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A novel robust hybrid metaheuristic optimization approach, which can be considered as an improvement of the recently developed
bat algorithm, is proposed to solve global numerical optimization problems. The improvement includes the addition of pitch
adjustment operation in HS serving as a mutation operator during the process of the bat updating with the aim of speeding up
convergence, thus making the approach more feasible for a wider range of real-world applications. The detailed implementation
procedure for this improved metaheuristic method is also described. Fourteen standard benchmark functions are applied to verify
the effects of these improvements, and it is demonstrated that, in most situations, the performance of this hybrid metaheuristic
method (HS/BA) is superior to, or at least highly competitive with, the standard BA and other population-based optimization
methods, such as ACO, BA, BBO, DE, ES, GA, HS, PSO, and SGA. The effect of the HS/BA parameters is also analyzed.

1. Introduction

Theprocess of optimization is searching a vector in a function
that produces an optimal solution. All of feasible values
are available solutions, and the extreme value is optimal
solution. In general, optimization algorithms are applied to
solve these optimization problems. A simple classification
way for optimization algorithms is considering the nature
of the algorithms, and optimization algorithms can be
divided into two main categories: deterministic algorithms
and stochastic algorithms. Deterministic algorithms using
gradients such as hill climbing have a rigorous move and
will generate the same set of solutions if the iterations
commence with the same initial starting point. On the other
hand, stochastic algorithms without using gradients often
generate different solutions even with the same initial value.
However, generally speaking, the final values, though slightly
different, will converge to the same optimal solutions within a
given accuracy [1]. Generally, stochastic algorithms have two
types: heuristic and metaheuristic. Recently, nature-inspired
metaheuristic algorithms perform powerfully and efficiently
in solving modern nonlinear numerical global optimization
problems. To some extent, all metaheuristic algorithms strive

for making balance between randomization (global search)
and local search [2].

Inspired by nature, these strongmetaheuristic algorithms
are applied to solve NP-hard problems, such as UCAV
path planning [11–14], test-sheet composition [15], WSN
deployment [16] and water, and geotechnical and transport
engineering [17]. Optimization algorithms cover all searching
for extreme value problems. These kinds of metaheuristic
algorithms carry out on a population of solutions and always
find best solutions. During the 1950s and 1960s, computer sci-
entists studied the possibility of conceptualizing evolution as
an optimization tool, and this generated a subset of gradient
free approaches named genetic algorithms (GA) [18]. Since
then, many other nature-inspired metaheuristic algorithms
have emerged, such as differential evolution (DE) [10, 19, 20],
particle swarm optimization (PSO) [21–23], biogeography-
based optimization (BBO) [24, 25], harmony search (HS)
[26, 27], and more recently, the bat algorithm (BA) [28, 29]
that is inspired by echolocation behavior of bats in nature.

Firstly presented by Yang in 2010, the bat-inspired algo-
rithm or bat algorithm (BA) [30, 31] is a metaheuristic
search algorithm, inspired by the echolocation behavior of
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bats with varying pulse rates of emission and loudness. The
primary purpose for a bat’s echolocation is to act as a signal
system to sense distance and hunt for food/prey. A com-
prehensive review about swarm intelligence involving BA is
performed by Parpinelli and Lopes [32]. Furthermore, Tsai et
al. proposed an evolving bat algorithm (EBA) to improve the
performance of BA with better efficiency [33].

Firstly proposed by Geem et al. in 2001, harmony search
(HS) [26] is a new metaheuristic approach for minimizing
possibly nondifferentiable and nonlinear functions in con-
tinuous space. HS is inspired by the behavior of a musician’s
improvisation process, where every musician attempts to
improve its tune so as to create optimal harmony in a real-
world musical performance processes. HS algorithm origi-
nates in the similarity between engineering optimization and
music improvisation, and the engineers search for a global
optimal solution as determined by an objective function,
just like the musicians strive for finding aesthetic harmony
as determined by aesthetician. In music improvisation, each
musician chooses any pitchwithin the feasible range, together
producing one harmony vector. If all the pitches produce a
good solution, that experience is reserved in each variable’s
memory, and the possibility of producing a better solution
is also increased next time. Furthermore, this new approach
requires few control variables, which makes HS easy to
implement, more robust, and very appropriate for parallel
computation.

BA is a powerful algorithm in exploitation (i.e., local
search), but at times it may trap into some local optima, so
that it cannot perform global search well. For bat algorithm,
the search depends completely on random walks, so a fast
convergence cannot be guaranteed. Firstly presented here, in
order to increase the diversity of the population for BA so
as to avoid trapping into local optima, a main improvement
of adding pitch adjustment operation in HS serving as a
mutation operator ismade to the BAwith the aim of speeding
up convergence, thus making the approach more feasible
for a wider range of practical applications while preserving
the attractive characteristics of the basic BA. That is to
say, we combine two approaches to propose a new hybrid
metaheuristic algorithm according to the principle of HS and
BA, and then this improved BA method is used to search
the optimal objective function value.The proposed approach
is evaluated on fourteen standard benchmark functions that
have ever been applied to verify optimization algorithms
on continuous optimization problems. Experimental results
show that the HS/BA performs more efficiently and accu-
rately than basic BA, ACO, BBO, DE, ES, GA, HS, PSO, and
SGA.

The structure of this paper is organized as follows:
Section 2 describes global numerical optimization problem,
the HS algorithm, and basic BA in brief. Our proposed
approach HS/BA is presented in detail in Section 3. Subse-
quently, our method is evaluated through fourteen bench-
mark functions in Section 4. In addition, the HS/BA is
also compared with BA, ACO, BBO, DE, ES, GA, HS, PSO
and SGA. Finally, Section 5 consists of the conclusion and
proposals for future work.

2. Preliminary

To begin with, in this section we will provide a brief back-
ground on the optimization problem, harmony search (HS),
and bat algorithm (BA).

2.1. Optimization Problem. In computer science, mathemat-
ics, management science, and control theory, optimization
(also called mathematical optimization or mathematical pro-
gramming) means the selection of an optimal solution from
some set of feasible alternatives. In general, an optimization
problem includes minimizing or maximizing a function by
systematically selecting input values from a given feasible
set and calculating the value of the function. More gener-
ally, optimization consists of finding the optimal values of
some objective function within a given domain, including a
number of different types of domains and different types of
objective functions [34].

A global optimization problem can be described as
follows.

Given: a function 𝑓: 𝐷 → 𝑅 from some set 𝐷 to the
real numbers.
Sought: a parameter 𝑥

0
in 𝐷 such that 𝑓(𝑥

0
) ≤ 𝑓(𝑥)

for all 𝑥 in 𝐷 (“minimization”) or such that 𝑓(𝑥
0
) ≥

𝑓(𝑥) for all 𝑥 in𝐷 (“maximization”).

Such a formulation is named a numerical optimization
problem. Many theoretical and practical problems may be
modeled in this general framework. In general, 𝐷 is some
subset of the Euclidean space 𝑅𝑛, often specified by a group
of constraints, equalities, or inequalities that the components
of 𝐷 have to satisfy. The domain 𝐷 of 𝑓 is named the search
space, while the elements of 𝐷 are named feasible solutions
or candidate solutions. In general, the function 𝑓 is called
an objective function, cost function (minimization), or utility
function (maximization). An optimal solution is an available
solution that is the extreme of (minimum or maximum) the
objective function.

Conventionally, the standard formulation of an optimiza-
tion problem is stated in terms of minimization. In general,
unless both the feasible region and the objective function are
convex in a minimization problem, there may be more than
one local minima. A local minimum 𝑥∗ is defined as a point
for which the following expression

𝑓 (𝑥∗) ≤ 𝑓 (𝑥) (1)

holds. More details about the optimization problem can be
found in [35].

The branch of numerical analysis and applied mathe-
matics that investigates deterministic algorithms that can
guarantee convergence in limited time to the true optimal
solution of a nonconvex problem is called global numer-
ical optimization problems. A variety of algorithms have
been proposed to solve nonconvex problems. Among them,
heuristics algorithms can evaluate approximate solutions to
some optimization problems, as described in introduction
[36].
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2.2. Harmony Search. Firstly developed by Geem et al. in
2001, harmony search (HS) [26] is a relatively new meta-
heuristic optimization algorithm, and it is based on natural
musical performance processes that occur when a musician
searches for an optimal state of harmony. The optimization
operators of HS algorithm are specified as the harmony
memory (HM), which keeps the solution vectors which are
all within the search space, as shown in (2); the harmony
memory size HMS, which represents the number of solution
vectors kept in the HM; the harmony memory consideration
rate (HMCR); the pitch adjustment rate (PAR); the pitch
adjustment bandwidth (bw)

HM =

[
[
[
[
[

[

𝑥1
1

𝑥1
2

... 𝑥1
𝐷

fitness (𝑥1)
𝑥2
1

𝑥2
2

... 𝑥2
𝐷

fitness (𝑥2)
...

... ...
...

...
𝑥HMS
1

𝑥HMS
2

... 𝑥HMS
𝐷

fitness (𝑥HMS)

]
]
]
]
]

]

. (2)

In more detail, we can explain the HS algorithm with
the help of discussing the improvisation process by a music
player. When a player is improvising, he or she has three
possible options: (1) play any well-known piece of music (a
series of pitches in harmony) exactly from his or her memory
as the harmony memory consideration rate (HMCR); (2)
play something similar to a known piece in player’s memory
(thus adjusting the pitch slightly); or (3) play totally new
or random pitch from feasible ranges. If these three options
are formalized for optimization, we have three correspond-
ing components: employment of harmony memory, pitch
adjusting, and randomization. Similarly, when each decision
variable selects one value in theHS algorithm, it canmake use
of one of the above three rules in the whole HS procedure. If a
new harmony vector is better than the worst harmony vector
in the HM, the new harmony vector takes the place of the
worst harmony vector in the HM.This procedure is repeated
until a stopping criterion is satisfied.

The employment of harmony memory is significant, as
it is analogous to select the optimal fit individuals in the
GA (genetic algorithm). This will make sure that the best
harmonies will be kept on to the new harmony memory. For
the purpose of using this memorymore effectively, we should
properly set the value of the parameter HMCR ∈ [0, 1].
If this rate is very approaching to 1 (too high), almost all
the harmonies are utilized in the harmony memory, then
other harmonies are not exploredwell, resulting in potentially
wrong solutions. If this rate is very close to 0 (extremely low),
only few best harmonies are chosen, and it may have a slow
convergence rate. Therefore, generally, HMCR = 0.7 ∼ 0.95.

To adjust the pitch slightly in the second component, an
appropriate approach is to be applied to adjust the frequency
efficiently. In theory, we can adjust the pitch linearly or
nonlinearly, but in fact, linear adjustment is utilized. If 𝑥old is
the current solution (or pitch), then the new solution (pitch)
𝑥new is generated by

𝑥new = 𝑥old + bw (2𝜀 − 1) , (3)

where 𝜀 is a random real number drawn from a uniform
distribution [0, 1]. Here bw is the bandwidth, controlling the

local range of pitch adjustment. Actually, we can see that the
pitch adjustment (3) is a random walk.

Pitch adjustment is similar to the mutation operator in
GA. Also, we must appropriately set the parameter PAR to
control the degree of the adjustment. If PAR nears 1 (too
high), then the solution is always changing and the algorithm
may not converge at all. If it is very close to 0 (too low), then
there is very little change and the algorithm may premature.
Therefore, we use PAR = 0.1 ∼ 0.5 in most simulations as
usual.

For the purpose of increasing the diversity of the solu-
tions, the randomization is needed in the third component.
Although adjusting pitch has a similar role, it is confined
to certain local pitch adjustment and thus corresponds to
a local search. The usage of randomization can make the
system move further to explore multifarious regions with
high solution diversity in order to search for the global
optimal solution. In real-world engineering applications,
HS has been applied to solve many optimization problems
including function optimization, water distribution network,
groundwater modeling, energy-saving dispatch, structural
design, and vehicle routing.

The mainframe of the basic HS algorithm can be
described as shown in Algorithm 1, where𝐷 is the number of
decision variables and rand is a random real number in inter-
val (0, 1) drawn fromuniformdistribution. FromAlgorithm 1,
it is clear that there are only two control parameters in HS,
which are HMCR and PAR.

2.3. BatAlgorithm. Thebat algorithm is a novelmetaheuristic
swarm intelligence optimization method developed for the
global numerical optimization, in which the search algorithm
is inspired by social behavior of bats and the phenomenon of
echolocation to sense distance.

In [28], for simplicity, bat algorithm is based on idealizing
some of the echolocation characteristics of bats, which are the
following approximate or idealized rules:

(1) all bats apply echolocation to sense distance, and they
always “know” the surroundings in some magical
way;

(2) bats fly randomly with velocity V
𝑖
and a fixed fre-

quency 𝑓min at position 𝑥𝑖, varying wavelength 𝜆, and
loudness𝐴

0
to hunt for prey.They can spontaneously

accommodate the wavelength (or frequency) of their
emitted pulses and adjust the rate of pulse emission
𝑟 ∈ [0, 1], depending on the proximity of their target;

(3) although the loudness can change in different ways, it
is supposed that the loudness varies from aminimum
constant (positive) 𝐴min to a large 𝐴0.

Based on these approximations and idealization, the basic
steps of the bat algorithm (BA) can be described as shown in
Algorithm 2.

In BA, each bat is defined by its position 𝑥𝑡
𝑖
, velocity V

𝑡

𝑖
,

frequency 𝑓
𝑖
, loudness 𝐴𝑡

𝑖
, and the emission pulse rate 𝑟𝑡

𝑖
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Begin
Step 1: Set the parameters and initialize the HM.
Step 2: Evaluate the fitness for each individual in HM
Step 3: while the halting criteria is not satisfied do

for 𝑑 = 1:𝐷 do
if rand <HMCR then // memory consideration

𝑥new (𝑑) = 𝑥
𝑎
(𝑑) where 𝑎 ∈ (1, 2, . . . ,HMS)

if rand < PAR then // pitch adjustment
𝑥new (𝑑) = 𝑥old (𝑑) + bw × (2 × rand − 1)

endif
else // random selection

𝑥new(𝑑) = 𝑥min,𝑑 + rand × (𝑥max,𝑑 − 𝑥min−𝑑)
endif

endfor 𝑑
Update the HM as 𝑥

𝑤
= 𝑥new, if 𝑓(𝑥new) < 𝑓(𝑥

𝑤
) (minimization objective)

Update the best harmony vector found so far
Step 4: end while
Step 5: Post-processing the results and visualization.

End.

Algorithm 1: Harmony search algorithm.

Begin
Step 1: Initialization. Set the generation counter 𝑡 = 1; Initialize the population of NP bats 𝑃

randomly and each bat corresponding to a potential solution to
the given problem; define loudness 𝐴

𝑖
, pulse frequency 𝑄

𝑖

and the initial velocities V
𝑖
(𝑖 = 1, 2, . . . ,NP); set pulse rate 𝑟

𝑖
.

Step 2: While the termination criteria is not satisfied or 𝑡 <MaxGeneration do
Generate new solutions by adjusting frequency, and updating velocities
and locations/solutions [(4)–(6)]
if (rand > 𝑟

𝑖
) then

Select a solution among the best solutions;
Generate a local solution around the selected best solution

end if
Generate a new solution by flying randomly
if (rand < 𝐴

𝑖
& 𝑓(𝑥

𝑖
) < 𝑓(𝑥

∗
)) then

Accept the new solutions
Increase 𝑟

𝑖
and reduce 𝐴

𝑖

end if
Rank the bats and find the current best 𝑥

∗

𝑡 = 𝑡 + 1;
Step 3: end while
Step 4: Post-processing the results and visualization.

End.

Algorithm 2: Bat algorithm.

in a 𝐷-dimensional search space. The new solutions 𝑥𝑡
𝑖
and

velocities V𝑡
𝑖
at time step t are given by

𝑓
𝑖
= 𝑓min + (𝑓max − 𝑓min) 𝛽, (4)

V
𝑡

𝑖
= V
𝑡−1

𝑖
+ (𝑥𝑡
𝑖
− 𝑥
∗
) 𝑓
𝑖
, (5)

𝑥𝑡
𝑖
= 𝑥𝑡−1
𝑖

+ V
𝑡

𝑖
, (6)

where 𝛽 ∈ [0, 1] is a random vector drawn from a uniform
distribution. Here 𝑥

∗
is the current global best location (solu-

tion)which is located after comparing all the solutions among

all the 𝑛 bats. Generally speaking, depending on the domain
size of the problem of interest, the frequency 𝑓 is assigned
to 𝑓min = 0 and 𝑓max = 100 in practical implementation.
Initially, each bat is randomly given a frequency which is
drawn uniformly from [𝑓min, 𝑓max].

For the local search part, once a solution is selected
among the current best solutions, a new solution for each bat
is generated locally using random walk

𝑥new = 𝑥old + 𝜀𝐴𝑡, (7)
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where 𝜀 ∈ [−1, 1] is a scaling factor which is a random num-
ber, while 𝐴

𝑡
= ⟨𝐴𝑡
𝑖
⟩ is the average loudness of all the bats at

time step 𝑡.
The update of the velocities and positions of bats is similar

to the procedure in the standard PSO [21], as 𝑓
𝑖
controls the

pace and range of the movement of the swarming particles in
essence. To some degree, BA can be considered as a balanced
combination of the standard PSO and the intensive local
search controlled by the loudness and pulse rate.

Furthermore, the loudness 𝐴
𝑖
and the rate 𝑟

𝑖
of pulse

emission update accordingly as the iterations proceed as
shown in (8)

𝐴𝑡+1
𝑖

= 𝛼𝐴𝑡
𝑖
,

𝑟𝑡+1
𝑖

= 𝑟0
𝑖
[1 − exp (−𝛾𝑡)] ,

(8)

where 𝛼 and 𝛾 are constants. In essence, 𝛼 is similar to
the cooling factor of a cooling schedule in the simulated
annealing (SA) [37]. For simplicity, we set 𝛼 = 𝛾 = 0.9 in
this work.

3. Our Approach: HS/BA

Based on the introduction of HS and BA in previous section,
we will explain how we combine the two approaches to form
the proposed bat algorithm with harmony search (HS/BA) in
this section, whichmodifies the solutions with poor fitness in
order to add diversity of the population to improve the search
efficiency.

In general, the standard BA algorithm is adept at exploit-
ing the search space, but at times it may trap into some
local optima, so that it cannot perform global search well.
For BA, the search depends completely on random walks, so
a fast convergence cannot be guaranteed. Firstly presented
here, in order to increase the diversity of the population
for BA so as to avoid trapping into local optima, a main
improvement of adding pitch adjustment operation in HS
serving as a mutation operator is made to the BA with the
aim of speeding up convergence, thus making the approach
more feasible for a wider range of practical applications while
preserving the attractive characteristics of the basic BA. In
this paper, a hybrid metaheuristic algorithm by inducing the
pitch adjustment operation in HS as a mutation operator
into bat algorithm, so-called harmony search/bat algorithm
(HS/BA), is used to optimize the benchmark functions. The
difference between HS/BA and BA is that the mutation
operator is used to improve the original BA generating a new
solution for each bat. In this way, this method can explore the
new search space by the mutation of the HS algorithm and
exploit the population information with BA, and therefore
can avoid trapping into local optima in BA. In the following,
we will show the algorithm HS/BA which is an improvement
of HS and BA.

The critical operator of HS/BA is the hybrid harmony
searchmutation operator, which composes the improvisation
of harmony in HS with the BA.The core idea of the proposed
hybrid mutation operator is based on two considerations.
Firstly, poor solutions can take in many new used features

from good solutions. Secondly, the mutation operator can
improve the exploration of the new search space. In this way,
the strong exploration abilities of the original HS and the
exploitation abilities of the BA can be fully developed.

For bat algorithm, as the search relies entirely on random
walks, a fast convergence cannot be guaranteed. Described
here for the first time, a main improvement of adding
mutation operator is made to the BA, including three minor
improvements, which are made with the aim of speeding up
convergence, thus making the method more practical for a
wider range of applications, but without losing the attractive
features of the original method.

The first improvement is that we use fixed frequency
𝑓 and loudness 𝐴 instead of various frequency 𝑓

𝑖
and 𝐴𝑡

𝑖
.

Similar to BA, inHS/BA, each bat is defined by its position 𝑥𝑡
𝑖
,

velocity V𝑡
𝑖
, the emission pulse rate 𝑟𝑡

𝑖
and the fixed frequency

𝑓, and loudness 𝐴 in a 𝑑-dimensional search space. The new
solutions 𝑥𝑡

𝑖
and velocities V𝑡

𝑖
at time step 𝑡 are given by

V
𝑡

𝑖
= V
𝑡−1

𝑖
+ (𝑥𝑡
𝑖
− 𝑥
∗
) 𝑓,

𝑥𝑡
𝑖
= 𝑥𝑡−1
𝑖

+ V
𝑡

𝑖
,

(9)

where 𝑥
∗
is the current global best location (solution) which

is located after comparing all the solutions among all the 𝑛
bats. In our experiments, we make 𝑓 = 0.5. Through a series
of simulation experiments on benchmarks in Section 4.2, it
was found that setting the parameter of pulse rate 𝑟 to 0.6 and
the loudness 𝐴 to 0.95 produced the best results.

The second improvement is to add mutation operator in
an attempt to increase diversity of the population to improve
the search efficiency and speed up the convergence to optima.
For the local search part, once a solution is selected among the
current best solutions, a new solution for each bat is generated
locally using random walk by (7) when 𝜉 is larger than pulse
rate 𝑟, that is, 𝜉 > 𝑟, where 𝜉 ∈ [0, 1] is a random real number
drawn from a uniform distribution; while when 𝜉 ≤ 𝑟, we
use pitch adjustment operation in HS serving as a mutation
operator updating the new solution to increase diversity of
the population to improve the search efficiency, as shown in
(3). Through testing benchmarks in Section 4.2, it was found
that setting the parameter of harmonymemory consideration
rate HMCR to 0.95 and pitch adjustment rate PAR to 0.1
produced the best results.

The last improvement is the addition of elitism scheme
into the HS/BA. As with other population-based optimiza-
tion algorithms, we typically incorporate some sort of elitism
in order to retain the best solutions in the population. This
prevents the best solutions from being corrupted by pitch
adjustment operator. Note that we use an elitism approach to
save the property of the bats that has the best solution in the
HS/BA process, so even if pitch adjustment operation ruins
its corresponding bat, we have saved it and can revert back to
it if needed.

Based on the above-mentioned analyses, the mainframe
of the harmony search/bat algorithm (HS/BA) is presented
in Algorithm 3.
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Begin
Step 1: Initialization. Set the generation counter 𝑡 = 1; initialize the population of NP

bats 𝑃 randomly and each bat corresponding to a potential
solution to the given problem; define loudness 𝐴; set frequency 𝑄,
the initial velocities V, and pulse rate 𝑟; set the harmony memory consideration
rate HMCR, the pitch adjustment rate PAR and bandwidth bw;
set maximum of elite individuals retained KEEP.

Step 2: Evaluate the quality 𝑓 for each bat in 𝑃 determined by the objective function 𝑓(𝑥).
Step 3: While the termination criteria is not satisfied or 𝑡 <MaxGeneration do

Sort the population of bats 𝑃 from best to worst by order of quality 𝑓 for each bat.
Store the KEEP best bats as KEEPBAT.
for 𝑖 = 1:NP (all bats) do

V
𝑡

𝑖
= V
𝑡−1

𝑖
+ (V𝑡
𝑖
− 𝑥
∗
) × 𝑄

𝑥𝑡
𝑖
= 𝑥𝑡−1
𝑖

+ V
𝑡

𝑖

if (rand > 𝑟) then
𝑥𝑡
𝑢
= 𝑥
∗
+ 𝛼𝜀𝑡

end if
for 𝑗 = 1:𝐷 (all elements) do //Mutate

if (rand < HMCR) then
𝑟
1
= ⌈NP ∗ rand⌉

𝑥V (𝑗) = 𝑥
𝑟1
(𝑗) where 𝑟

1
∈ (1, 2, . . . ,HMS)

if (rand < PAR) then
𝑥V (𝑗) = 𝑥V (𝑗) + bw × (2 × rand − 1)

endif
else

𝑥V(𝑗) = 𝑥min, 𝑗 + rand × (𝑥max,𝑗 − 𝑥min−𝑗)

endif
endfor 𝑗
Evaluate the fitness for the offsprings 𝑥𝑡

𝑢
, 𝑥𝑡
𝑖
, 𝑥𝑡

V

Select the offspring 𝑥𝑡
𝑘
with the best fitness among the offsprings 𝑥𝑡

𝑢
, 𝑥𝑡
𝑖
, 𝑥𝑡

V
.

if (rand < 𝐴) then
𝑥𝑡
𝑟1
= 𝑥𝑡
𝑘
;

end if
Replace the KEEP worst bats with the KEEP best bats KEEPBAT stored.

end for 𝑖
𝑡 = 𝑡 + 1;

Step 4: end while
Step 5: Post-processing the results and visualization;

End.

Algorithm 3: The hybrid meta-heuristic algorithm of HS/BA.

4. Simulation Experiments

In this section, we test the performance of the proposedmeta-
heuristic HS/BA to global numerical optimization through a
series of experiments conducted on benchmark functions.

To allow a fair comparison of running times, all the exper-
iments were conducted on a PC with a Pentium IV processor
running at 2.0GHz, 512MB of RAM and a hard drive
of 160Gbytes. Our implementation was compiled using
MATLAB R2012a (7.14) running under Windows XP3. No
commercial BA or HS tools were used in the following
experiments.

4.1. General Performance of HS/BA. In order to explore
the benefits of HS/BA, in this subsection we compared its
performance on global numeric optimization problem with
nine other population-based optimization methods, which

are ACO, BA, BBO, DE, ES, GA, HS, PSO, and SGA. ACO
(ant colony optimization) [38, 39] is a swarm intelligence
algorithm for solving optimization problems which is based
on the pheromone deposition of ants. BBO (biogeography-
based optimization) [24] is a new excellent powerful and
efficient evolution algorithm, developed for the global opti-
mization inspired by the immigration and emigration of
species between islands (or habitats) in search of more
compatible islands. DE (differential evolution) [19] is a simple
but excellent optimization method that uses the difference
between two solutions to probabilistically adapt a third
solution. An ES (evolutionary strategy) [40] is an algorithm
that generally distributes equal importance to mutation and
recombination and that allows two or more parents to
reproduce an offspring. A GA (genetic algorithm) [18] is a
search heuristic that mimics the process of natural evolution.
PSO (particle swarm optimization) [21] is also a swarm
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intelligence algorithm which is based on the swarm behavior
of fish and bird schooling in nature. A stud genetic algorithm
(SGA) [41] is a GA that uses the best individual at each
generation for crossover.

In all experiments, we will use the same parameters for
HS, BA and HS/BA that are loudness 𝐴 = 0.95, pulse rate
𝑟 = 0.6, scaling factor 𝜀 = 0.1, the harmony memory
consideration rate HMCR = 0.95, and the pitch adjustment
rate PAR = 0.1. For ACO, BBO, DE, ES, GA, PSO, and SGA,
we set the parameters as follows. For ACO, initial pheromone
value 𝜏

0
= 1𝐸 − 6, pheromone update constant 𝑄 = 20,

exploration constant 𝑞
0
= 1, global pheromone decay rate

𝜌
𝑔
= 0.9, local pheromone decay rate 𝜌

𝑙
= 0.5, pheromone

sensitivity 𝑠 = 1, and visibility sensitivity 𝛽 = 5; for BBO,
habitat modification probability = 1, immigration probability
bounds per gene = [0, 1], step size for numerical integration of
probabilities = 1, maximum immigration and migration rates
for each island = 1, and mutation probability = 0.005; for DE,
a weighting factor 𝐹 = 0.5 and a crossover constant CR = 0.5;
for the ES, the number of offspring 𝜆 = 10 produced in
each generation and standard deviation 𝜎 = 1 for changing
solutions. For the GA, we used roulette wheel selection and
single-point crossover with a crossover probability of 1 and
a mutation probability of 0.01. For PSO, we set an inertial
constant = 0.3, a cognitive constant = 1, and a social constant
for swarm interaction = 1. For the SGA, we used single-point
crossover with a crossover probability of 1 and a mutation
probability of 0.01.

Well-defined problem sets are favorable for evaluating
the performance of optimization methods proposed in this
paper. Based on mathematical functions, benchmark func-
tions can be applied as objective functions to perform such
tests. The properties of these benchmark functions can be
easily achieved from their definitions. Fourteen different
benchmark functions are applied to verify our proposed
metaheuristic algorithmHS/BA. Each of the functions in this
study has 20 independent variables (i.e.,𝐷 = 20).

The benchmark functions described in Table 1 are stan-
dard testing functions.Theproperties of the benchmark func-
tions are given in Table 2. The modality property means the
number of the best solutions in the search space. Unimodal
benchmark functions only have an optimum, which is the
global optimum. Multimodal benchmark functions have at
least two optima in their search space, indicating that they
have more than one local optima except the global optimum.
More details of all the benchmark functions can be found in
[6].

We set population size 𝑁𝑃 = 50, an elitism parameter
𝐾𝑒𝑒𝑝 = 2, and maximum generation𝑀𝑎𝑥𝑔𝑒𝑛 = 50 for each
algorithm. We ran 100 Monte Carlo simulations of each
algorithm on each benchmark function to get representative
performances. Tables 3 and 4 illustrate the results of the
simulations. Table 3 shows the average minima found by
each algorithm, averaged over 100 Monte Carlo runs. Table 4
shows the absolute best minima found by each algorithm
over 100 Monte Carlo runs. In other words, Table 3 shows
the average performance of each algorithm, while Table 4
shows the best performance of each algorithm.The best value
achieved for each test problem is shown in bold. Note that the

normalizations in the tables are based on different scales, so
values cannot be compared between the two tables.

From Table 3, we see that, on average, HS/BA is the most
effective at finding objective function minimum on ten of
the fourteen benchmarks (F02, F03, F06–F11, and F13-F14).
ACO is the second most effective, performing the best on the
benchmarks F04 and F05. BBO and SGA are the third most
effective, performing the best on the benchmarks F12 and
F01, respectively, whenmultiple runs aremade. Table 4 shows
that HS/BA performs the best on thirteen of the fourteen
benchmarks (F02–F14), while BBO performs the second
best at finding objective function minimum on the only
benchmark (F01) when multiple runs are made. In addition,
statistical analysis [42] on these values obtained by the ten
methods on 14 benchmark functions based on the Friedman’s
test [43] reveals that the differences in the obtained average
and the best functionminima are statistically significant (𝑃 =

1.66 ∗ 10−17 and𝑃 = 7.25 ∗ 10−17, resp.) at the confidence level
of 5%.

Furthermore, the computational requirements of the ten
optimization methods were similar. We collected the average
computational time of the optimization methods as applied
to the 14 benchmarks discussed in this section.The results are
shown in Table 3. BA was the quickest optimization method.
HS/BA was the third fastest of the ten algorithms. However,
it should be noted that in the vast majority of real-world
applications, it is the fitness function evaluation that is by far
the most expensive part of a population-based optimization
algorithm.

Furthermore, convergence graphs of ACO, BA, BBO,
DE, ES, GA, HS, HS/BA, PSO, and SGA are shown in
Figures 1–14 which represent the process of optimization.The
values shown in Figures 1–14 are the mean objective function
optimum achieved from 100Monte Carlo simulations, which
are the true objective function values, not normalized.

Figure 1 shows the results obtained for the ten methods
when the F01 Ackley function is applied. From Figure 1,
clearly, we can draw the conclusion that BBO is significantly
superior to all the other algorithms including HS/BA during
the process of optimization, while HS/BA performs the sec-
ond best on this multimodal benchmark function. Here, all
the other algorithms show the almost same starting point, and
HS/BA has a faster convergence rate than other algorithms,
while HS/BA is outperformed by BBO after 13 generations.
Although slower, SGA eventually finds the global minimum
close to HS/BA. Obviously, BBO, HS/BA, and SGA outper-
form ACO, BA, DE, ES, GA, HS, and PSO during the whole
process of searching the global minimum.

Figure 2 illustrates the optimization results for F02 Fletc-
her-Powell function. In thismultimodal benchmark problem,
it is obvious that HS/BA outperforms all other methods dur-
ing the whole progress of optimization (except the generation
20–33, BBO, and HS/BA performs approximately equally).

Figure 3 shows the optimization results for F03 Griewank
function. From Table 3 and Figure 3, we can see that HS/BA
performs the best on this multimodal benchmark problem.
Looking at Figure 3 carefully, HS/BA shows a faster conver-
gence rate initially than ACO; however, it is outperformed
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Table 2: Properties of benchmark functions; lb denotes lower bound, ub denotes upper bound, and opt denotes optimum point.

No. Function lb ub opt Continuity Modality
F01 Ackley −32.768 32.768 0 Continuous Multimodal
F02 Fletcher-Powell −𝜋 𝜋 0 Continuous Multimodal
F03 Griewank −600 600 0 Continuous Multimodal
F04 Penalty #1 −50 50 0 Continuous Multimodal
F05 Penalty #2 −50 50 0 Continuous Multimodal
F06 Quartic with noise −1.28 1.28 1 Continuous Multimodal
F07 Rastrigin −5.12 5.12 0 Continuous Multimodal
F08 Rosenbrock −2.048 2.048 0 Continuous Unimodal
F09 Schwefel 2.26 −512 512 0 Continuous Multimodal
F10 Schwefel 1.2 −100 100 0 Continuous Unimodal
F11 Schwefel 2.22 −10 10 0 Continuous Unimodal
F12 Schwefel 2.21 −100 100 0 Continuous Unimodal
F13 Sphere −5.12 5.12 0 Continuous Unimodal
F14 Step −5.12 5.12 0 Discontinuous Unimodal

Table 3: Mean normalized optimization results in fourteen benchmark functions. The values shown are the minimum objective function
values found by each algorithm, averaged over 100 Monte Carlo simulations.

ACO BA BBO DE ES GA HS HSBA PSO SGA
F01 2.31 3.33 1.15 2.02 3.38 2.72 3.47 1.09 2.66 1.00
F02 24.58 25.82 1.58 8.94 24.35 5.45 15.69 1.00 13.96 1.33
F03 3.16 60.72 1.93 5.44 23.85 3.22 77.22 1.00 25.77 1.42
F04 1.00 3.0E38 4.0E32 5.6E33 2.7E38 3.1E32 1.4E39 2.3E32 4.1E36 9.6E31
F05 1.00 1.1E8 299.42 1.5E6 4.6E8 5.4E3 4.1E8 215.51 5.5E7 111.10
F06 489.01 6.8E3 35.32 308.29 1.8E4 274.83 1.5E4 1.00 2.5E3 10.09
F07 8.09 11.55 1.28 6.56 11.87 6.17 10.22 1.00 8.44 1.80
F08 42.25 29.01 2.29 7.59 59.99 9.05 47.85 1.00 12.04 2.15
F09 3.17 20.26 1.99 13.58 13.33 1.81 19.92 1.00 17.61 1.15
F10 1.75 3.73 1.38 2.95 4.93 1.25 4.22 1.00 2.48 1.48
F11 1.05 19.70 1.83 7.14 23.12 11.13 19.45 1.00 13.22 2.46
F12 1.86 4.03 1.00 2.99 3.91 1.92 3.74 1.38 2.38 1.12
F13 98.30 150.84 3.80 19.03 226.52 47.74 182.32 1.00 72.91 4.02
F14 7.73 120.48 3.93 13.31 102.56 11.53 146.55 1.00 63.44 3.28
TimE 2.74 1.00 1.32 1.64 1.67 1.79 2.33 1.43 2.03 1.76
∗

The values are normalized so that the minimum in each row is 1.00. These are not the absolute minima found by each algorithm, but the average minima
found by each algorithm.

by ACO after 5 generations. For other algorithms, although
slower, BBO, GA, and SGA eventually find the global mini-
mum close to HS/BA, while BA, DE, ES, HS, and PSO fail to
search the global minimum within the limited iterations.

Figure 4 shows the results for F04 Penalty #1 function.
From Figure 4, it is obvious that HS/BA outperforms all other
methods during the whole progress of optimization in this
multimodal benchmark function. Although slower, SGA and
BBO perform the second and third best at finding the global
minimum.

Figure 5 shows the performance achieved for F05 Penalty
#2 function. For this multimodal function, similar to F04
Penalty #1 function shown in Figure 4, HS/BA is significantly

superior to all the other algorithms during the process of
optimization. Here, PSO shows a faster convergence rate
initially than HS/BA; however, it is outperformed by HS/BA
after 3 generations.

Figure 6 shows the results achieved for the ten methods
when using the F06 Quartic (with noise) function. From
Table 3 and Figure 6, we can conclude that HS/BA performs
the best in this multimodal function. Looking carefully
at Figure 6, PSO and HS/BA show the same initial fast
convergence towards the known minimum, as the procedure
proceeds, HS/BA gets closer and closer to the minimum,
while PSO comes into being premature and traps into the
local minimum. BA, ES, GA, HS, and PSO do not manage
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Table 4: Best normalized optimization results in fourteen benchmark functions. The values shown are the minimum objective function
values found by each algorithm.

ACO BA BBO DE ES GA HS HSBA PSO SGA
F01 1.85 2.31 1.00 1.43 2.25 2.03 2.30 1.05 1.91 1.04
F02 10.42 14.48 1.09 4.22 10.39 4.03 9.91 1.00 8.28 1.33
F03 2.73 46.22 1.87 4.47 21.38 8.02 43.24 1.00 16.75 1.76
F04 4.4E6 5.0E6 1.2E3 1.9E4 2.2E6 3.0E4 4.2E6 1.00 3.755 3.22
F05 3.0E4 3.2E4 51.01 386.33 1.6E4 884.46 2.6E4 1.00 4.113 4.57
F06 58.51 992.55 6.50 24.69 808.48 59.24 746.91 1.00 189.71 2.02
F07 5.71 8.53 1.25 5.13 7.94 5.23 7.47 1.00 6.00 1.68
F08 26.42 25.03 1.48 3.70 33.52 6.16 21.50 1.00 7.75 1.45
F09 2.43 8.66 1.28 4.90 5.93 2.09 7.28 1.00 7.40 1.42
F10 1.89 4.94 1.18 2.66 3.00 2.08 2.76 1.00 2.01 1.74
F11 7.74 12.61 1.21 3.36 12.14 6.01 9.60 1.00 7.81 1.62
F12 1.33 2.33 1.44 1.69 2.08 1.74 2.11 1.00 1.70 1.21
F13 28.04 56.57 2.17 5.54 60.57 19.71 52.86 1.00 20.98 2.28
F14 4.28 54.02 1.97 4.85 33.61 10.60 49.11 1.00 19.72 1.85
∗

The values are normalized so that the minimum in each row is 1.00. These are the absolute best minima found by each algorithm.
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Figure 1: Comparison of the performance of the different methods
for the F01 Ackley function.

to succeed in this benchmark function within maximum
number of generations. At last, BBO, DE, and SGA converge
to the value very close to HS/BA.

Figure 7 shows the optimization results for the F07
Rastrigin function. Very clearly, HS/BA has the fastest con-
vergence rate at finding the globalminimumand significantly
outperforms all other approaches. Looking carefully at Fig-
ure 7, approximately, we can divide all the algorithms into
three groups: one group including BBO, HS/BA, and SGA
performing the best; the other group including ACO, DE,
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Figure 2: Comparison of the performance of the different methods
for the F02 Fletcher-Powell function.

GA, and PSO performing the second best; another group
including BA, ES, and HS performing the worst.

Figure 8 shows the results for F08 Rosenbrock function.
From Table 3 and Figure 8, we can see that HS/BA is superior
to the other algorithms during the optimization process in
this relatively simple unimodal benchmark function. Also,
we see that, similar to the F06 Quartic (with noise) function
shown in Figure 6, PSO shows a faster convergence rate
initially than HS/BA; however, it is outperformed by HS/BA
after 4 generations and is premature to the local minimum.

Figure 9 shows the equivalent results for the F09 Schwefel
2.26 function. From Figure 9, very clearly, though HS/BA is
outperformed by BBO between the generations 10–30, it has
the stable convergence rate at finding the global minimum
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Figure 3: Comparison of the performance of the different methods
for the F03 Griewank function.
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Figure 4: Comparison of the performance of the different methods
for the F04 Penalty #1 function.

and significantly outperforms all other approaches in this
multimodal benchmark function.

Figure 10 shows the results for F10 Schwefel 1.2 function.
From Figure 10, we can see that HS/BA performs far better
than other algorithms during the optimization process in this
relative simple unimodal benchmark function. PSO shows
a faster convergence rate initially than HS/BA; however,
it is outperformed by HS/BA after 3 generations. Looking
carefully at Figure 10, akin to F07 Rastrigin function shown in
Figure 7, all the algorithms except BA can be approximately
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Figure 5: Comparison of the performance of the different methods
for the F05 Penalty #2 function.
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Figure 6: Comparison of the performance of the different methods
for the F06 Quartic (with noise) function.

divided into three groups: one group including BBO and
HS/BA performing the best; the other group including ACO,
GA, PSO, and SGA performing the second best; another
group including DE, ES, and HS performing the worst.

Figure 11 shows the results for F11 Schwefel 2.22 function.
Very clearly, BBO shows a faster convergence rate initially
than HS/BA; however, it is outperformed by HS/BA after 40
generations. At last, HS/BA reaches the optimal solution sig-
nificantly superior to other algorithms. BBO is only inferior
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Figure 7: Comparison of the performance of the different methods
for the F07 Rastrigin function.
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Figure 8: Comparison of the performance of the different methods
for the F08 Rosenbrock function.

to HS/BA and performs the second best in this unimodal
function.

Figure 12 shows the results for F12 Schwefel 2.21 function.
Very clearly, HS/BAhas the fastest convergence rate at finding
the global minimum and significantly outperforms all other
approaches.

0 10 20 30 40 50

1000

2000

3000

4000

5000

6000

Number of generations

B
en

ch
m

ar
k 

fu
nc

ti
on

 v
al

ue

ACO
BA
BBO
DE
ES

GA
HS
HSBA
PSO
SGA

Figure 9: Comparison of the performance of the different methods
for the F09 Schwefel 2.26 function.
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Figure 10: Comparison of the performance of the differentmethods
for the F10 Schwefel 1.2 function.

Figure 13 shows the results for F13 Sphere function. From
Table 3 and Figure 13, HS/BA has the fastest convergence
rate at finding the global minimum and outperforms all other
approaches. Looking carefully at Figure 13, for BBO and SGA,
we can see that BBO has a faster convergence rate than SGA,
but SGA does finally converge to the value of BBO that is
approaching to HS/BA.

Figure 14 shows the results for F14 Step function. Appar-
ently, HS/BA shows the fastest convergence rate at finding
the global minimum and significantly outperforms all other
approaches. Looking carefully at Figure 14, for BBO and SGA,
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Figure 11: Comparison of the performance of the different methods
for the F11 Schwefel 2.22 function.
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Figure 12: Comparison of the performance of the different methods
for the F12 Schwefel 2.21 function.

we can see that BBO has a faster convergence rate than SGA,
but SGA does finally converge to the value of BBO.

From the above-analyses about Figures 1–14, we can come
to the conclusion that our proposed hybrid metaheuristic
algorithm HS/BA significantly outperforms the other nine
algorithms. In general, ACO, BBO, and SGA are only inferior
to the HS/BA, and ACO, BBO, and SGA perform better
thanHS/BA in the benchmarks F04-F05, the benchmark F12,
and the benchmark F01, respectively. Further, benchmarks
F04, F05, F06, F08, and F10 illustrate that PSO has a faster
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Figure 13: Comparison of the performance of the different methods
for the F13 Sphere function.
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Figure 14: Comparison of the performance of the differentmethods
for the F14 Step function.

convergence rate initially, while later it converges slower
and slower to the true objective function value. At last,
we must point out that, in [24], Simon compared BBO
with seven state-of-the-art EAs over 14 benchmark func-
tions and a real-world sensor selection problem. The results
demonstrated the good performance of BBO. It is also indi-
rectly demonstrated that our proposed hybrid metaheuristic
method HS/BA is a more powerful and efficient optimiza-
tion algorithm than other population-based optimization
algorithms.
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Table 5: Best normalized optimization results in fourteen benchmark functions with different 𝐴. The numbers shown are the best results
found after 100 Monte Carlo simulations HS/BA algorithm.

𝐴

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
F01 1.66 1.33 1.55 1.40 1.00 1.33 1.21 1.22 1.16 1.13 1.14
F02 1.25E4 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
F03 3.41 11.15 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
F04 2.73E4 1.00 1.25E4 1.04 1.04 1.04 1.04 1.04 1.04 1.00 1.00
F05 5.03E5 5.30 1.33 1.68E4 1.00 1.00 1.00 1.00 1.00 1.00 1.00
F06 1.00 2.56 5.47 4.73 17.81 9.90 2.89 6.74 9.90 2.60 5.57
F07 10.14 14.92 4.35 1.10 1.10 15.37 1.01 1.00 1.00 1.00 1.00
F08 38.49 1.08 14.06 1.08 1.08 1.08 99.01 1.01 1.00 1.00 1.00
F09 285.18 404.58 1.38 4.74 1.19 1.19 1.19 367.91 1.01 1.00 1.00
F10 665.22 4.68 1.69E3 15.27 1.18 1.18 1.18 1.18 1.21 1.00 1.00
F11 20.03 1.00 9.96 11.54 39.22 9.96 9.96 9.96 9.96 38.97 8.49
F12 10.32 1.00 13.22 3.23 14.69 2.79 2.79 2.79 2.79 2.79 19.31
F13 1.46 4.15 2.84 4.47 1.15 1.56 1.00 1.00 1.00 1.00 1.00
F14 527.52 13.57 3.95 1.01 1.15 12.91 1.00 1.00 1.00 1.00 1.00

1 4 2 2 3 3 5 6 7 10 10

4.2. Influence of Control Parameter. In [28], Dr. Yang con-
cluded that if the parameters in BA can be adjusted properly,
it can outperform GA, HS (harmony search) [26], and PSO.
The choice of the control parameters is of vital importance
for different problems. To investigate the influence of the
loudness𝐴, pulse rate 𝑟, harmonymemory consideration rate
HMCR, and pitch adjustment rate PAR on the performance
of HS/BA, we carry out this experiment in the benchmark
problem with different parameters. All other parameter
settings are kept unchanged (unless noted otherwise in the
following paragraph). The results are recorded in Tables 5–
12 after 100 Monte Carlo runs. Among them, Tables 5, 7, 9,
and 11 show the best minima found by HS/BA algorithm over
100Monte Carlo runs. Tables 6, 8, 10, and 12 show the average
minima found byHS/BA algorithm, averaged over 100Monte
Carlo runs. In other words, Tables 5, 7, 9, 11 and Tables 6,
8, 10, 12 show the best and average performance of HS/BA
algorithm, respectively. In each table, the last row is the total
number of functions on which HS/BA performs the best with
some parameters.

4.2.1. Loudness: 𝐴. Tables 5 and 6 recorded the results
performed in the benchmark problem with the loudness 𝐴 =
0, 0.1, 0.2, . . . , 0.9, 1.0 and fixed pulse rate 𝑟 = 0.6, harmony
memory consideration rate HMCR= 0.95, and pitch adjust-
ment rate PAR= 0.1. From Tables 5 and 6, obviously, it can be
seen that (i) for the three benchmark functions F02, F03, and
F04, HS/BA performs slightly differently, that is to say, these
three benchmark functions are insensitive to the parameter
𝐴. (ii) For benchmark functions F01, F06, F11, and F12,
HS/BA performs better on smaller𝐴(<0.5). (iii) However, for
functions F05, F07–10, F13, and F14, HS/BA performs better
on bigger𝐴(>0.5). In sum, HS/BA performs the best when𝐴
is equal or very close to 1.0. So, we set𝐴 = 0.95, which is very
close to 0.9 and 1.0 in other experiments.

4.2.2. Pulse Rate: 𝑟. Tables 7 and 8 recorded the results
performed on the benchmark problem with the pulse rate
𝑟 = 0, 0.1, 0.2, . . . , 0.9, 1.0 and fixed loudness𝐴 = 0.95,
harmony memory consideration rate HMCR=0.95, and
pitch adjustment rate PAR= 0.1. From Tables 7 and 8, we
can evidently conclude that HS/BA performs significantly
better on bigger 𝑟(>0.5) than on smaller 𝑟(<0.5), and HS/BA
performs the best when r is equal or very close to 0.6. So, we
set 𝑟 = 0.6 in other experiments.

4.2.3. Harmony Memory Consideration Rate:𝐻𝑀𝐶𝑅. Tables
9 and 10 recorded the results performed in the bench-
mark problem with the harmony memory consideration rate
HMCR = 0, 0.1, 0.2, . . . , 0.9, 1.0, fixed loudness 𝐴 = 0.95,
pulse rate 𝑟 = 0.6, and pitch adjustment rate PAR = 0.1. From
Tables 9 and 10, we can recognize that the function values
evaluated by HS/BA are better/smaller on bigger HMCR
(>0.5) than on smaller r (<0.5), and most benchmarks reach
minimum when HMCR is equal or very close to 1. So, we set
HMCR=0.95 in other experiments.

4.2.4. Pitch Adjustment Rate: 𝑃𝐴𝑅. Tables 11 and 12 recorded
the results performed on the benchmark problems with the
pitch adjustment rate PAR = 0, 0.1, 0.2, . . . , 0.9, 1.0, fixed
loudness𝐴 = 0.95, pulse rate 𝑟 = 0.6, and harmony
memory consideration rate HMCR = 0.95. From Tables 11
and 12, we can recognize that the function values for HS/BA
vary little with the increasing PAR, and HS/BA reaches
optimum/minimum in most benchmarks when PAR is equal
or very close to 0.1. So, we set PAR = 0.1 in other experiments.

4.3. Discussion. In the HS/BA, the bats fly in the sky using
echolocation to find food/prey (i.e., best solutions). Four
other parameters are the loudness (𝐴), the rate of pulse
emission (𝑟), harmony memory consideration rate (HMCR),
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Table 6: Mean normalized optimization results in fourteen benchmark functions with different A. The numbers shown are the minimum
objective function values found by HS/BA algorithm, averaged over 100 Monte Carlo simulations.

𝐴

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
F01 1.01 1.01 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
F02 1.52 1.00 1.46 1.17 1.08 1.37 1.88 1.65 1.67 1.79 1.48
F03 6.69 10.41 1.06 1.01 1.03 1.03 1.01 1.02 1.05 1.00 1.00
F04 201.31 1.26 4.10 4.21 3.33 2.72 1.00 5.19 2.91 1.00 3.11
F05 591.22 16.82 4.25 5.87 1.01 4.14 24.04 1.00 3.68 7.33 9.00
F06 1.00 4.90E4 637.99 258.71 4.95E4 2.18 2.17 2.17 2.18 2.17 2.17
F07 8.57 2.21E6 6.43 272.34 110.48 2.11E4 1.02 1.01 1.00 1.00 1.00
F08 49.80 1.14E4 1.72E4 161.60 224.59 91.19 1.74E4 1.03 1.11 1.00 1.00
F09 82.37 1.73E6 1.06 3.14 74.45 103.10 42.26 7.94E3 1.00 1.37 1.29
F10 90.31 1.45E3 2.45E5 2.32E3 23.34 22.34 31.38 12.89 2.34E3 1.40 1.00
F11 4.98 1.00 3.15E4 2.33 14.41 520.23 443.65 616.26 249.91 4.78E4 2.14
F12 3.69 2.10E4 4.57E4 1.00 2.12E4 266.35 233.13 198.80 276.14 112.01 2.14E4
F13 1.90 8.25 4.48E6 2.14E6 1.00 6.15 254.51 222.75 189.96 263.86 107.01
F14 66.91 1.95E5 1.17E4 1.24E3 21.04 1.86E3 29.40 23.92 1.00 18.35 24.75

1 2 1 2 2 1 2 2 4 5 5

Table 7: Best normalized optimization results in fourteen benchmark functions with different 𝑟. The numbers shown are the best results
found after 100 Monte Carlo simulations of HS/BA algorithm.

𝑟

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
F01 1.84 1.84 1.84 4.84 1.59 1.71 1.00 1.34 1.09 1.16 1.01
F02 9.44E3 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
F03 3.73 5.46 1.86 1.86 1.86 1.86 1.00 1.72 1.21 1.61 1.01
F04 11.42 1.11 24.29 1.23 1.26 1.00 1.29 1.29 1.29 1.29 1.29
F05 1.77E5 2.30 1.15 1.09E4 1.00 1.00 1.00 1.00 1.00 1.00 1.00
F06 62.44 29.96 48.58 15.60 26.34 7.80 1.82 1.00 35.20 2.39 1.55
F07 8.31 4.48 2.58 1.29 1.29 3.49 1.00 1.00 1.00 1.00 1.00
F08 9.61 1.18 4.20 1.37 1.37 1.37 6.95 1.01 1.01 1.00 1.00
F09 373.94 444.22 1.68 3.35 1.68 1.68 1.00 291.98 1.01 1.01 1.01
F10 386.93 3.16 13.97 4.63 1.58 1.58 1.00 1.58 309.31 1.58 1.01
F11 42.55 1.00 18.29 21.35 20.18 11.11 19.04 21.35 15.81 18.76 11.55
F12 114.40 1.00 141.84 44.48 125.47 44.48 44.48 44.48 44.48 44.48 69.43
F13 6.39 6.37 6.01 2.96 3.02 1.00 1.52 1.39 1.00 2.57 2.49
F14 120.52 4.04 2.33 1.00 1.16 3.40 1.00 1.00 1.16 1.16 1.16

0 3 1 2 2 4 8 5 4 4 4

and pitch adjustment rate (PAR). The appropriate update for
the pitch adjustment rate (PAR) and the rate of pulse emission
(𝑟) balances the exploration and exploitation behavior of each
bat, respectively, as the loudness usually decreases once a bat
has found its prey/solution, while the rate of pulse emission
increases in order to raise the attack accuracy.

For all of the standard benchmark functions that have
been considered, the HS/BA has been demonstrated to
perform better than or be equal to the standard BA and other
acclaimed state-of-the-art population-based algorithms with
the HS/BA performing significantly better in some functions.
The HS/BA performs excellently and efficiently because of
its ability to simultaneously carry out a local search, still

searching globally at the same time. It succeeds in doing
this due to the local search via harmony search algorithm
and global search via bat algorithm concurrently. A similar
behavior may be performed in the PSO by using multiswarm
from a particle population initially [44]. However, HS/BA’s
advantages include performing simply and easily, and only
having four parameters to regulate. The work carried out
here demonstrates the HS/BA to be robust over all kinds of
benchmark functions.

Benchmark evaluation is a good way for verifying the
performance of the metaheuristic algorithms, but it also has
limitations. First, we did not make any special effort to tune
the optimization algorithms in this section. Different tuning
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Table 8: Mean normalized optimization results in fourteen benchmark functions with different 𝑟. The numbers shown are the minimum
objective function values found by HS/BA algorithm, averaged over 100 Monte Carlo simulations.

𝑟

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
F01 1.84 1.99 1.86 1.94 1.59 1.00 1.42 1.34 1.09 1.16 1.71
F02 3.31 5.38 4.57 3.08 3.82 1.14 1.00 2.89 2.79 4.02 3.11
F03 3.73 5.46 5.33 2.29 3.36 2.41 1.00 1.72 1.21 1.61 1.36
F04 11.42 1.11 24.29 1.49E4 1.13E3 3.94E3 2.78E4 19.66 175.22 1.14 1.00
F05 16.09 128.62 32.69 24.46 64.40 12.77 29.59 76.17 4.56 1.00 4.46
F06 62.44 26.96 48.58 15.60 26.34 7.80 1.82 1.00 35.20 2.39 1.55
F07 3.30 1.78 1.34 1.03 1.23 1.39 1.55 1.00 1.19 1.36 3.49
F08 4.88 3.93 3.94 1.94 2.19 3.83 3.53 4.33 1.00 2.27 3.14
F09 1.39 1.66 1.14 1.00 1.21 1.15 1.15 1.09 1.08 1.04 1.09
F10 7.21 9.94 8.75 3.60 8.46 6.11 4.83 4.14 5.76 1.00 2.71
F11 3.82 4.23 3.73 2.05 1.81 1.00 1.71 2.20 1.42 1.68 1.89
F12 1.64 2.17 2.04 1.47 1.80 1.86 1.00 1.21 1.13 1.34 1.56
F13 6.39 6.37 6.01 2.96 3.02 1.90 1.52 1.39 1.00 2.57 2.49
F14 5.74 15.43 7.42 6.82 6.44 3.17 1.00 4.85 2.21 1.74 2.09

0 0 0 1 0 2 4 2 2 2 1

Table 9: Best normalized optimization results in fourteen benchmark functions with different HMCR. The numbers shown are the best
results found after 100 Monte Carlo simulations of HS/BA algorithm.

HMCR
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

F01 1.64 1.64 1.64 1.64 1.64 1.64 1.64 1.51 1.28 1.00 1.63
F02 1.87E4 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
F03 19.82 26.49 3.71 3.71 3.71 3.71 3.71 3.71 3.71 2.06 1.00
F04 1.26E5 1.00 1.87E4 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
F05 6.07E5 5.34 1.00 1.87E4 1.00 1.00 1.00 1.00 1.00 1.00 1.00
F06 108.92 246.31 365.04 345.40 338.57 234.65 143.49 45.28 23.30 1.00 25.75
F07 9.22 14.28 5.34 1.00 1.00 9.30 1.00 1.00 1.00 1.00 1.00
F08 18.10 1.08 7.72 1.08 1.08 1.08 35.94 1.00 1.00 1.00 1.00
F09 280.04 391.61 1.27 6.81 1.27 1.27 1.27 227.95 1.00 1.00 1.00
F10 551.65 8.76 1.76E3 11.70 1.64 1.64 1.64 1.64 274.48 1.00 1.00
F11 14.67 1.00 6.18 6.18 13.99 6.18 6.18 6.18 4.40 2.69 6.16
F12 7.68 1.00 11.10 2.73 10.21 2.73 2.73 2.73 2.73 2.73 4.73
F13 7.72 26.75 15.90 17.76 6.12 10.40 6.12 5.95 2.55 1.00 2.25
F14 537.16 14.28 5.34 1.00 1.00 7.13 1.00 1.00 1.00 1.00 1.00

0 4 2 4 5 3 5 6 7 11 9

parameter values in the optimization algorithmsmight result
in significant differences in their performance. Second, real-
world optimization problems may not have much of a
relationship to benchmark functions.Third, benchmark tests
might result in different conclusions if the grading criteria or
problem setup change. In our work, we examined the mean
and best results obtained with a certain population size and
after a certain number of generations. However, we might
arrive at different conclusions if (for example) we change the
generation limit, or look at how many generations it takes to
reach a certain function value, or if we change the population
size. In spite of these caveats, the benchmark results shown

here are promising for HS/BA and indicate that this novel
method might be able to find a niche among the plethora of
population-based optimization algorithms.

We note that CPU time is a bottleneck to the implemen-
tation of many population-based optimization algorithms.
If an algorithm cannot converge fast, it will be impractical,
since it would take too long to find an optimal or suboptimal
solution. HS/BA does not seem to require an unreasonable
amount of computational effort; of the ten optimization algo-
rithms compared in this paper, HS/BA was the third fastest.
Nevertheless, findingmechanisms to accelerate HS/BA could
be an important area for further research.



18 Journal of Applied Mathematics

Table 10: Mean normalized optimization results in fourteen benchmark functions with different HMCR. The numbers shown are the best
results found after 100 Monte Carlo simulations of HS/BA algorithm.

HMCR
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

F01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.00 1.01
F02 747.56 7.87 5.25 3.43 5.09 7.10 3.07 1.87 1.60 1.00 1.01
F03 9.13 3.12E4 1.09 1.07 1.05 1.06 1.05 1.02 1.01 1.01 1.00
F04 2.10𝐸6 1.00𝐸4 3.95𝐸4 9.48𝐸3 5.97𝐸3 2.95𝐸3 1.51𝐸3 1.50𝐸3 46.94 1.00 2.37
F05 3.24𝐸6 3.27𝐸4 2.09𝐸4 4.14𝐸4 7.13𝐸3 1.54𝐸3 8.93𝐸3 1.53𝐸3 629.48 1.00 203.73
F06 1.00 5.94𝐸4 422.04 632.15 6.00𝐸4 1.92 1.91 1.91 1.91 1.91 1.91
F07 10.63 2.07𝐸6 9.00 216.72 324.55 3.07E4 1.04 1.03 1.02 1.01 1.00
F08 59.50 9.88𝐸3 3.04E4 141.80 217.01 324.68 3.07E4 1.07 1.07 1.03 1.00
F09 226.87 4.95𝐸6 3.08 8.91 114.22 173.60 259.41 2.45E4 1.45 1.00 1.71
F10 257.37 2.83𝐸4 9.35E5 1.37E4 97.09 66.56 99.25 149.40 1.39E4 1.00 2.73
F11 6.07 1.00 1.83E4 2.02 16.61 390.40 262.99 403.00 603.61 5.72E4 1.84
F12 3.00 2.79E4 3.60E4 1.00 2.82E4 270.95 194.14 130.77 200.40 300.16 2.84E4
F13 2.32 9.66 5.61E6 1.89E6 1.00 8.15 267.78 191.86 129.23 198.05 296.65
F14 184.66 3.84E5 1.17E4 1.85E3 1.00 5.71E3 25.11 55.39 39.60 26.57 41.49

1 1 0 1 2 0 0 0 0 6 3

Table 11: Best normalized optimization results in fourteen benchmark functions with different PAR.The numbers shown are the best results
found after 100 Monte Carlo simulations of HS/BA algorithm.

PAR
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

F01 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
F02 3.91E3 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
F03 1.00 4.25 1.51 2.20 2.20 2.12 2.20 1.99 2.20 1.28 1.80
F04 1.00 2.55 65.54 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55
F05 2.52 1.00 1.71 1.69E3 1.71 1.71 1.71 1.71 1.71 1.71 1.71
F06 1.00 59.87 34.18 22.85 46.52 23.44 43.54 44.84 36.88 18.99 8.12
F07 8.07 1.00 1.48 2.55 2.55 13.06 2.55 2.55 2.55 2.55 2.55
F08 5.43 1.00 1.92 1.00 1.00 1.00 11.45 1.00 1.00 1.00 1.00
F09 76.72 2.52 1.17 1.00 1.71 1.71 1.71 155.56 1.71 1.71 1.71
F10 929.10 1.48 1.00 4.91 2.55 2.55 2.55 2.22 2.35E3 2.55 2.55
F11 3.18E3 1.00 5.82E3 3.99E3 3.39E3 5.82E3 4.91E3 5.82E3 5.82E3 9.58E3 5.82E3
F12 305.06 1.00 537.28 97.34 187.58 97.34 97.34 97.34 97.34 97.34 398.27
F13 1.92 4.22 5.87 10.07 12.98 4.66 1.48 4.01 3.17 1.00 4.09
F14 88.12 1.00 1.48 2.55 2.55 4.91 2.55 2.55 2.55 2.55 2.55

4 8 3 4 3 3 2 3 3 4 3

5. Conclusion and Future Work

This paper proposed a hybrid metaheuristic HS/BA method
for optimization problem.We improved the BAby combining
original harmony search (HS) algorithm and evaluating the
HS/BA on multimodal numerical optimization problems.
A novel type of BA model has been presented, and an
improvement is applied to mutate between bats using har-
mony search algorithm during the process of bats updating.
Using the original configuration of the bat algorithm, we
generate the new harmonies based on the newly generated
bat each iteration after bat’s position has been updated. The
new harmony vector substitutes the newly generated bat only

if it has better fitness. This selection scheme is rather greedy,
which often overtakes original HS and BA. The HS/BA
attempts to take merits of the BA and the HS in order to
avoid all bats getting trapped in inferior local optimal regions.
The HS/BA enables the bats to have more diverse exemplars
to learn from, as the bats are updated each iteration and
also form new harmonies to search in a larger search space.
This new method can speed up the global convergence rate
without losing the strong robustness of the basic BA. From
the analysis of the experimental results, we observe that the
proposed HS/BA makes good use of the information in past
solutions more effectively to generate better quality solutions
frequently, when compared to the other population-based
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Table 12:Mean normalized optimization results in fourteen benchmark functions with different PAR.The numbers shown are the best results
found after 100 Monte Carlo simulations of HS/BA algorithm.

PAR
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

F01 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
F02 4.07 1.00 1.00 4.52 2.77 2.57 3.41 5.36 3.69 4.89 1.03
F03 1.00 1.27E4 1.34 1.35 1.35 1.35 1.34 1.35 1.34 1.34 1.34
F04 1.15 81.27 9.39E3 1.00 1.01 1.01 129 1.00 1.00 1.01 1.01
F05 345.73 50.61 86.19 9.07E3 25.01 1.08 1.01 1.91 3.33 1.00 1.18
F06 1.00 5.42E6 4.27E4 4.74E4 5.48E6 577.88 577.88 577.88 577.88 577.87 577.87
F07 4.86 1.53 1.00 95.43 105.96 1.22E4 1.34 1.36 1.32 1.33 1.35
F08 12.69 76.00 8.76E3 17.03 69.13 76.72 8.85E3 1.10 1.05 1.04 1.00
F09 63.45 230.47 1.82 1.67 12.78 48.60 53.49 6.09E3 1.11 1.30 1.00
F10 133.55 12.51 1.26 1.97E3 11.48 4.64 16.45 18.93 1.99E3 1.00 1.88
F11 63.02 1.00 6.39E3 79.44 59.24 3.96E3 1.42E3 5.81E3 6.45E3 7.45E5 79.81
F12 3.90 8.81E3 8.90E3 1.00 8.90E3 44.40 47.78 17.25 70.11 77.84 8.99E3
F13 1.00 21.66 2.07E3 6.69 5.80 4.30 271.67 282.46 105.39 429.26 476.62
F14 46.14 1.00 36.10 55.93 1.22 6.40E3 42.15 32.89 34.81 12.72 51.29

4 4 3 3 1 1 1 2 2 3 3

optimization algorithms such as ACO, BA, BBO, DE, ES,
GA, HS, PSO, and SGA. Based on the results of the ten
approaches on the test problems, we can conclude that the
HS/BA significantly improves the performances of the HS
and the BA on most multimodal and unimodal problems.

In this work, 14 benchmark functions are used to evaluate
the performance of our approach; we will test our approach
on more problems, such as the high-dimensional (𝐷 ≥
20) CEC 2010 test suit [45] and the real-world problems.
Moreover, we will compare HS/BA with other metaheuristic
method, such as DLHS [46, 47], SGHS [48], adaptive DE
[49], CLPSO [50], and DMS-PSO [51]. In addition, we only
consider the unconstrained function optimization in this
work. Our future work consists on adding the diversity rules
into HS/BA for constrained optimization problems, such as
constrained real-parameter optimization CEC 2010 test suit
[52].

In the field of optimization, there are many issues worthy
of further study, and efficient optimizationmethod should be
developed depending on the analysis of specific engineering
problem. Our future work will focus on the two issues: on
the one hand, we would apply our proposed approach HS/
BA to solve practical engineering optimization problems,
and, obviously, HS/BA can become a fascinating method for
real-world engineering optimization problems; on the other
hand, we would develop new meta-hybrid approach to solve
optimization problem.
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