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Abstract
An algorithm for wavefront measurement using a phase retrieval method is proposed. Only
one defocus intensity pattern of the imaging optical system is needed for phase retrieval.
Based on the extended Nijboer–Zernike (ENZ) approach, this algorithm draws on general
inverse matrix theory, and a predictor–corrector method is also used to correct the linearization
errors for medium-to-large aberrations. This method does not need multi-defocus intensity in
the focal region, and it can exclude vibration during multi-intensity pattern capturing, making
the whole process simple and brief. Some simulated results are presented which show this
algorithm has good convergence against noise. A confirmatory experiment is carried out, and
its results verifying this method are also given.

(Some figures may appear in colour only in the online journal)

1. Introduction

Optical instruments are widely used in industry. Many
techniques have been introduced to manufacture and measure
optical systems. Wavefront aberration is very important
because it provides a direct understanding of the defects in
the imaging optical system. A knowledge of the wavefront
at the pupil is required to manufacture a perfect optical
system. An interferometer has high precision and is widely
used in wavefront measurement. Usually, it needs a coherent
illumination source, such as a laser. Its testing environment
needs almost constant temperature and a stable working
platform. Also, a reference wavefront is necessary. When
the optical system is sent to space or assembled on
equipment, the interferometric method will not work well.
An online testing method is needed. The relation between
pupil function and point spread function (PSF) could be
utilized. An approach has been proposed in the literature
[1, 2] and the wavefront can be reconstructed from one or
more images, typically of a point source, according to the

relation between the PSF and the complex pupil function.
This approach does not need a coherent source. However,
noise in the image-capturing process and inherent non-unique
problems tend to make the inversion process unreliable. Some
approaches to retrieve the phase use a least-squares method
or other optimization methods to solve this problem [3–7].
Another important method for phase retrieval is being
investigated. Janssen et al [8] have studied Nijboer–Zernike
theory and proposed an extended Nijboer–Zernike (ENZ)
approach, providing a good approximation for the intensity
distribution in or close to the focal plane [8, 9]. ENZ does
not suffer from small aberration and amplitude uniformity
restrictions. Based on the ENZ, another phase retrieval
approach is introduced [10, 11]. This retrieval approach is
stable against noise in the imaging capture process and has
good accuracy. Because multiple images at the symmetric
focal region are needed, the whole process would be cluttered.
If there are no precise instruments for on-axis movement,
or vibration disturbs the capturing intensity seriously, this
process can not be finished properly. If phase retrieval needs
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only one defocused intensity pattern, the process would
be efficient, and the cost of the instruments needed would
decrease. More people could then share in this achievement.

2. Algorithm for phase retrieval

The objective of this paper is phase retrieval through a single
defocus intensity pattern based on scalar ENZ theory. The
retrieval process is based on general inverse matrix theory.
The effect of vibration can be excluded, while the algorithm
is still stable against noise.

The relation between the PSF and the exit pupil function
is determined. The linear Zernike polynomial expansion of the
exit pupil function is given as:

P(u, v) =
∑

βm
n Zm

n (u, v) =
∑

βm
n Rm

n (ρ) cos(mϑ). (1)

Here, P(u, v) is the exit pupil function, with u, v Cartesian
coordinates. For convenience, only cosine Zernike terms
are considered here, with complex coefficients βm

n (n,m ≥
0, n − m even) which are suitable for the general pupil of a
rotationally symmetric system. According to the relation in
the literature [8, 9], the intensity pattern in the focal region is
given by:
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0 |V

0
0 |

2
+ 8
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The summation with an apostrophe does not include the
m = n = 0 term. Re means the real part, and Im means the
imaginary part

βm
n = Re(βm

n )+ i× Im(βm
n ) (3)

C(x, y) is the cross term

C(x, y, f ) = 4
∑
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′′

Re[βm1
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The summation with the double apostrophe does not include
the m1 = n1 = m2 = n2 = 0 term. x, y are normalized
Cartesian coordinates, and f is a normalized parameter
representing defocus

x = X
2πNA
λ

, y = Y
2πNA
λ

,
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2π
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Z
(
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√
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)
.

(5)

X, Y and Z are Cartesian coordinates in the imaging region,
NA is the numeric aperture, and λ is the wavelength of the
illumination. Vm

n is expanded as

Vm
n (r, f ) = exp(if )

∞∑
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(−2if )l−1
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j=0

υlj
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(7)

where l = 1, 2, 3 . . . and j = 0, 1, 2 . . . p. υ = 2πr, p =
n−m

2 , q = n+m
2 , and l > 3|f |. The binomials occurring in

equation (7) are given as:(
n

k

)
=


n!

k!(n− k)!
, n ≥ k

0, n < k.
(8)

Here, the PSF is represented as a Bessel series. Neither
discrete numerical integration nor the Fourier method are used
to calculate the intensity. If the cross term is deleted, the
intensity is given by

I ≈ Id = 4β0
0 |V

0
0 |

2
+ 8

∑
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n )Re[imVm
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0 ]
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(9)

The matrix function of equation (9) is as follows:

Imx = Vmx × Amx (10)

where Imx is the column matrix made up of the acquired
intensity I,

Imx = [I(1, 1)I(1, 2) · · · I(1,N)I(2, 1) · · ·

I(2,N) · · · I(M,N)]T, (11)

where M and N are the numbers of rows and columns of
intensity I, respectively.

Amx is the column matrix made up of the imaginary and
real parts of the coefficients βm

n ,

Amx = [Re(β1
1 ) Im(β1
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n )]
T. (12)

Vmx is the transfer matrix made up of the base function:
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while

Hm
n (x, y) = 8 Re[imVm

n (x, y, f )V0∗
0 (x, y, f )] cos[mϕ(x, y)],

(14)

Gm
n (x, y) = −8 Im[imVm

n (x, y, f )V0∗
0 (x, y, f )] cos[mϕ(x, y)].

(15)
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Table 1. Retrieved coefficients when different DC-free noise is added.

SNR = ∞ SNR = 55 dB SNR = 25 dB

Z0
0 1.000 00 1.000 00 1.000 46

Z0
2 0.010 00+ 0.000 00i 0.010 01+ 0.000 00i 0.011 06+ 0.000 05i

Z−2
2 −0.010 00− 0.022 00i −0.010 00− 0.022 00i −0.009 98− 0.021 83i

Z2
2 0.010 00+ 0.002 00i 0.009 99+ 0.002 00i 0.010 80+ 0.002 46i

Z−1
3 0.000 00+ 0.012 00i 0.000 01+ 0.012 01i 0.000 28+ 0.011 78i

n,m are the indices of the Zernike coefficients; x and y
are the Cartesian coordinates in the focal region; and f is
the normalized defocus parameter, f 6= 0. Based on general
inverse matrix theory, the solution of equation (10) that
minimizes the errors in a least-squares sense is:

Amx = (V
T
mxVmx)

−1VT
mx × Imx. (16)

The symbol −1 means inverse translation, and f 6= 0
means the focus term cannot be used, otherwise this solution
will be broken. Solving equation (16) to obtain Amx, the
result for the coefficients βm

n is obtained. This is suitable
for the case of small aberrations in optical systems. When
medium-to-large aberrations appear, the effect of the cross
term C(x, y) will not be negligible.

To eliminate the advanced error introduced by the cross
term C(x, y), a predictor–corrector method is used here to
increase the dynamic range of the test wavefront [11]. This
is an iterative process. The coefficients βm

n in equation (4)
are substituted by the above result to calculate C(x, y); the
term C(x, y) is deleted from I; the matrix Imx is replaced by
this new I for the next calculation of βm

n . A similar iterative
implementation is carried out, following this process, until the
final coefficients βm

n are obtained. The phase and amplitude in
the exit pupil are then derived.

3. Simulation

A simulation is now carried out. The pupil function P is given
as P = Z0

0 + 0.01Z0
2 + (−0.01 − 0.022i)Z−2

2 + (0.002i +
0.01)Z2

2 + 0.012iZ−1
3 . The numeric aperture (NA) for the

optical system is set at 0.16, the sampling radius is 12.3 µm
in the focal region, and there are 800× 800 points acquired in
the imaging region. Based on this phase retrieval algorithm,
figure 1 shows the absolute errors |βm

n − β
m
n (k)| as a function

of the number of iterations, with βm
n being the Zernike

coefficients in our simulation. There is rapid convergence.
In table 1, the coefficients are displayed for differing

noise with signal to noise ratios (SNRs) = ∞, 55, 25 dB.
The effect of the noise will be stronger when more noise is
added in the phase retrieval process. These results prove that
this approach can restrain the effect of noise.

4. Confirmatory experiment

During our confirmatory experiment, an optical imaging
system (F#

= 7) is tested at a wavelength of 632.8 nm. The

Figure 1. Absolute reconstruction errors |βm
n − β

m
n (k)| in each

iteration using a predictor–corrector method. βm
n are the simulated

Zernike coefficients representing the exit pupil. k is the iterative
order. The largest error is below 10−6.

intensity pattern is obtained with a 20× objective lens at a
defocal distance of −100 µm. The above approach is applied.

The retrieval coefficients βm
n are obtained after 20

iterative processes, and the pupil function is presented. The
PSFs for different defocus distances can be reconstructed.
Figure 2 shows the reconstructed PSFs contrasting with
the captured images. There are still errors in the phase
retrieval result, but these errors are small for optical system
characterization. In figure 2, the vibration of the platform
disturbs the actual intensity patterns coinciding with the
simulated PSFs. However, the profiles of the PSFs (dotted
lines) and the images (solid lines) are very similar. Noise does
not significantly affect the retrieval. These graphic results can
prove that the retrieval process is valid and this approach can
eliminate the error introduced by vibration.

The wavefront in the exit pupil is reconstructed according
to the coefficients βm

n . Through wavefront-fitting software, the
wavefront aberration is analysed in figure 3. The piston, tilt,
and defocus are removed. The tested aberrations are 0.0225λ
rms (λ = 632.8 nm). Wavefront aberrations are mainly coma
−0.063 685λ at 159◦, astigmatism 0.069 979λ at 148◦ and
sphere at 0.018 9345λ. These aberrations also could be found
in the image patterns in different defocal regions. This lens
was also tested with a ZYGO interferometer. As shown in
figure 4, the wavefront has 0.015λ rms, and is similar to that
in figure 3. This could prove that this approach is valid. The
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Figure 2. Profiles of PSFs and images at different defocus distances. The solid lines are the images obtained in the charge-coupled device
with differing amounts of defocus: from (a) to (i) −100, −80, −60, −20, 0, 20, 60, 80, 100 µm, respectively. The PSFs (dotted lines) are
reconstructed from the retrieval coefficients. Vibration disturbs the profile of the image coinciding with the PSF.

Figure 3. Wavefront aberration analysed through wavefront-fitting
software. In the above left, the wavefront is shown when the piston,
tilt and defocus are removed. The Seidel and Zernike coefficients
are also listed.

difference between this result and the interferometer result is
less than 0.01λ. The errors could come from aberrations of the
objective lens.

Figure 4. ZYGO testing result for the camera lens is 0.015λ rms,
when the piston, tilt and defocus aberrations are removed.

5. Conclusions

In conclusion, we have proposed an algorithm for phase
retrieval through a single defocused intensity pattern using
general inverse matrix theory. It is based on the scalar
extended Nijboer–Zernike theory. The algorithm aims at
excluding errors brought by multi-intensity pattern capturing.

4
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In our confirmatory tests, the wavefront aberration obtained is
0.0225λ rms. The errors in our tests are estimated to be less
than 0.01λ. This algorithm is valid and has good convergence
against noise and our approach for phase retrieval has good
accuracy.
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