fig. 6 shows the results for F12 Schwefel 2.21 function. It is
obvious that IKH1, IKH2, IKH3 and KH perform the best and
significantly outperform other algorithms. However, carefully
studying Table 3 and Fig. 6, we can conclude that, IKH3 is superior
to IKH2, IKH1 and KH in the whole optimization progress.
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Fig. 1. Comparison of the performance of the different methods for the F01 Ackley
function.
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Fig. 2. Comparison of the performance of the different methods for the F04 Penalty
#1 function.
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Fig. 3. Comparison of the performance of the different methods for the F05 Penalty
#2 function.
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Fig. 7 shows the results for F14 Step function. Apparently, IKH1
and IKH2 perform almost the same during the whole optimization
process. Eventually, they converge to the same final optimal
values; while, IKH3 is only inferior to IKH1 and IKH2, and
converges to the value that is very close to the IKH1 and IKH2.

From above-analyses about the Figs. 1–7 and Table 3, we can
arrive at a conclusion that, on average, among 12 optimization
methods, our proposed IKH1 an IKH2 approach perform the best
and most effectively when solving the global numerical optimization
problems and significantly outperforms the other ten approaches.
Generally speaking, IKH3 and KH are only inferior to IKH1 an IKH2,
and perform the second best among 12 methods. CS and ABC
perform the third best only inferior to the IKH1, IKH2, IKH3 and KH.

4.2. Influence of control parameter

The choice of the control parameters is of vital importance for
different problems. To compare the different effects on the para-
meter of the fraction of fireflies placed in the top krill group pa, we
ran 100 Monte Carlo simulations of the IKH2 algorithm on the
above problem to get the best performances. All other parameter
settings are kept unchanged (unless noted otherwise in the follow-
ing paragraph). The results are recorded in Tables 5–6 after 100
Monte Carlo runs. Among them, Table 5 shows the best minima
found by IKH2 algorithm over 100 Monte Carlo runs. Table 6 shows
the average minima found by the IKH2 algorithm, averaged over
100 Monte Carlo runs. In other words, Tables 5 and 6 show the best
and average performance of IKH2 algorithm respectively. In each
table, the last row is the total number of functions on which IKH2
performs the best with specific parameters.

Tables 5 and 6 recorded the results performed on the bench-
mark problems with the fraction of krill placed in the top krill
group pa¼0, 0.1, 0.2, 0.9, 1.0. From Tables 5 and 6, it can be seen
that: (i) for the three benchmark functions F01, F02, F03 and F08,
IKH2 performs slightly differently, that is to say, these three
benchmark functions are insensitive to the parameter pa. (ii) For
benchmark functions F04–F07, F09, F11–F14, IKH2 performs better
on smaller pa (o0.5). (iii) However, there are very few benchmark
functions that IKH2 performs better on bigger pa (40.5). As can be
observed from Tables 5 and 6 , IKH2 performs the best in most
benchmarks when pa is equal or very close to 0.2 and 0.3. Hence,
we set pa¼0.25 in other experiments. In addition, statistical
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Fig. 4. Comparison of the performance of the different methods for the F07
Rastrigin function.

0 5 10 15 20 25 30 35 40 45 50

0.5

1

1.5

2

2.5

x 10
4

Numer of generations

be
nc

hm
ar

k 
fu

nc
tio

n 
va

lu
e

ABC
BA
CS
DE
GA
HS

IKH1
IKH2
IKH3
KH
PBIL
PSO

Fig. 5. Comparison of the performance of the different methods for the F10
Schwefel 1.2 function.
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Fig. 6. Comparison of the performance of the different methods for the F12
Schwefel 2.21 function.
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function.
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analysis on these values obtained by the IKH2 with the fraction of
krill placed in the top krill group pa on 14 benchmark functions
based on the Friedman's test reveals that the differences in the
obtained average and best function minima across various chaotic
maps are statistically significant (p¼7.6�10�16 and p¼6.7�10�16,
respectively) at the confidence level of 5%.

4.3. Discussion

For all of the standard benchmark functions that have been
considered, IKH performs better than or at least highly competitive
with the standard KH and other acclaimed state-of-the-art
population-based algorithms. The IKH performs excellently and
efficiently because of its ability to simultaneously carry out a local
search, still searching globally at the same time. It succeeds in doing
this due to the information exchange between the top krill and
global search via Lévy flights concurrently. A similar behavior may
be performed in the PSO by using multi-swarm from a particle
population initially. However, IKH's advantages include performing
simpy and easily, and using only one parameter to regulate.

Benchmark evaluation is a good way for verifying the perfor-
mance of the meta-heuristic algorithms, but it also has limitations.
First, we did not make any special effort to tune the optimization
algorithms in this section. Different tuning parameter values in the
optimization algorithms might result in significant differences in
their performance. Second, real-world optimization problems may
not have much of a relationship to benchmark functions. Third,
benchmark tests might result in different conclusions if the
grading criteria or problem setup change. In our work, we
examined the mean and best results obtained with a certain
population size and after a certain number of generations. How-
ever, we might arrive at different conclusions if (for example) we
change the generation limit, or look at how many generations it
takes to reach a certain function value, or if we change the
population size. In spite of these caveats, the benchmark results
shown here are promising for IKH, and indicate that this novel
method might be able to find a niche among the plethora of
population-based optimization algorithms.

In this work, 14 benchmark functions are used to evaluate the
performance of our approach. In future, will test our approach on

Table 5
Best normalized optimization results in 14 benchmark functions with different pa. The numbers shown are the best results found after 100 Monte Carlo simulations of IKH2
algorithm.

pa

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

F01 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
F02 2.9E3 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
F03 6.03 2.3 11.00 2.31 2.31 2.31 2.31 2.31 2.31 2.31 2.31
F04 1.69 1.69 106.66 1.00 1.69 1.13 1.69 1.69 1.69 1.69 1.69
F05 7.28 2.31 2.31 6.8E3 1.00 2.31 2.31 2.31 2.31 2.31 2.31
F06 1.00 52.17 61.84 34.69 10.38 56.16 4.24 32.21 8.03 46.64 2.45
F07 4.55 1.36 1.00 2.31 2.31 11.61 2.31 2.31 2.31 2.31 2.31
F08 4.62 2.61 1.00 1.00 1.00 1.01 8.47 1.00 1.00 1.00 1.00
F09 305.76 7.28 2.31 1.00 2.31 2.31 2.31 508.16 2.31 2.31 2.31
F10 192.19 6.03 1.36 1.00 2.31 2.31 2.31 2.31 1.1E3 2.31 2.31
F11 759.73 1.00 751.20 751.20 325.79 751.20 751.20 751.20 751.20 2.4E3 751.20
F12 23.60 1.00 46.71 14.40 37.65 14.40 14.40 14.40 14.40 14.40 27.86
F13 1.00 18.55 2.29 31.79 48.74 23.34 53.81 18.73 40.81 29.05 53.81
F14 109.99 1.36 1.00 2.31 2.31 6.03 2.31 2.31 2.31 2.31 2.31

3 4 6 6 4 2 2 3 3 3 3

*The values are normalized so that the minimum in each row is 1.00. These are not the absolute minima found by each algorithm, but the average minima found by each
algorithm.

Table 6
Mean normalized optimization results in 14 benchmark functions with different pa. The numbers shown are the best results found after 100 Monte Carlo simulations of IKH2
algorithm.

pa

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

F01 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
F02 180.37 2.40 1.00 1.63 2.37 1.90 2.17 2.11 3.07 2.78 1.78
F03 1.80 1.60 1.00 1.01 1.00 1.00 1.00 1.00 1.03 1.01 1.01
F04 5.2E3 125.22 9.4E3 1.00 1.21 1.13 1.02 1.05 27.85 2.21 13.95
F05 220.69 4.16 1.00 23.33 2.82 5.45 1.32 2.14 2.59 3.80 1.41
F06 1.00 2.9E5 1.6E3 3.9E3 2.9E5 31.18 31.16 31.17 31.17 31.18 31.16
F07 4.31 5.1E3 1.00 51.28 123.01 9.2E3 1.04 1.78 1.02 1.05 1.01
F08 10.15 118.71 8.9E3 81.06 49.92 119.73 9.0E3 1.00 1.08 1.08 1.04
F09 82.69 4.4E4 1.10 1.00 42.75 26.63 62.92 4.7E3 1.18 1.41 1.23
F10 110.21 616.66 1.9E3 3.4E3 46.43 32.44 21.03 47.90 3.5E3 1.00 1.26
F11 37.91 1.00 1.8E3 14.58 25.57 1.8E3 1.2E3 740.76 1.8E3 1.3E5 14.76
F12 2.44 8.9E3 9.0E3 1.00 9.0E3 95.89 119.24 81.86 50.37 120.85 9.1E3
F13 1.00 8.14 1.7E5 9.7E3 1.88 3.38 186.26 231.59 158.98 97.82 234.73
F14 85.17 2.0E3 651.82 50.59 1.00 3.6E3 44.82 39.44 48.92 34.62 20.77

3 2 5 4 3 2 2 3 1 2 1

*The values are normalized so that the minimum in each row is 1.00. These are the absolute best minima found by each algorithm.
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more problems, such as the high-dimensional (dZ20) CEC 2010
test suit [39] and the real-world problems. Moreover, we will
compare IKH with other EAs. In addition, we only consider the
unconstrained function optimization in this work. Our future work
consists of adding the diversity rules into IKH for constrained
optimization problems, such as constrained real-parameter opti-
mization CEC 2010 test suit [40].

5. Conclusion and future work

This paper proposed an improved meta-heuristic IKH method for
optimization problem. A novel type of KH has been presented which
introduces three improvements to the original method. The first
improvement is adding Lévy flight to the KH with the step size α,
similar to declined inertia constant in the PSO [19] and basic KH
algorithm [20]. This strategy can inspire more localized searching as
the krill get closer to the solution. Information exchange between the
top krill is added to the method as the second improvement in an
effort to accelerate the convergence speed to the best solution. In
IKH, portions of the krill with the best fitness are made up of a group
of top krill. The third improvement is the addition of elitism scheme
into IKH. This prevents the optimal krill from being corrupted by
three motion calculation operators. The IKH attempts to take merits
of the KH and exchange information in order to avoid all krill getting
trapped in inferior local optimal regions. This new method can speed
up the global convergence rate without losing the strong robustness
of the basic KH. From the analysis of the experimental results, it can
be concluded that the proposed IKH method uses the information in
past solutions more efficiently when compared to the other popula-
tion-based optimization algorithms such as ABC, BA, CS, DE, GA, HS,
KH, PBIL, and PSO. Based on the results, IKH significantly improves
the performance of KH on most multimodal and unimodal problems.
In addition, IKH is simple and easy to implement.
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