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The slow zero order antisymmetric Lamb mode in phononic crystal plates

Jun Liu a,b, Feng Li a, Yihui Wu a,⇑
a State Key Laboratory of Applied Optics Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
b Graduate University of Chinese Academy of Sciences, Beijing 100039, China
a r t i c l e i n f o

Article history:
Received 10 August 2012
Received in revised form 4 December 2012
Accepted 5 December 2012
Available online 12 December 2012

Keywords:
Slow modes
Lamb waves
Phononic crystal plates
0041-624X/$ - see front matter � 2012 Elsevier B.V.
http://dx.doi.org/10.1016/j.ultras.2012.12.005

⇑ Corresponding author. Tel.: +86 043186176915; f
E-mail address: yihuiwu@ciomp.ac.cn (Y. Wu).
a b s t r a c t

In this paper, the group velocities of the zero order antisymmetric (A0) Lamb modes in a phononic crystal
plate with single layer cylindrical holes parallel to the surface of the plate were investigated theoretically.
The results show that by increasing the filling fraction, the A0 mode can be efficiently slowed down and
the group velocity of the A0 modes can be tuned from the positive to the negative referring to the phase
velocity. Moreover, the zero group velocity of the A0 modes can be obtained with a given filling fraction.
These results may be useful in designing acoustic devices.
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1. Introduction

In the past decades, slow light effects have been widely studied
in the photonic crystals [1–6]. Due to the enhancement of the
light-matter interactions, slow light effects can be used for the
enhancement of nonlinear effects, light localization, light emission
and biosensors. Recently, the slow acoustic wave modes in pho-
nonic crystals (PCs) have also attracted much attention [7–15]. It
has been shown that, the slow waves can be realized in the wave-
guides of the phononic crystals and the phoxonic crystals. And the
slow surface waves have been verified in the phononic surface. In
addition, the slow resonant modes due to the locally resonant
effect in the phononic plate with periodic membranes have also
been reported.

The zero order antisymmetric (A0) Lamb mode can be applied
in liquid environmental sensing thanks to non-leaky evanescent
waves in fluid [16]. In order to enhance the resonance and reduce
the energy radiating into the substrates for the Lamb wave resona-
tors, the reflective gratings need to be designed, such as the metal
strips and phononic crystals [17–21]. Recently, the zero-group-
velocity (ZGV) first symmetric Lamb mode (S1) has been applied
to the resonators, which can be used as highly sensitive gravimet-
ric sensors without reflective gratings because of the energy local-
ization [22]. In this regard, the ZGV A0 mode could be a good
candidate for improving the performance of the Lamb wave reso-
nators for liquid sensing without reflectors. However, this kind of
mode could be hardly realized for a homogeneous plate [23].
All rights reserved.

ax: +86 043185690271.
Motivated from the slow waves in periodic structures, it is hoped
that the slow A0 Lamb mode could be obtained by introducing
the PCs into the plate.

In this paper, the group velocity of the A0 mode in a plate with
single layer cylindrical holes parallel to the surface of the plate
were investigated theoretically by changing the filling fractions
of the plate. Although the similar structures have been studied,
the group velocity of the A0 mode has not been studied up to
now, to our knowledge [24–27]. The results show that the A0 mode
can be efficiently slowed down by increasing the filling fractions.
Moreover, the group velocity of the A0 modes can be tuned from
the positive to the negative referring to the phase velocity. Conse-
quently, the ZGV of the A0 mode can be obtained with a given fill-
ing fraction. These provide efficient means to manipulate the Lamb
wave velocity, enabling the design of acoustic devices, such as de-
lay lines, filters, resonators and biosensors.
2. Models

The three-dimensional profile of the PC plate is shown in Fig. 1a,
and a is the lattice constant of the unit cell, h is the thickness of the
plate, d is the diameter of the vacuum circle hole, r is the radius.
The filling fraction is defined as f = pr2/(ah). Fig. 1b shows the
boundary conditions for computing the band structures. The up
and down boundaries are set free and the left and right boundaries
are set as periodic boundaries. Finite element method which is
proved to be an efficient method is used to compute the band
structures [28]. For simplification, the parameters of the material
is chosen as Young’s module E = 131 GPa, Poisson’s ratio m = 0.27,
density q = 2330 kg/m3 and dissipation is neglected.
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Fig. 1. The model investigated in this paper: (a) the three-dimensional profile of the phononic crystal plate and (b) the boundary conditions imposed on the boundary of the
unit cell: the up and down boundaries are set free and the left and right boundaries are set as periodic boundaries.
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3. Numerical results and discussions

The band structures for a = 3 mm, h = 0.21 mm, i.e. h/a = 0.07
are shown in Fig. 2a with the radius r = 0.1 mm. In the frequency
range from 0 to 3 MHz, there are seven branches of the antisym-
metric Lamb mode indicated by the solid lines. For simplification,
the 1st, 4th and 7th branch were investigated. The displacement
components of the 4th and 7th branch at r = 0.1 mm and kx = 0
were shown in Fig. 3. It can be seen that, the displacements of both
branches in the x direction are antisymmetric with the mid plane
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Fig. 2. (a) The band structure when r = 0.1 mm, the dotted lines are the branches of the S0
first, fourth and seventh branch of the A0 mode with the increase of the radius r from 0

Fig. 3. The displacement components of the (a) 4th br
and the displacements in the y direction are symmetric with the
mid plane. In addition, the modal distributions match well with
the modal of the A0 Lamb mode. Thus, both the 4th and 7th branch
are A0 mode.

In order to investigate the slowing of the A0 mode, the band
width of the 1st, 4th and 7th branch of the A0 mode were calcu-
lated with the radius increasing as shown in Fig. 2b [13]. Firstly,
it can be noted that, as the radius increasing, the band width of
both the 4th and 7th branch decreases until a critical value of
the radius and then increase. But this is not the case for the first
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J. Liu et al. / Ultrasonics 53 (2013) 849–852 851
branch. Secondly, it is also shown that, the band width of the
branches in high frequency change more significantly than those
of the lower branches. As shown, the band width of the 7th branch
can be changed from 0.68 MHz to nearly 0 Hz; the bandwidth of
the 4th branch is changed from 0.48 MHz to 0 Hz; however the
band width of the 1st branch is changed only from 81.7 kHz to
34.8 kHz. For a better understanding, the normalized displacement
distributions of the three branches were plotted on the Fig. 4 for
r = 0.1 mm and kx = 0. It can be seen that, the wavelength k of the
lower branch is longer than the higher branch, as a result, the fre-
quencies of the higher branch can be more sensitive to the change
of the radius, when the local stiffness between the cylinder edge
and the plate surface becomes weaker as the radius increasing.
Fig. 4. The modal distributions of the 1st, 4th and 7th branch for r = 0.1 mm and k
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Fig. 5. (a) The dispersion curves of the 7th branch for radius changing from 0.08 mm to 0
kx = 0, p/(4a), p/(2a), 3p/(4a) and p/a.
For a better understanding of the group velocity of the A0 mode,
firstly, the dispersion curves of the 7th branch for radius changing
from 0.08 mm to 0.09 mm were depicted in Fig. 5a. It can be seen
that, the frequencies at the large wave numbers decrease more sig-
nificantly than those at the small wave numbers as the radius
increasing. This can be explained by the modal distributions for
the different wave numbers as shown in Fig. 5b. As shown, the
vibration is getting more localized as the increase of the wave
number. Thus, the frequencies at the large wave numbers are more
sensitive to the increase of the radius than those at the small wave
numbers. Then, the group velocity (@x/@k) of the 7th branch for
kx = 0, p/(4a), p/(2a), 3p/(4a) and p/a, with the radius increasing
from 0.08 mm to 0.09 mm was calculated as shown in Fig. 6. It
x = 0. The wavelength k of the lower branch is longer than the higher branch.
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.09 mm and (b) the modal distributions of the 7th branch when r = 0.08551 mm for
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Fig. 6. The group velocity of the seventh branch of the A0 mode when kx = 0, p/(4a),
p/(2a), 3p/(4a) and p/a, with the radius increasing from 0.08 mm to 0.09 mm; the
inset indicates the group velocity of the seventh branch of the A0 mode changes
with the wave number as r = 0.08551 mm.
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can be noted that, for the different wave numbers, the group veloc-
ities vary differently with the radius. As shown, when the wave
number is at the boundary of the Brillouin zone (kx = 0 or p/a)
the group velocities change only in the range about from 30.7
m/s to �14.5 m/s. However when the wave number is in the mid-
dle of the Brillouin zone, the group velocities change from 885 m/s
to �559 m/s, which demonstrates that the group velocity in the
middle of the Brillouin zone can be changed more significantly
than that at the boundary of the Brillouin zone. These can also be
noted in Fig. 5a, as shown that the slope of the dispersion curves
in the middle of the Brillouin zone changes more significantly than
that at the boundary of the Brillouin zone.

From Fig. 6, it is also shown that, for all the wave numbers, the
group velocities can be tuned from the positive to the negative as
the radius increasing and the same critical value of the radius rc ex-
ists for which the group velocities are zero. Through precisely cal-
culation, the rc exists between 0.08551 mm and 0.08552 mm for
the 7th branch. The group velocities when r = 0.08551 mm are
shown in the inset of Fig. 6. It is shown that, the maximum group
velocity with r = 0.08551 mm is 1.63 m/s and the band is nearly
flat. Thus, it can be concluded that the ZGV A0 mode can be ob-
tained at a filling fraction.

4. Conclusion

In summary, the group velocity of the zero order Lamb modes
(A0) of the phononic crystal plate with single layer cylindrical
holes parallel to the surface of the plate were investigated theoret-
ically. It is shown that, by increasing the radius or the filling frac-
tions, (a) the A0 mode can be efficiently slowed, (b) the group
velocity of the A0 mode can be changed from the positive to the
negative and (c) the zero group velocity of the A0 mode can be ob-
tained. These results may be useful in designing acoustic devices,
such as delay lines, filters, resonators, biosensors and so on for
which the A0 mode is used.
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