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Based on the generalized Huygens–Fresnel diffraction integral (Collins’ formula), the propagation equation of
Hermite–Gauss beams through a complex optical system with a limiting aperture is derived. The elements of
the optical system may be all those characterized by an ABCD ray-transfer matrix, as well as any kind of apertures
represented by complex transmittance functions. To obtain the analytical expression, we expand the aperture
transmittance function into a finite sum of complex Gaussian functions. Thus the limiting aperture is expressed
as a superposition of a series of Gaussian-shaped limiting apertures. The advantage of this treatment is that we can
treat almost all kinds of apertures in theory. As application, we define the width of the beam and the focal plane
using an encircled-energy criterion and calculate the intensity distribution of Hermite–Gauss beams at the actual
focus of an aperture lens. © 2013 Optical Society of America
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1. INTRODUCTION
In the generation and propagation of a laser there exist more
or less limiting apertures. Therefore, the beam propagation
through the optical system with a limiting aperture is of prac-
tical importance. In general, the direct numerical integration
of Collins’ formula is necessary for studying the propagation
and transformation of laser beams through the optical sys-
tem with limiting apertures, but it is often cumbersome
and time consuming. Thus a large effort has been devoted
to developing all kinds of methods to simplify the calculation
process. The matrix representation [1] and recurrence algo-
rithm [2] have been derived to reach this goal. The matrix
representation in [1] holds only for circularly symmetric op-
tical systems and laser beams. The recurrence algorithm in
[2] is required to repeat the recursive procedures to derive
the propagation expression for the beams of high order. In
this paper, a propagation equation of Hermite–Gauss beams
through the complex optical system with limiting apertures
is derived for the purpose of fast computation, and the in-
tensity distribution of Hermite–Gauss beams at the actual
focus of an aperture lens is calculated by means of the equa-
tion. This method can hold for all kinds of systems charac-
terized by ABCD ray-transfer matrices and obtain the
propagation expression directly for the given beams without
recursion.

The outline of this paper is as follows: First, we derive the
analytical equation for the beam propagation. Then, the propa-
gation equation is applied to an aperture lens. Finally, we dis-
cuss the advantages of this method and give the suggestions
for achieving sufficient accuracy.

2. BEAM PROPAGATION THROUGH
OPTICAL SYSTEMS WITHOUT APERTURES
The field distribution of laser beams, which is transverse
to the direction of propagation, may be described by the
Hermite–Gauss function and is of the form [3] as follows:

Ui�xi; yi� � Ki exp�−j�π∕λqix�x2i �Hm

� ���
2

p xi
ωix

�

× exp�−j�π∕λqiy�y2i �Hn

� ���
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p yi
ωiy

�
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where

1
qix;y

� 1
Rix;y

− j
λ

πω2
ix;y
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ωix and ωiy are the 1∕e field spot radii along the x and y axes,
respectively, Rix;y is the wavefront radius of curvature, qix;y is
the beam parameter, Hm is the Hermite polynomials of order
m, Ki is a complex constant, and λ is the wavelength.

Let us consider the optical system without apertures shown
in Fig. 1. FI and Fo are the input and output planes,
E1; E2;…; EN are optical elements that can be represented
by ABCD ray-transfer matrices, and Z1; Z2;…; ZN�1 are the
optical distances between the optical elements. A Gaussian
beam may be injected into the system through the input plane
FI . Ui and U are the field distribution at the input and output
planes, respectively. Ui is given by Eq. (1). The field distribu-
tion U can be obtained by substituting Eq. (1) into Collins’
formula [4] as follows:
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where k is the wavenumber, L is the optical distance along the
z axis, and Ax;y, Bx;y, and Dx;y are the elements of the x- and
y-axis ray-transfer matrix, respectively.

U�x; y� consists of a product of two functions f and g. f
depends only upon x and g only upon y. Thus we can write
Eq. (3) in the following way:

U�x; y� � Ki f �x�g�y�; (4)
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Because both functions f �x� and g�y� contain integrals of
the same kind, we can solve the integral only in function
f �x�, and then function g�y� is obviously known.

With the aid of integral formula [5]
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we obtain the solution as follows:
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Owing to the similarity of integrals for both functions f �x�
and g�y�, g�y� is given by
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where
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Equations (4), (8), and (9) yield the field distribution on the
output plane Fo,
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3. LIMITING APERTURES
Suppose that at some location along the optical axis of an
optical system there exists an aperture depicted as in Fig. 2.
A is the limiting aperture represented by the complex trans-
mittance function. We denote by AI , BI , CI , and DI the four
elements of the MI matrix describing the Ith set of optical
elements separated by aperture A. In such a case, we should
find the field at the plane of aperture, multiply it by the cor-
responding aperture complex transmittance function, and
apply Collins’ formula a second time to describe propagation
through the remainder of the system. The procedure is re-
peated until the field is computed at the output plane.

For this special case, we obtain the analytical expression by
expanding the aperture transmittance function into a finite
sum of complex Gaussian functions [6]. The expansion is
given by

Fig. 1. Schematic representation of an optical system without
apertures.
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where T is the aperture transmittance function, uk, vl, εk, and
φl are complex constants, and M and N are the number of
Gaussian functions needed. Thus the limiting apertures can be
expressed as a superposition of a series of Gaussian-shaped
limiting apertures.

To solve the field U at the output plane, we should find the
field at the plane of aperture A at first. With the aid of Eq. (15),
the field distribution at aperture plane A is

UA�x; y� � KA exp�−j�π∕λqAx�x2�Hm

� ���
2

p x
ωAx

�

× exp�−j�π∕λqAy�y2�Hn

� ���
2

p y
ωAy

�
; (17)

where

KA � Ki

�
ωixωiy

ωAxωAy

�
1∕2

× exp
�
−j
�
kL1 �

�
1
2
�m

�
δAx �

�
1
2
� n

�
δAy

��
; (18)

qAx;y � A1x;yqix;y � B1x;y

C1x;yqix;y � D1x;y
;

1
qix;y

� 1
Rix;y

− j
λ

πω2
ix;y

; (19)

1
qAx;y

� 1
RAx;y

− j
λ

πω2
Ax;y

; (20)

ωAx;y

ωix;y
exp�jδAx;y� � A1x;y �

B1x;y

qix;y
; (21)

δAx;y � arctan
�
−

λB1x;y

πω2
ix;y�A1x;y � B1x;y∕Rix;y�

�
; (22)

1
RAx;y

�
�
ωix;y

ωAx;y

�
2
�
A1x;yC1x;y �

1
Rix;y

�A1x;yD1x;y � B1x;yC1x;y�

� B1x;yD1x;y

qix;yq�ix;y

�
; (23)

M1x;y �
�
A1x;y B1x;y

C1x;y D1x;y

�
; (24)

and L1 is the optical distance between the input plane and
aperture A.

Then we multiply UA by the corresponding aperture
complex transmittance function, and apply Collins’ formula
a second time to obtain the field distribution U at the output
plane Fo,
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where L2 is the optical distance between aperture A and the
output plane.

Owing to the similarity of integrals for both Eqs. (3) and
(25), we can obtain the solution easily by analogy. Performing
the integration yields
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Fig. 2. Schematic representation of an optical system with limiting apertures.
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In fact, we can generalize the result to the optical system
with multiple apertures by repeating the calculation between
aperture planes with the aid of the Eqs. (17), (25), and (26).

4. APPLICATION
In this section, we apply the propagation equation to an aper-
ture lens of focal length f , as shown in Fig. 3. The lens fills an
aperture of half-width a. Aperture center O is assumed to be
on the axis. The distance from the back focus F of the lens to
point P is s. The input plane FI is located at the aperture, and
the output plane Fo is located at point P. The ray-transfer
matrix of the optical system is M ,

M �
�
A B
C D

�
�

�
−s∕f f � s
−1∕f 1

�
: (32)

In this case, the aperture transmittance function is given by
T�x; y�. The aperture transmittance function T�x; y� can be
expanded into a finite sum of complex Gaussian functions.
The expression is given by
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The complex constants uk, ul, εk, and εl can be obtained by
using a computer program based on optimization theory. The
numbers M and N are set to be 10. The set of coefficients is
given by Table 1 [6].

A Gaussian beam may be injected into the system through
the input plane FI . Ei is the field distribution at the input plane
FI and is given by Eq. (1). The field distribution E on the out-
put plane Fo can be obtained by substituting Eq. (1) into the
integral (25). To simplify the calculation, we suppose that
the beam waist is located at the input plane FI . By setting
the parameter,
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0∕2: (34)

The field distribution at the input plane FI is of the form
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Substituting Eq. (35) into the integral (25) yields, at the
output plane,
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and z is the optical distance between the aperture and the
output plane.

The intensity distribution I�x; y; z� at the output plane is
given by

I�x; y; z� � jE�x; y; z�j2: (40)

In usual treatments, the location of the actual focus is de-
fined to be the point at which the beam reaches its maximumFig. 3. Schematic representation of the aperture lens.

Table 1. Set of Coefficients u, ε Used in

Representing the Aperture Transmittance

N u ε

1 11.428� 0.95175i 4.0697� 0.22726i
2 0.06002 − 0.08013i 1.1531 − 20.933i
3 −4.2743 − 8.5562i 4.4608� 5.1268i
4 1.6576� 23.7015i 4.3521� 14.997
5 −5.0418� 3.2488i 4.5443� 10.003i
6 1.1227 − 0.68854i 3.8478� 20.078i
7 −1.0106 − 0.26955i 2.5280 − 10.310i
8 −2.5974� 3.2202i 3.3197 − 4.8008i
9 −0.14840 − 0.31193i 1.9002 − 15.820i
10 −0.20850 − 0.23851i 2.6340� 25.009i
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on-axis intensity. However, the maximum intensity is not on-
axis for all odd mode numbers. So we define the width ω of
beam as that radius within which 80% of the beam’s energy
is enclosed, and the focal plane as the plane at which the
beam width is at its smallest value using an encircled-energy
criterion [7] as follows:

R
ω
−ω

R
ω
−ω I�x; y; z�dxdyR∞

−∞
R∞
−∞ I�x; y; z�dxdy � 0.8: (41)

Because of space limitations, we give only the approximate
analytical expression of the beam width of the TEM11-mode
Hermite–Gauss beam.
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By means of Eqs. (42)–(51), we calculate the actual focus of
the aperture lens for the TEM11-mode Hermite–Gauss beam.
The calculation parameters are λ � 632.8 nm, f � 150 cm,

ω0 � 2 mm, a � 1 mm, and M � N � 10. The actual focus
is located at 112.338 cm behind the lens and the intensity dis-
tribution is shown in Fig. 4.

To demonstrate the time efficiency and precision of our
method, we make a comparison to the direct numerical inte-
gral in the same environment, including both hardware and
software. We calculate the intensity distribution of the
TEM00-mode Hermite–Gauss beam through an aperture lens
for both methods. The calculation parameters are λ �
632.8 nm, f � 150 cm, ω0 � 2 mm, a � 1 mm, and M �
N � 10. The intensity distribution located at 112 cm is shown
in Fig. 5.

As depicted in Fig. 5, the solid line and asterisk denote the
results of the propagation equation and the direct numerical
integral, respectively. It is noted that the calculation results
have some deviation near the edge of the aperture between
the propagation equation and the direct numerical integral.
The calculation error is 1.32%. The calculation time is saved
greatly, and the ratio of corresponding computing time is
1∶111 for the propagation equation and direct numerical
integral.

It is noted that there is a deviation between series expan-
sion and the transmittance function. To make the deviation
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Fig. 4. Intensity distribution of TEM11-mode Hermite–Gauss beam at
the actual focus.
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Fig. 5. Intensity distribution of TEM00-mode Hermite–Gauss beam
for both methods.
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small enough to achieve the desired accuracy, we need to in-
crease the numbers M and N of the base functions. When the
numbers M and N are increased to be 20 and the other cal-
culation parameters are the same, the calculation error is
0.93%. And the ratio of computing time is 1∶145 for the expan-
sion method and the direct numerical integral. In fact, we can
make more calculations; however, the relevant discussion will
be provided in the next paper for the sake of space limitations.

5. CONCLUSION
In this paper, the propagation equation of Hermite–Gauss
beams through a complex optical system with limiting
apertures is derived. The analytical propagation equation ob-
tained in this paper is exact within the framework of paraxial
approximation, and it is time saving compared with the
numerical integration.

To obtain the analytical expression, we expand the aper-
ture transmittance function into a finite sum of complex
Gaussian functions. Thus, the limiting aperture is expressed
as a superposition of a series of Gaussian-shaped limiting
apertures. The advantage of this treatment is that we can han-
dle almost all kinds of apertures by finding the set of coeffi-
cients uk, vl, εk, and φl in Eq. (16). It is noted that there is a
deviation between series expansion and the transmittance
function. To make the deviation small enough to achieve
the desired accuracy, we need to increase the numbersM and
N of the base functions. And the numbers M and N strongly
depend on the transmittance function T [6]. For the sake of
space limitations, the relevant discussion will be done in
the next paper.

Owing to space limitations, we give only the approximate
analytical expression of the beam width of the TEM11-mode
Hermite–Gauss beam in Section 4. In fact, we can generalize

the results to the other modes by repeating the similar calcu-
lation with the aid of Eqs. (52) and (53) [8] as follows:

Γ�z� �
Z

∞

0
tz−1e−tdt �z > 0�; (52)

γ�a; x� �
Z

x

0
e−tta−1dt �a > 0�; (53)

where Γ�z� is the gamma function and γ�a; x� is the incomplete
gamma function.
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