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Abstract We propose the non-relativistic finite temperature quantum wave equations for
a single particle and multiple particles. We give the relation between energy eigenvalues,
eigenfunctions, transition frequency and temperature, and obtain some results: (1) when
the degeneracies of two energy levels are same, the transition frequency between the two
energy levels is unchanged when the temperature is changed. (2) When the degeneracies of
two energy levels are different, the variance of transition frequency at two energy levels is
direct proportion to temperature difference.

Keywords Finite temperature · Quantum theory

1 Introduction

Quantum field theory at finite temperature was motivated by the increasing interest in study-
ing the properties of matter under extreme conditions as, for example, at very high tem-
perature or density. The pioneering works joining together the statistical and quantum field
theory were developed mainly by Matsubara [1] in a non-relativistic context and, the rela-
tivistic case by Fradkin [2, 3]. The finite temperature gauge theories and the problems con-
cerning to the choice of a physical gauge and its dependence was analyzed by Bernard [4],
in particular, the free electromagnetic field. Thermodynamics and statistical mechanics are
powerful and vastly general tools. A rather fuller review of the necessary statistical mechan-
ics may be found in the book by Fetter and Walecka [5], which also gives a very full account
of non-relativistic finite-temperature field theory. Semiclassical series were introduced in
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quantum mechanics by the pioneering works of Brillouin [6], Kramers [7] and Wentzel [8].
Semiclassical methods for finite temperature field theories [9–11] also remained restricted
to derivations of the first term of a semiclassical series [12], even when the problem was
reduced to quantum statistical mechanics [13–16], viewed as field theory at a point.

In thermodynamic, the thermodynamic quantities such as internal energy, free energy,
volume, pressure, entropy and so on are effected by temperature, which are described by the
first and second laws of thermodynamics. In quantum statistical, it is only considered the
impact of temperature on the energy level, particle numbers and probability distribution, and
it isn’t from the quantum theory including temperature. In non-relativistic quantum theory,
the Schrodinger equation doesn’t include temperature. Therefore, the full quantum theory
and quantum statistical theory should be included temperature. We know the Schrodinger
equation is the quantum wave equation of zero temperature. In this paper, we shall give the
quantum wave equation of finite temperature. With the equation, we can study the affect of
temperature on quantum systems.

2 The Free Energy of Thermodynamic System

For a system constituting of N particles, the free energy is defined by

F = U − T S, (1)

where F , U , S and T are the free energy, internal energy, entropy and temperature of the
system, respectively.

In the system, every particle can be in a series of state, we define T i
j , V i

j are the kinetic
energy and potential energy of the j -th particle in the i-th state, V i

jm is the interaction energy
between the j -th and the m-th particle in the i-th state. The microcosmic internal energy is

Ui =
Ni∑

j=1

(
T i

j + V i
j

) +
Ni∑

j,m

V i
jm, (2)

where Ni is the particle number of system in the i-th microscopic state, and V i
jm = 0

(j = m). According to statistical principle, the macroscopic internal energy of system is
a statistical average value of its microscopic internal energy. The macroscopic internal en-
ergy U is

U =
M∑

i=1

PiU
i =

M∑

i=1

Pi

(
Ni∑

j=1

(
T i

j + V i
j

) +
Ni∑

j,m

V i
jm

)
, (3)

where Pi is the probability of system in the i-th microscopic state, and M is the microscopic
state number of system.

Defining free energy f i
j , it is the j -th particle in the i-th state, then the system micro-

scopic free energy in the i-th state is

F i =
Ni∑

j=1

f i
j , (4)
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the macroscopic free energy of system is a statistical average value of its microscopic free
energy. The macroscopic free energy F is

F =
M∑

i=1

PiF
i =

M∑

i=1

Ni∑

j=1

Pif
i
j , (5)

the microscopic entropy of the j -th particle in the i-th state Si
j is

Si
j = −kB ln

(
ωi

jp
i
j

)
, (6)

where ωi
j is the degeneracy of the j -th particle in the i-th state, pi

j is the probability of the
j -th particle in the i-th state and kB is the Boltzmann constant, and the microscopic entropy
of system in the i-th state is

Si =
Ni∑

j=1

Si
j = −kB

Ni∑

j=1

ln
(
ωi

jp
i
j

)
(7)

the macroscopic entropy of system is a statistical average value of its microscopic entropy.
The macroscopic entropy S is

S =
M∑

i=1

PiS
i = −kB

M∑

i=1

Ni∑

j=1

Pi ln
(
ωi

jp
i
j

)
, (8)

substituting Eqs. (3), (5) and (8) into (1), we have

M∑

i=1

Ni∑

j=1

P if i
j =

M∑

i=1

Pi

(
Ni∑

j=1

(
T i

j + V i
j

) +
Ni∑

j,m

V i
jm

)
+ T kB

M∑

i=1

Ni∑

j=1

Pi ln
(
ωi

jp
i
j

)
, (9)

Eq. (9) is the macroscopic free energy equation of system. Deleting the sum mark
∑M

i=1 Pi ,
we have

F i =
Ni∑

j=1

f i
j =

Ni∑

j=1

(
T i

j + V i
j

) +
Ni∑

j,m

V i
jm + T kB

Ni∑

j=1

ln
(
ωi

jP
i
j

)
, (10)

Eq. (10) is the system’s microscopic free energy equation in the i-th state. Deleting the sum
mark

∑Ni

j=1, there is

f i
j = T i

j + V i
j + T kB ln

(
ωi

jp
i
j

)
, (11)

Eq. (11) is the free energy equation of the j -th single particle in the i-th microscopic state.
Deleting the suffix j , we obtain the free energy equation of arbitrary particle in i-th micro-
scopic state, it is

f i = T i + V i + T kB ln
(
ωipi

)
. (12)

3 Non-Relativistic Quantum Theory at Finite Temperature

In Sect. 2, we give the free energy equation of a single particle and multiple particles system
in the i-th state, they are shown in Eqs. (10) and (12). Quantizing Eqs. (10) and (12), we
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can obtain the finite temperature quantum wave equation of single particle and multiple
particles. Making the regular quantities in Eq. (12) become the operator:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

f̂ i = i� ∂
∂t

,

T̂ i = − �
2

2m
∇2,

V̂ i = V,

ŝi = −kB ln(ωipi),

(13)

we have

i�
∂

∂t
ψi(�r, t, T ) =

[
− �

2

2m
∇2 + V + T kB ln

(
ωipi

)]
ψi(�r, t, T ), (14)

where ψi(�r, t, T ) is the i-th state wave function. Equation (14) is the time-dependent and
temperature-dependent quantum wave equation at finite temperature for a single particle in
the i-th state, which is different from the zero temperature quantum wave equation, i.e.,
Schrodinger equation. By the method of separation variable

ψi(�r, t, T ) = ψi(�r)φ(T )f (t), (15)

substituting Eq. (15) into (14), there are

i�
df (t)

dt
= Ei(T )f (t), (16)

[
− �

2

2m
∇2 + V

]
ψi(�r) = Ei(0)ψi(�r), (17)

T kB ln
(
ωipi

)
φ(T ) = E′

i (T )φ(T ), (18)

and

Ei(T ) = Ei(0) + E′
i (T ) = Ei(0) + T kB ln

(
ωipi

)
, (19)

where Ei(0) is the eigenvalue of Schrodinger equation (17) in the i-th state. The solution of
Eq. (16) is

f (t) = e− i
�

Ei(T )t , (20)

substituting Eq. (20) into (14), there is

[
− �

2

2m
∇2 + V + T kB ln

(
ωipi

)]
ψi(�r, T ) = Ei(T )ψi(�r, T ), (21)

where ψi(�r, T ) = ψi(�r)φ(T ), Ei(T ) and pi are corresponding to the eigenfunction,
eigenvalues, and probability in the i-th state. Equation (21) is the time-independent and
temperature-dependent quantum wave equation. When the temperature T = 0, Eq. (21) be-
comes Schrodinger equation.

The probability pi is

pi = 1

Z(T )
e−βEi , (22)

where Z(T ) = ∑
i ωie

−βEi , and β = 1
kBT

.
For Eq. (19), there are two situation:
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(1) When T = 0

Ei(T ) = Ei(0), (23)

(2) When T �= 0, substituting Eq. (22) into (19), we have

Ei(T ) = Ei(0) + T kB ln
(
ωipi

)

= Ei(0) − Ei(T ) + T kB lnωi − T kB lnZ(T ), (24)

i.e.,

Ei(T ) = 1

2
Ei(0) + 1

2
T kB lnωi − T kB ln

√
Z(T ). (25)

For a dimensional harmonic oscillator, ωi = 1, we have

Ei(T ) = 1

2
Ei(0) − T kB ln

√
Z(T ), (26)

where

Ei(0) =
(

i + 1

2

)
�ω, (27)

and

Z(T ) =
∑

i

e−βEi (T )

=
∑

i

e
− 1

kBT
( 1

2 Ei(0)−T kB ln
√

Z(T ))

=
∑

i

e
− 1

2kBT
Ei (0) · √Z(T ), (28)

to get

√
Z(T ) =

∑

i

e
− 1

2kBT
Ei (0)

= e
− �ω

4kBT

1 − e
− �ω

2kBT

, (29)

substituting Eqs. (27) and (29) into (26), we obtain

Ei(T ) = i + 1

2
�ω + kBT ln

(
1 − e

− �ω
2kBT

)
. (30)

Equation (30) is the i-th energy level of a dimensional harmonic oscillator at finite temper-
ature. Its energy level at zero temperature and finite temperature can be written as

En =
{

(n + 1
2 )�ω (T = 0),

1
2 (n + 1)�ω + kBT ln(1 − e

− �ω
2kBT ) (T �= 0).

(31)
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From Eq. (25), we have

2
(
Ei(T1) − Ej(T1)

) = Ei(0) − Ej(0) + T1kB ln
ωi

ωj
, (32)

and

2
(
Ei(T2) − Ej(T2)

) = Ei(0) − Ej(0) + T2kB ln
ωi

ωj
, (33)

Eq. (32) minus (33), there is

νij (T1 − T2) = νij (T1) − νij (T2) = kB

2h
(T1 − T2) ln

ωi

ωj
, (34)

where νij (T ) = (Ei(T )−Ej(T ))/h, which is the transition frequency from the i-th state to
the j -th state.

From Eq. (34), we can obtain the results: (1) when ωi = ωj , νij (T1 − T2) = 0, i.e., when
the degeneracies of two energy levels are the same, the transition frequency is unchanged
with different temperature. (2) When T1 �= T2 and ωi �= ωj , νij (T1 − T2) is direct proportion
to T1 − T2.

The time-dependent and temperature-dependent wave function at i-th state is

ψi(�r, t, T ) = ψi(�r)φ(T )f (t)

= ψi(�r)φ(T )e−i
Ei (T )

�
t

= ψi(�r)φ(T )e− i
2�

Ei(0)t · e− i
2�

T kB ln ωi

Z(T ) , (35)

quantizing Eq. (10), we have

i�
∂

∂t
ψi(�r1, �r2, . . . , �rNi

, t, T ) =
[

Ni∑

j=1

(
− �

2

2mj

∇2
j + Vj

)
+

Ni∑

j,m

Vjm + kBT

Ni∑

j=1

ln
(
ωi

jp
i
j

)
]

× ψi(�r1, �r2, . . . , �rNi
, t, T ), (36)

with the identity principle, there is

pi
1 = pi

2 = · · · = pi
j = · · · = pi

Ni
= pi, (37)

Eq. (37) becomes

i�
∂

∂t

ψi(�r1, �r2, . . . , �rNi
, t, T ) =

[
Ni∑

j=1

(
− �

2

2mj

∇2
j + Vj

)
+

Ni∑

jm

Vjm + kBT

Ni∑

j=1

ln
(
ωi

jp
i
)
]

× ψi(�r1, �r2, . . . , �rNi
, t, T ). (38)

Equation (38) is the finite temperature quantum theory of multiple particles.
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4 Lagrangian Function at Finite Temperature

For the finite temperature quantum equation (14), its complex conjugate equation is

−i�
∂

∂t
ψ∗

i (�r, t, T ) =
[
− �

2

2m
∇2 + V + T kB ln

(
ωipi

)]
ψ∗

i (�r, t, T ), (39)

the Lagrangian function of the finite temperature quantum equations (14) and (39) can be
taken as

Li = i�ψ∗
i · ψ̇i − �

2

2m
∇ψ∗

i · ∇ψi − V ψ∗
i ψi − T kB ln

(
ωipi

)
ψ∗

i · ψi, (40)

where Li is the Lagrangian function of the i-th quantum state.
From Eq. (40), we have

∂Li

∂ψi

= −V ψ∗
i − T kB ln

(
ωipi

)
ψ∗

i , (41)

∂Li

∂ψ̇i

= i�ψ∗
i , (42)

∂Li

∂(
∂ψi

∂xi
)

= − �
2

2m

∂ψ∗
i

∂xi

, (43)

∂Li

∂ψ∗
i

= i�ψ̇i − V ψi − T kB ln
(
ωipi

)
ψi, (44)

∂Li

∂ψ̇∗
i

= 0, (45)

and

∂Li

∂(
∂ψ∗

i

∂xi
)

= − �
2

2m

∂ψi

∂xi

, (46)

substituting Eqs. (41)–(43) into Lagrangian equation

∂Li

∂ψ∗
i

− ∂

∂t

(
∂Li

∂ψ̇∗
i

)
−

3∑

i=1

∂

∂xi

(
∂Li

∂(
∂ψ∗

i

∂xi
)

)
= 0, (47)

to get

i�ψ̇i − V ψi − T kB ln
(
ωipi

)
ψi + �

2

2m

3∑

i=1

∂2ψi

∂x2
i

= 0. (48)

Equation (48) is Eq. (14)

i�
∂

∂t
ψi(�r, t, T ) =

[
− �

2

2m
∇2 + V + T kB ln

(
ωipi

)]
ψi(�r, t, T ), (49)
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substituting Eqs. (44)–(46) into Lagrangian equation

∂Li

∂ψi

− ∂

∂t

(
∂Li

∂ψ̇i

)
−

3∑

i=1

∂

∂xi

(
∂Li

∂(
∂ψi

∂xi
)

)
= 0, (50)

to get

−V ψ∗
i − T kB ln

(
ωipi

)
ψ∗

i − i�ψ̇∗
i +

3∑

i=1

�
2

2m

∂2ψ∗
i

∂x2
i

= 0, (51)

Eq. (51) is Eq. (39)

−i�
∂

∂t
ψ∗

i (�r, t, T ) =
[
− �

2

2m
∇2 + V + T kB ln

(
ωipi

)]
ψ∗

i (�r, t, T ). (52)

When the finite temperature Lagrangian function is taken as the form of Eq. (40), we can
obtain the finite temperature quantum wave equations (14) and (39).

5 Conclusion

In this paper, we give quantum wave equation including temperature, and we can find the
energy eigenvalues, eigenfunctions of single particle and multiple particles system relate to
temperature. With Eqs. (31) and (34), we can text the relation between energy eigenvalues of
a dimensional harmonic oscillator and temperature, and also can text the relation between
the transition frequency of two energy levels at different temperature and temperature by
experiment. In addition, the new equation can be studied the superconductivity mechanism
and Bose-Einstein Condensate and so on.
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