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Abstract In this paper, it is shown that the Heisenberg XY, XXZ, XXX, and
Ising model all can be constructed from the Braid group algebra generator and the
Temperley–Lieb algebra generator. And a new set of topological basis expression is
presented. Through acting on the different subspaces, we get the new nontrivial six-
dimensional and four-dimensional Braid group matrix representations and Temperley–
Lieb matrix representations. The eigenstates of Heisenberg model can be described by
the combination of the set of topological bases. It is worth mentioning that the ground
state is closely related to parameter q which is the meaningful topological parameter.

Keywords Yang–Baxter equation · Knot theory · Topological basis · Quantum spin
models

1 Introduction

In the integrable quantum spin systems, the one-dimensional Heisenberg model under
the periodic boundary conditions is one of the fundamental models. It was originally
introduced by Bethe [1] for the purpose of solving the isotropic Heisenberg spin chain,
the Bethe Ansatz, and has been proven to be an invaluable tool in the field of exactly
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solved models because of its numerous refinements and generalizations. Variety of
physical problems and models [2,3] have also demonstrated the versatility of this
method and proved it useful. In statistical mechanics, the Temperley–Lieb algebra
(TLA) first appeared as a tool to analyze various interrelated lattice models [4] and
it was related to link and knot invariants [5]. Up to now, there have been many more
models based on the TLA representations, such as the graph models [6–8], the RSOS
models [9], and certain vertex models [10,11]. The Temperley–Lieb equivalence has
also been naturally extended to the corresponding quantum counterparts of the above
statistical-mechanical models, such as the quantum RSOS models and the quantum
spin-S chains [10,12–15]. Recently, our team have also got that the XXX model can
be constructed from the TLA generator [16]. In fact, TLA is a subalgebra of Braid
group algebra (BGA). It is found that Braid group is closely linked with Yang–Baxter
equation (YBE) [17,18], and the new type of braiding matrices and solutions of YBE
has also been found to be related to quantum information in recent years [19–21]. In
Ref. [19,22], Kauffman et al. presented a very significant result that braiding operator
can be identified to the universal quantum gate (i.e. the CNOT gate). There is an
earlier literature on topological quantum computation and which is all about quantum
computing using braiding [23].

The topological quantum field theory (TQFT) is one of the most fantastic features
of quantum theory, because it is related to quantum computing through anyons. It is
shown that the 2D braid behavior under the exchange of anyons has great relation
with the ν = 5/2 state Fractional Quantum Hall Effect (FQHT) [24]. The topological
basis plays the significant role in TQFT and it can be described in terms of graphic
technique [25]. Many works have shown that topological basis has some important
physical applications in topological quantum computation, quantum teleportation, and
quantum entanglement [25,26]. In Ref. [25], based on the topological basis and the
application of braid relation in anyon theory, authors nest TLA into 4D YBE and
reduce it to 2D YBE. In ν = 5/2 FQHE, quasiparticles are called Ising anyons
which satisfy non-Abelian fractional statistics. The anyons obeys the fusion rules as
follows,

1

2
× 1

2
= 0 + 1,

1

2
× 1 = 1

2
, 1 × 1 = 0, (1)

0 × 0 = 0, 0 × 1

2
= 1

2
, 0 × 1 = 1. (2)

As above, there are two fusion ways for two 1
2 anyons. When four 1

2 anyons fuse
together, we can divide the four 1

2 anyons into two pairs. Both pairs either fuse 0 or
to 1. According to previous theory, the well-known two orthogonal topological basis
states have the form as [27–29],

(3)
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The topological basis expression of Heisenberg spin chain 403

where the parameter d denotes the value of a unknotted loop . In the middle fusion
chains, the internal edges obey the fusion rules at each trivalent vertex. On the right-
hand sides, from the conformal basis to the Kauffman graph, Jones–Wenzl projector
operators have been applied, i.e.

(4)

These just indicate the importance of braid group in quantum information and topo-
logical theory. In this paper, we investigate the non-standard solution of braid group
matrix representation which is independent of Temperley–Lieb matrix representation.
So we combine the TLA and BGA in order to obtain more Heisenberg model, the
combination of these two algebra is just the Birman–Wenzl Algebra (BWA) [30].

Our aim in this work is to connect new topological basis states with more Heisenberg
spin chain, and we use a graphic method to construct the exact solutions of the four-
qubit Heisenberg spin chain, and study some properties of the topological basis states
of these system. This paper is organized as follows: in the second section, we recall the
BGA, TLA and construct a set of complete orthonormal bases of four-qubit spin chain
with topological bases. Through acting on the subspaces, we get the new nontrivial
six-dimensional (6D) and four-dimensional Braid group matrix representations and
Temperley–Lieb matrix representations, which all satisfy the reduced TLA and BGA
relation respectively. it shows that the Hamiltonian of Heisenberg XY, XXZ, XXX, and
Ising model all can be constructed from the BGA generator and the TLA generators.
Then we show a graphic method of constructing the exact solutions for a closed four-
qubit Heisenberg XY and Ising spin chain. The eigenstates of XY and Ising model
can be expressed by topological bases, and the ground state is closely related to the
parameter q which is the meaningful topological parameter.

2 BGA, TLA, and a new expression of topological basis

We first briefly review the theory of the TLA [31]. For each natural number m, the
TLA T Lm(d) is generated by {I, U1, U2 . . . Um−1} with the TLA relations:

⎧
⎪⎨

⎪⎩

U 2
i = dUi 1 ≤ i ≤ m − 1

UiUi±1Ui = Ui 1 ≤ i ≤ m

UiU j = U jUi | i − j |≥ 2

(5)

where d is the unknotted loop in the knot theory which does not depend on the
sites of the lattices. The notation Ui ≡ Ui,i+1 is used. The Ui represents 11 ⊗ 12 ⊗
13 ⊗ · · · ⊗ 1i−1 ⊗ U ⊗ 1i+2 · · · 1m , and 1 j represents the unit matrix in the jth space
Vj . In addition, the TLA is easily understood in terms of knot diagrams in Ref. [32].
According to Kauffman’s graphs, it can be expressed as,
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(6)

Then, we review the theory of braid groups to keep the paper self-contained. Let
Sn denotes the braid group on n strands [17]. Sn is generated by elementary braids
{S1, S2, . . . , Sn−1} with the braid relations,

{
Si Si+1Si = Si+1Si Si+1 1 ≤ i < n − 2

Si S j = S j Si |i − j | ≥ 2
(7)

where the notation Si ≡ Si,i+1 is used, Si,i+1 represents 11 ⊗ 12 ⊗ 13 ⊗ · · · ⊗ 1i−1 ⊗
S ⊗ 1i+2 · · · 1m , and 1 j is the unit matrix of the j-th particle. Also using Kauffman’s
graphs [32], it can be expressed as

(8)

According to Kauffman [19], there is the decomposition for the standard solution
of braid groups matrix representation:

(9)

where −(α2 + α−2) = d, Eq. (9) just indicate that the standard solution of braid
groups matrix representation can be expressed by TL matrix representation U. The
Hermitian matrix U with d = q + q−1, which satisfies the TLA relations Eq. (5) and
can be used to construct the well-known six-vertex model [33], has the representation,

U =

⎛

⎜
⎜
⎝

0 0 0 0
0 q η 0
0 η−1 q−1 0
0 0 0 0

⎞

⎟
⎟
⎠ , (10)
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where η = eiϕ ; in this paper, we consider the case of ϕ = π and η = −1 to construct
Heisenberg model. Corresponding to Eq. (10), the typical standard solution of braid
groups matrix representation S for the six-vortex models, which satisfies the BGA
relations Eq. (7), takes the representation,

S =

⎛

⎜
⎜
⎝

q 0 0 0
0 0 −η 0
0 −η−1 q − q−1 0
0 0 0 q

⎞

⎟
⎟
⎠ , (11)

Observing Eqs. (10) and (11), it is consistent with Eq. (9) that the typical standard
solution S can be expressed in terms of TL matrix U as

S = ρ(I + f U ) (12)

where ρ = q, f = −q−1. For the six-vortex models, there is another unique braid
matrix representation [19,34] which is the non-standard solution structure,

S′ =

⎛

⎜
⎜
⎝

q 0 0 0
0 0 −η 0
0 −η−1 q − q−1 0
0 0 0 −q−1

⎞

⎟
⎟
⎠ , (13)

Observing Eqs. (10) and (13), it is easy to find that the unique non-standard braid
solution S′ cannot be expressed in terms of Temperley–Lieb (T–L) matrix U. It means
that the non-standard braid solution S′ is independent of T–L matrix representation
U. Based on this, we can combine the BGA generator S′ and the TLA generator U to
construct more Heisenberg model in this paper.

Here we introduce four graphs and their spin realization as follows:

where the solid line, the dashed line, the dotted line, and the dash-dotted line are
used respectively, and the notation ↑ (↓) denotes spin up (down), and the nota-
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tion |αβ〉i j is the abbreviated form of |α〉i ⊗ |β〉 j . Then, we get a set of com-
plete orthonormal topological bases which are combined by these four graphs as
follows:

(14)

Acting the operator S′ of Eq. (13) and U of Eq. (10) on topological bases of Eq. (14)
respectively, we can get a set of new braid matrix and T–L matrix representations. We
get four subspaces and the first subspace is spanned by {|e1〉, |e2〉, |e3〉, |e4〉, |e5〉, |e6〉}.
When the operator S′ and U, respectively, act on the first subspace, the 6D braid and
T–L matrix representations are

S(1)
A =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−q−1 0 0 0 0 0

0 −q−1 0 0 0 0

0 0 −q−1 0 0 0

0 0 0 q 0 0

0 0 0 0 q 0

0 0 0 0 0 q

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, S(1)
B =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

q2−1
d

q
d

1
dq

q
d − 1

dq 0

q
d 0 − 1

d
1
d 0 1

dq

1
dq − 1

d q − q−1 0 − 1
d − q

d

q
d

1
d 0 0 1

d − 1
dq

− 1
dq 0 − 1

d
1
d q − q−1 − q

d

0 1
dq − q

d − 1
dq − q

d
1−q−2

d

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

S(1)
C =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−q−1 0 0 0 0 0

0 q 0 0 0 0

0 0 q 0 0 0

0 0 0 −q−1 0 0

0 0 0 0 −q−1 0

0 0 0 0 0 q

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, S(1)
D =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

q2−1
d − 1

dq
q
d

1
dq

q
d 0

− 1
dq q − q−1 1

d − 1
d 0 − q

d

q
d

1
d 0 0 1

d − 1
dq

1
dq − 1

d 0 q − q−1 − 1
d − q

d

q
d 0 1

d − 1
d 0 1

dq

0 − q
d − 1

dq − q
d

1
dq

1−q−2

d

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

(15)
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and

U (1)
A =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

d 0 0 0 0 0

0 d 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, U (1)
B =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1
d 0 − 1

dq − q
d 0 − 1

d

0 1
d

1
d

1
d

1
d

q−q−1

d

− 1
dq

1
d q−1 0 1

d
q
d

− q
d − 1

d 0 q − 1
d

1
dq

0 1
d

1
d − 1

d
1
d

q−q−1

d

− 1
d

q−q−1

d
q
d

1
dq

q−q−1

d
d2−3

d

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

U (1)
C =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

d 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 d 0

0 0 0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, U (1)
D =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1
d 0 − q

d − 1
dq 0 − 1

d

0 1
d − 1

d
1
d

1
d

q−q−1

d

− q
d − 1

d q 0 − 1
d

1
dq

− 1
dq

1
d 0 q−1 1

d
q
d

0 1
d

1
d

1
d

1
d

q−q−1

d

− 1
d

q−q−1

d
1

dq
q
d

q−q−1

d
d2−3

d

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

(16)

where (SA)i j = 〈ei |S12|ei 〉, (SB)i j = 〈ei |S23|ei 〉, (SC )i j = 〈ei |S34|ei 〉, (SD)i j =
〈ei |S41|ei 〉, so do the matrix U. It is worth mentioning that these representations in
Eqs. (15) and (16) are the new 6D braid and Temperley–Lieb matrix representations,
and they all satisfy the 6D TLA and 6D BGA relation respectively. The 6D braid
matrix representations S(1)

A �= S(1)
C , S(1)

B �= S(1)
D and the Temperley–Lieb matrix

representations U (1)
A �= U (1)

C , U (1)
B �= U (1)

D indicate that there is not the symmetry of
exchanging pair indices 12 ↔ 34 and 23 ↔ 41 for the first subspace.

The second and the third subspaces are spanned by {|e7〉, |e8〉, |e9〉, |e10〉}, and
{|e11〉, |e12〉, |e13〉, |e14〉}, respectively. When the operator S′ and U, respectively, act
on the second and the third subspaces, the 4D braid and T-L matrix representations
are

S(2)
A =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

−q−1 0 0 0

0 q 0 0

0 0 q 0

0 0 0 q

⎞

⎟
⎟
⎟
⎟
⎟
⎠

, S(2)
B = 1

d

⎛

⎜
⎜
⎜
⎜
⎜
⎝

q2 −1 −q−1 q

−1 q2 −q−1 q

−q−1 −q−1 dq − q−2 1

q q 1 1

⎞

⎟
⎟
⎟
⎟
⎟
⎠

,

S(2)
C =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

q 0 0 0

0 −q−1 0 0

0 0 q 0

0 0 0 q

⎞

⎟
⎟
⎟
⎟
⎟
⎠

, S(2)
D =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

q2 −1 q −q−1

−1 q2 q −q−1

q q 1 1

−q−1 −q−1 1 dq − q−2

⎞

⎟
⎟
⎟
⎟
⎟
⎠

, (17)
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and

U (2)
A = U (3)

A =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

d 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

, U (2)
B = U (3)

D = 1

d

⎛

⎜
⎜
⎜
⎜
⎜
⎝

1 1 q−1 −q

1 1 q−1 −q

q−1 q−2 q−2 −1

−q −q −1 q2

⎞

⎟
⎟
⎟
⎟
⎟
⎠

,

U (2)
C = U (3)

C =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

−q−1 0 0 0

0 −q−1 0 0

0 0 −q−1 0

0 0 0 q

⎞

⎟
⎟
⎟
⎟
⎟
⎠

, U (2)
D = U (3)

B = 1

d

⎛

⎜
⎜
⎜
⎜
⎜
⎝

1 1 −q q−1

1 1 −q q−1

−q −q q2 −1

q−1 q−1 −1 q−2

⎞

⎟
⎟
⎟
⎟
⎟
⎠

,

(18)

and

S(3)
A =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

−q−1 0 0 0

0 −q−1 0 0

0 0 q 0

0 0 0 −q−1

⎞

⎟
⎟
⎟
⎟
⎟
⎠

, S(3)
B = 1

d

⎛

⎜
⎜
⎜
⎜
⎜
⎝

−1 −1 −q−1 −q−1

−1 q−2 − dq q q

−q−1 q −q−2 1

−q−1 q 1 −q−2

⎞

⎟
⎟
⎟
⎟
⎟
⎠

,

S(3)
C =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

−q−1 0 0 0

0 −q−1 0 0

0 0 −q−1 0

0 0 0 q

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

, S(3)
D = 1

d

⎛

⎜
⎜
⎝

q−2 − dq −1 q q
−1 −1 −q−1 −q−1

q −q−1 −q−2 1
q −q−1 1 −q−2

⎞

⎟
⎟
⎠ ,

(19)

Above all the new 4D braid and 4D Temperley–Lieb satisfy the 4D BGA and 4D
TLA relation, respectively. It is same as the first subspace, S(2/3)

A �= S(2/3)
C , S(2/3)

B �=
S(2/3)

D and U (2/3)
A �= U (2/3)

C , U (2/3)
B �= U (2/3)

D . It also does not satisfy the exchange
symmetry. The last subspaces are spanned by {|e15〉, |e16〉}

S(4)
A = S(4)

B = S(4)
C = S(4)

D =
(

q 0
0 −q−1

)

, (20)

and

U (4)
A = U (4)

B = U (4)
C = U (4)

D =
(

0 0
0 0

)

(21)

where all the 2D braid and 2D Temperley–Lieb satisfy the 2D BGA and 2D TLA
relation, respectively.
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3 The graphic solutions and the topological basis

In this section, we present that the Hamiltonian of Heisenberg XY, XXZ, XXX, and
Ising model all can be constructed from the BGA generator and the TLA generators,
and we show a graphic method of constructing the exact solutions for a closed four-
qubit Heisenberg XY and Ising spin chain.

In the Eqs. (13) and (10), we consider the case of η = −1. For the i-th and (i + 1)-th
lattices, the matrix S′ and U can be denoted in terms of local spin operators,

S′
i,i+1 = s+

i s−
i+1 + s−

i s+
i+1 + q−1s3

i + qs3
i+1 + 1

2
(q − q−1)I

= 2H (1)
i,i+1 + 1

2
(q − q−1)I, (22)

and

Ui,i+1 =−2

[
1

2
(s+

i s−
i+1+s−

i s+
i+1) + 1

2
(q + q−1)s3

i s3
i+1

]

+ 1

4
(q+q−1)I (23)

It is worth mentioning that the Hamiltonian H (1)
i,i+1 in Eq. (22) is just the Heisenberg

XY model. So the XY model can be constructed from the Braid generator as follows:

Hi,i+1 = 1

2

[

S′
i,i+1 − 1

2
(q − q−1)I

]

(24)

In Sect. 2, it is shown that the braid matrix representation S′ is independent of the
T–L matrix representation U, so we can combine these two matrix representation as
follows:

S′
i,i+1 + αUi,i+1

= (1 − α)(s+
i s−

i+1 + s−
i s+

i+1) − α(q + q−1)s3
i s3

i+1 (25)

+
(

q−1 + α(q − q−1)

2

)

s3
i +

(

q − α(q − q−1)

2

)

s3
i+1 + AI

= H (2)
i,i+1 + AI,

where A = ((2+α)q + (α−2)q−1)/4. According to Eq. (25), it is easy to see that the
Hamiltonian H (2)

i,i+1 in Eq. (25) is just the Heisenberg XXX model when α = 2
2−d , the

Heisenberg XXZ model when α �= 2
2−d , and the Heisenberg Ising model when α = 1,

respectively. So we construct the Heisenberg XY, XXZ, XXX, and Ising model via the
BGA generator and the TLA generator. Then, we will mainly show a graphic method
of constructing the exact solutions for a closed four-qubit Heisenberg XY spin chain
and Ising spin chain, we also investigate the particular properties of the topological
basis states in these systems.
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410 T. Hu et al.

In the following, we discuss the Hamiltonian of a closed four-qubit Heisenberg spin
chain under the periodic boundary conditions given by

H = J
4∑

i=1

Hi,i+1. (26)

where J is the real coupling coefficient. The coupling constant J > 0 corresponds to
the antiferromagnetic case, and J > 0 corresponds to the ferromagnetic case. For the
four-qubit Heisenberg XY spin chain, according to Eq. (24), it is easy to check that the
eigenstates of the XY Hamiltonian are the same as the eigenstates of Γ = ∑4

i=1 S′
i,i+1.

So via the combinations of the above topological basis states {|e1〉, i = 1, 2, . . . , 16},
one can construct the exact solutions for the XY Hamiltonian as follows:

|Φ1〉 = − α
2dq |e1〉 + β(q−q−1)

4αd (|e2〉 + |e5〉) + β
4α

(|e3〉 + |e4〉) + q(d2−2)
2αd |e6〉,

|Φ2〉 = q−q−1√
2d2+8

(|e1〉 + |e6〉),
|Φ3〉 =

√
2

2 (−|e2〉 + |e5〉),
|Φ4〉 = − d√

2d2−4
|e2〉 + q−q−1√

2d2−4
|e4〉,

|Φ5〉 = − d√
2d2−4

|e2〉 + q−q−1√
2d2−4

|e3〉,
|Φ6〉 = − γ

2d |e1〉 − μ(q−q−1)
4γ d (|e2〉 + |e5〉) + μ

4γ
(|e3〉 + |e4〉) + q(d2−2)

2γ d |e6〉,
|Φ7〉 =

√
2

2 (−|e7〉 + |e8〉),
|Φ8〉 =

√
2

2 (−|e9〉 + |e10〉),

|Φ9〉 = − q
1
2 +q− 1

2

2
√

d
|e7〉 − q

1
2 +q− 1

2

2
√

d
|e8〉 + q

1
2 −q− 1

2

2
√

d
|e9〉 − q

1
2 −q− 1

2

2
√

d
|e10〉,

|Φ10〉 = q
1
2 −q− 1

2

2
√

d
|e7〉 + q

1
2 −q− 1

2

2
√

d
|e8〉 + q

1
2 +q− 1

2

2
√

d
|e9〉 + q

1
2 +q− 1

2

2
√

d
|e10〉,

|Φ11〉 =
√

2
2 (−|e11〉 + |e12〉),

|Φ12〉 =
√

2
2 (−|e13〉 + |e14〉),

|Φ13〉 = − q
1
2 +q− 1

2

2
√

d
|e11〉 − q

1
2 +q− 1

2

2
√

d
|e12〉 + q

1
2 −q− 1

2

2
√

d
|e13〉 − q

1
2 −q− 1

2

2
√

d
|e14〉,

|Φ14〉 = q
1
2 −q− 1

2

2
√

d
|e11〉 + q

1
2 −q− 1

2

2
√

d
|e12〉 + q

1
2 +q− 1

2

2
√

d
|e13〉 + q

1
2 +q− 1

2

2
√

d
|e14〉,

|Φ15〉 = |e15〉,
|Φ16〉 = |e16〉.

(27)

Here we have set α = √
1 + 2qβ + q4, β = √

2+2q+√
2q2, γ = √

1 − 2qμ + q4,

μ = √
2 − 2q + √

2q2,
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1 2 3 4 5
q

–8

–6

–4

–2

2

Energy (J)

Fig. 1 The thick line is E13 = J (q − 3q−1 − 2). The dashed line is E9 = J (3q − q−1 − 2). The dotted
line is E1 = 2J (q − q−1 − √

2). The dot dashed line is E16 = −4Jq−1

The corresponding eigenvalues are

E2 = E3 = E4 = E5 = 2J (q − q−1), E6 = 2J (q − q−1 + √
2),

E14 = J (q − 3q−1 + 2), E15 = 4Jq, E10 = J (3q − q−1 + 2),

E11 = E12 = J (q − 3q−1), E7 = E8 = J (3q − q−1), E1 = 2J (q−q−1−√
2),

E9 = J (3q − q−1 − 2), E13 = J (q − 3q−1 − 2), E16 = −4Jq−1.

The eigenenergy of the XY Hamiltonian is shown in Fig. 1. It shows the condition
of ground energy with the value of parameter q changing. Here we consider the antifer-
romagnetic case, J > 0. The expression of

√
q in Eq. (27) implies that the parameter q

must be a nonegative number. So according to Fig. 1, we can get the conclusion that the
ground state energy of the XY Hamiltonian is E16 = −4Jq−1. There is energy degen-
eracy at the point of q = 1, accordingly E13 = J (q −3q−1 −2) = E16 = −4Jq−1. It
means that the ground state is closely related to the parameter q which is the meaningful
topological parameter and is very significance in physics models [20,21,35].

For the four-qubit Heisenberg Ising spin chain, according to Eq. (25), it is easy to
check that the eigenstates of the Ising Hamiltonian are the same as the eigenstates of
Γ = ∑4

i=1(S′
i,i+1 + Ui,i+1). So via the combinations of the above topological basis

states {|e1〉, i = 1, 2, . . . , 16}, one can also construct the exact solutions for the Ising
Hamiltonian as follows:

|Φ1〉 = 1√
2
(−|e1〉 + |e6〉), |Φ4〉 = 1√

2
(−|e2〉 + |e5〉),

|Φ2〉 = 1√
d

((
q

1
2 − q− 1

2

)
|e1〉 + |e2〉 + |e5〉

)
,

|Φ3〉 = 1√
d

(
−

(
q

1
2 − q− 1

2

)
|e2〉 + |e1〉 + |e6〉

)
,

|Φ5〉 = |e4〉, |Φ6〉 = |e3〉, |Φ7〉 = |e10〉, |Φ8〉 = |e9〉,
|Φ9〉 = |e8〉, |Φ10〉 = |e7〉, |Φ11〉 = |e14〉, |Φ12〉 = |e13〉,
|Φ13〉 = |e12〉, |Φ14〉 = |e11〉, |Φ15〉 = |e15〉, |Φ16〉 = |e16〉.

(28)
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0.5 1.0 1.5 2.0 2.5 3.0
q

–6

–4

–2

2

Energy (J)

Fig. 2 The thick line is E16 = −4Jq−1, The dashed line is E3 = J (3q − q−1), The dotted line is
E11 = 2J (q − q−1)

The corresponding eigenvalues are

E1 = E2 = E7 = E8 = E9 = E10 = E15 = 4Jq, E16 = −4Jq−1,

E3 = E4 = E5 = E6 = J (3q − q−1), E11 = E12 = E13 = E14 = 2J (q − q−1).

The eigenenergy of the Ising Hamiltonian are shown in Fig. 2. It shows the condi-
tion of ground energy with the value of parameter q changing. Also we consider the
antiferromagnetic case, J > 0. The expression of

√
q in Eq. (28) also implies that the

parameter q must be a nonegative number. So according to Fig. 2, we can get the con-
clusion that the ground state energy of the Ising Hamiltonian is also E16 = −4Jq−1.
But there is not energy degeneracy for the Ising Hamiltonian. It is worth noting that
the ground state of the closed four-qubit Heisenberg XY spin chain and the Ising spin
chain all falls on the topological basis states |e16〉. It also means that the ground state
is closely related to the topological parameter q which is very significance in physics
models [20,21,35].

4 Summary

In conclusion, via constructing the Heisenberg XY, XXZ, XXX, and Ising model from
the BGA generator and the TLA generator, we have connected the topological basis
states with more Heisenberg spin chain. We present a new set of topological basis
expression. Through acting on the different subspaces, we get the new nontrivial 6D
and 4D Braid group matrix representations and Temperley–Lieb matrix representations
which all satisfy the reduced BGA and TLA relations. We mainly show a graphic
method of constructing the exact solutions for a four-qubit Heisenberg XY spin chain
and Ising spin chain, and the eigenstates of XY and Ising model can be described
by the combination of the set of topological bases. We also investigate the particular
properties of the topological basis states in these systems. It is found that the ground
state is closely related to parameter q which is the meaningful topological parameter.
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What we have been discussing in this paper is still an open problem which will
require a deal of further investigations. When the number of particle spreads to 2N-
qubit (N = 2,…) for closed Heisenberg spin chain, we will need to construct more
topological bases. This is a work in progress.
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