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In this paper we propose an approach for handling noise in deconvolution algorithm based on multidi-
rectional filters. Most image deconvolution techniques are sensitive to the noise. Even a small amount of
noise will degrade the quality of image estimation dramatically. We found that by applying a directional
low-pass filter to the blurred image, we can reduce the noise level while preserving the blur information
in the orthogonal direction to the filter. So we apply a series of directional filters at different orientations
to the blurred image, and a guided filter based edge-preserving image deconvolution is used to estimate
an accurate Radon transform of the clear image from each filtered image. Finally, we reconstruct the
original image using the inverse Radon transform. We compare our deconvolution algorithm with many
competitive deconvolution techniques in terms of the improvement in signal-to-noise ratio and visual
quality. © 2013 Optical Society of America
OCIS codes: (100.0100) Image processing; (100.1830) Deconvolution; (100.3190) Inverse problems;

(100.3020) Image reconstruction-restoration.
http://dx.doi.org/10.1364/AO.52.006792

1. Introduction

The goal of image deconvolution/deblurring is to re-
construct a true image uorig from a degraded image y
that is the convolution of the true image and a point
spread function (PSF) h of a linear shift-invariant
system H:

g�n1; n2� � Huorig�n1; n2� � γ�n1; n2�
� �h � uorig��n1; n2� � γ�n1; n2�; (1)

where γ is the noise introduced in the procedure of
image acquisition, and it is generally assumed to
be independent and identically distributed (i.i.d.)
zero-mean additive white Gaussian noise (AWGN)
with variance σ2, and “�” denotes convolution. The
image deconvolution is not only critical to many

scientific applications, such as astronomical imaging,
remote sensing, camera motion, and medical imag-
ing [1,2], but also important for consumer photogra-
phy and computational photography [1].

In the discrete Fourier transform domain, Eq. (1)
can be written as

G�k1; k2� � H�k1; k2� ·Uorig�k1; k2� � Γ�k1; k2�; (2)

where G, H, Uorig, and Γ are the discrete Fourier
transform of g, h, uorig, and γ, respectively. Given g
and h, we seek to estimate uorig. It is well known that
the deconvolution problem is ill-posed. Thus, to ob-
tain a reasonable image estimation, a method of
reducing the noise level needs to be utilized.

To find a unique and stable solution, a number of
deconvolution algorithms have been proposed. In
these methods, the Wiener filter [2,3] and the con-
strained least squares algorithm [2], can provide a
solution to this problem in the frequency domain
requiring reduced processing resources. However,

1559-128X/13/276792-07$15.00/0
© 2013 Optical Society of America

6792 APPLIED OPTICS / Vol. 52, No. 27 / 20 September 2013

http://dx.doi.org/10.1364/AO.52.006792


they often obtain a noisy result with ringing arti-
facts. As a result, the visual quality of the recovered
image often degrades.

Recently, considerable effort has been spent on
designing alternative sparsity constraints, which
preserve such features. Methods based on these
sparsity constraints have been successfully used
for image deconvolution. Transformations such as
wavelets [4], curvelets [5], shearlets [6], and wave
atoms [7] are popular for image representation and
are often used for image restoration.

Another popular deconvolution method is based on
total variation (TV) [8,9]. The TV deconvolution
method finds approximate solutions to differential
equations in the space of bounded variation func-
tions. Variations of this method have also been pro-
posed in [10] fast total variation deconvolution, [11]
total variation majorization-minimization, [12] total
variation shrinkage (TVS). These methods are well
known for their edge-preserving properties and gen-
erally achieve state-of-the-art results. In [13], itera-
tive shrinkage/thresholding (IST) algorithms were
placed on solid mathematical grounds, and fast
IST algorithm (FISTA) [14] and two-step IST
(TwIST) [15] have improved the IST algorithm.

In particular, the space-variant Gaussian scale mix-
tures [16], which employs Gaussian scale mixtures in
overcomplete directional and multiresolution pyra-
mids, and the block matching 3D [17,18], which em-
ploys a nonlocal modeling of images by collecting
similar image patches in 3D arrays, are among the
current best image deconvolution methods. And it
has been shown that learning representation from ex-
amples usually achieve good deconvolution results
[19,20]. There are many useful algorithms and addi-
tional techniques that may be found within [21–26].

In this paper, we propose a new method for esti-
mating a true image from a noisy blurry image.
We find that when a directional low-pass linear filter
is applied to the blurry image it can reduce the noise
level greatly, while the essential blur information
along the orthogonal direction is not affected. We
then use a deblurring method to estimate the filtered
true image and compute its Radon transform along
the orthogonal directions of this filter. These projec-
tions, known as the Radon transform, will not be
affected by the directional filters except for the noise
reduction. Based on this observation, we apply a
series of directional low-pass filters at different ori-
entations, and estimate a slice of the true image
projection from each image. This yields an accurate
estimate of the Radon transform. Finally, we recon-
struct the true image using the inverse Radon trans-
form. The guided filter-based image deconvolution
algorithm, which leads to edge-preserving results,
is used in this approach. Through the standard
simulation experiments, it outperforms many
existing state-of-the-art deconvolution algorithms.
Various tests show that our algorithm can perform
better than previous approaches on blurry and noisy
images.

A. Paper Organization

Section 2 discusses the relationship betweenmultidir-
ection filters and the Radon transform. Then, the
general formulation of the proposed deconvolution
algorithm is given in Section 3. Next, we demonstrate
the effectiveness of our approach by experimenting
the new algorithm on several test problems in
Section 4. Finally, Section 5 concludes this paper.

2. Multidirectional Filters

We consider the directional low-pass filter lθ:

�I � lθ��n1; n2� �
1
W

Z �∞

−∞
w�t�I�n1 � t cos θ; n2

� t sin θ�dt; (3)

where I is an image, �n1; n2� is a pixel location, t is the
spatial distance from one pixel to �n1; n2�, W is the
normalization factor defined as W � R�∞

−∞ w�t�dt.
The profile of the filter is determined by w�t�, for
which we use a Gaussian function, w�t� �
exp�−t2∕2σ2�, where σ controls the strength of the
filter.

Filtering the blurry image affects the estimated
true image. In the filtered image

gθ � g � lθ � h � u � lθ � γ � lθ;

we estimate the true image uθ � u � lθ from gθ.
Similar to filtering with a two-dimensional (2D)

Gaussian filter, the lθ averages pixels along the direc-
tion θ and reduces the noise level. It has nearly no
influence on the blur information in the orthogonal
direction θ� π∕2. We exploit this property to esti-
mate the projection of the original image u along
the direction θ. The projection can be formulated
as a Radon transform [27], which is the collection
of integrals of a signal along projection lines. The par-
ticular value of the Radon transform corresponding
to a projection line ρ � x cos θ� y sin θ is

Ru�θ; ρ� �
ZZ

u�x; y�δ�ρ − x cos θ − y sin θ�dxdy; (4)

where u�x; y� indicates the value at the coordinate
�x; y� on kernel u. θ and ρ are the angle and offset
of the projection line, respectively.

Thus, the projection of kernel uθ along the projec-
tion direction θ is

Ruθ

�
θ� π

2
; ρ
�
� Ru�lθ

�
θ� π

2
; ρ
�
: (5)

According to the convolution property of Radon
transform

Rf�g�θ; ρ� � �Rf �θ; ·� �Rg�θ; ·���ρ�;

so Eq. (5) can be written as
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Ruθ

�
θ� π

2
; ρ
�
�

�
Ru

�
θ� π

2
; ·
�
�Rlθ

�
θ� π

2
; ·
��

�ρ�:
(6)

Note that

Rlθ

�
θ� π

2
; ρ
�
�

ZZ
lθ�x; y�δ

�
ρ − x cos

�
θ� π

2

�

−y sin
�
θ� π

2

��
dxdy

� 1
W

Z �∞

−∞
w�t�δ�ρ� t cos θ sin θ

− t sin θ cos θ�dt
� δ�ρ�: (7)

Then, from Eqs. (6) and (7), we get

Ruθ

�
θ� π

2
; ρ
�
� Ru

�
θ� π

2
; ρ
�
:

It shows lθ has no impact on the Radon transform
of the true uncorrupted image to the orthogonal
direction of the filter. This is the foundation of the
proposed approach. An example is shown in Fig. 1.

3. Deconvolution Algorithm

A. Noise-aware Image Estimation

Based on the analysis above, we apply a directional
filter lθ, estimate the filtered true image uθ, and then
project it along the orthogonal direction of the filter

to get the corresponding Radon transform. We repeat
this process to get a set of projections. Finally, we
compute the 2D image using the inverse Radon
transform [27]. The advantage of this strategy is that
it greatly reduces noise when applying lθ, while keep-
ing the computed Radon transform intact.

We summarize the proposed algorithm as follows,
Steps 1 to 4 are also illustrated in Fig. 2.

Algorithm 1 Noise-aware Image Deconvolution Algorithm

Input: Blurry and noisy image g and PSF h.
Output: Estimated image u.
1. Apply Nd directional smoothing filters to the input image g,

each filter has a direction of kπ∕Nd, k � 1;…;Nd, where Nd is the
number of directional filters.
2. For each filtered image gθ, use PSF h to estimate uθ.
3. For each estimated uθ, compute its Radon transform Ruθ

�θ�
�π∕2�; ρ� along the direction θ� �π∕2�.
4. Reconstruct u from the series ofRuθ

�θ� �π∕2�; ρ� using inverse
Radon transform.
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Fig. 1. Directional filter and the Radon transform. (a) Original
image, (b) Radon transform of original image along the
θ � 3π∕4, (c) filtered image by apply the directional filter
(θ � π∕4), and (d) Radon transform of filtered image along the
θ � 3π∕4. Note that the Radon transform of the filtered image
is the same as the original unfiltered image.

Fig. 2. Illustration of applying directional filters for image de-
blurring. (a) Blurred noisy image. (b) We apply directional filters
in different orientations to the blurred noisy image. (c) From each
filtered image, a deblurred image is computed first, then (d) pro-
jected along the orthogonal direction to generate the correct Radon
transform of the true image. (e) Final true image u is reconstructed
using inverse Radon transform.
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In Step 2, since noise is largely removed by the di-
rectional filtering, we apply a robust deconvolution
technique described in Section 3.B to estimate the
filtered image uθ. This novel technique is based on
guided filters [28]. In [26], we first integrate the
guided filter into the deconvolution problem to pro-
pose an efficient iterative algorithm, which leads
to high-quality reconstruction results. In this work,
we improve the method proposed in [26] to adapt
the directional filtered images.

B. Guided Filter-Based Image Deconvolution

Image smooth with guided filter was defined in [28].
To date, it is one of the fastest edge-preserving filters.
The key assumption of the guided filter is a local lin-
ear model between the guidance image and the filter-
ing output image. The guided filter output is locally a
linear transform of the guidance image. This filter
has the edge-preserving smoothing property like
the bilateral filter, but does not suffer from the gra-
dient reversal artifacts. So we integrated this filter
into the deconvolution problem.

In our approach, we minimize the following energy
function to estimate every filtered image uθ:

minuθ
∥gθ − h � uθ∥2 � λ∥uθ − Guid�pθ; uθ�∥2; (8)

where Guid�·� is the guided filter smoothing opera-
tion [28], λ is a balancing weight, and pθ is the
guidance image.

Minimizing this energy function will ensure that
the deblurred image is noise artifact free, and can
best fit uθ and gθ. Directly minimizing this energy
is hard because Guid�·� is highly nonlinear. Our
algorithm is based on the decouple of deblurring
and denoising steps in the restoration process.

In the deblurring step, we proposed two cost
functions:

uθ � arg min
uθ

∥gθ − h � uθ∥2 � λ∥uθ − ūθ∥2; (9)

pθ � arg min
pθ

∥gθ − h � pθ∥2 � λ∥∇θpθ − ∇θūθ∥2; (10)

where ūθ is a pre-estimated image. For initialization
we set ūθ to be zero (a black image).

To suppress the amplified noise and artifacts intro-
duced by Eq. (9) in the denoising step, we applied the
guided filter to smooth the estimated image uθ, and
pθ is used as the guidance image:

ūθ � Guid�pθ; uθ�: (11)

The image uθ contains more noise and image infor-
mation than pθ. So we use pθ as the guidance image
and uθ as the filtering input image to recover some
details and reduce the leaked noise.

Different from [26], we use the directional gradient
operator ∇θ instead of the gradient operator ∇ in
Eq. (11), where ∇θ � ∇ × Rθ � �∂x; ∂y� ×Rθ is the
directional gradient operator, Rθ � � cos θ

− sin θ
sin θ
cos θ�. Since

lθ filters along the direction θ, they have an influence
on the profile of edges. We use the directional deriva-
tive operator along the θ and θ� π∕2 instead of
gradient operator (along 0 and π∕2), to suit for the
change of image’s edges.

Alternatively, we diagonalized derivative opera-
tors after the fast Fourier transform (FFT) has been
applied to reduce the computational complexity.
These yield solutions of Eqs. (10) and (11) in the
Fourier domain

F �uθ� �
F �h�� · F �gθ� � λF �ūθ�

jF �h�j2 � λ
; (12)

F �pθ� �
F �h�� · F �gθ� � λjF �∇θ�j2 · F �ūθ�

jF �h�j2 � λjF �∇θ�j2
; (13)

where F is the FFT operator, F �·�� denotes the
complex conjugate, and

jF �∇θ�j2 � j�F �∂x�;F �∂y�� × Rθj2

� jF �∂x� cos θ − F �∂y� sin θj2

� jF �∂x� sin θ� F �∂y� cos θj2;

denotes the Fourier transform of ∇θ operator. The
plus, multiplication, and division are all component-
wise operators.

We found that iterating Eqs. (9)–(11) yields a good
result in practice. Solving Eq. (9) yields a noisy image
uθ that also contains useful high-frequency image
structures. In the alternating minimization process,
the noise in uθ is gradually reduced, while the high-
frequency image details are preserved by guided
image filter. So, this leads to an algorithm that pro-
duces high quality image reconstructions.

4. Experiments

In this section, we present results of our proposed
algorithm and compare it against competing deblur-
ringmethods such as ForWaRD [4], TVS [12], L0-AbS
[22], SURE-LET [25].

In these experiments we will use the improvement
in signal-to-noise ratio (ISNR) to measure the perfor-
mance. The ISNR is defined as

ISNR � 10 log10

�
∥uorig − g∥22
∥uorig − û∥22

�
;

where û is the corresponding estimated image.
For all the experiments, we set the extent σ of the

directional filter to 15 pixels. If the size of the image
is N ×N, we apply directional filters along N regu-
larly sampled orientations. In our work [26], a simple
but effective method was proposed for determining
the parameter of Eq. (8) automatically.

We consider six benchmark deconvolution prob-
lems. In these experiments, original images are
Cameraman (experiments 1, 2, and 3) of size
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256 × 256, Lena of size 512 × 512 (experiment 4),
House of size 256 × 256 (experiment 5) and Boat of
size 512 × 512 (experiment 6). Table 1 summarizes
the different degradation models used, which are de-
fined by the blur type and the variance of the AWGN
for each of the experiments. The original images are
shown in Fig. 3. We have tested our method with
different blur models at various noise levels. Good
and consistent results have been achieved.

In the experiments, the proposed method outper-
forms the other techniques in terms of ISNR.We note
that the results of the six standard experiments for
different images are included in Table 2 as follows.

In the first set of experiments, a Cameraman im-
age, shown in Fig. 4(a), is blurred by a 9 × 9 uniform
box-car blur. The AWGN variance is σ2 � 4. The
ISNR values obtained by the different methods are
compared in Table 2 under experiment 1 column.
The proposed method yields ISNR values of
6.16 dB, which are better than the values obtained
by any of the other methods. A portion of the image

is zoomed to reveal the visual detail of the results ob-
tained by the different methods, and is shown in
Figs. 4(a)–4(f). As can be seen from Fig. 4(c), the re-
sult of ForWaRD method [4] obtains a low-contrast
image with some visual artifacts. The results of
TVS [12] and L0-Abs [22] are shown in Figs. 4(d)
and 4(e), respectively. It can be seen that some de-
tails on the man’s face are lost. The restoration result
of our proposed method is shown in Fig. 4(f). It is no-
ticeable that our result preserves the edge better
(see, theman’s face), and recovers more image details
than the competing methods.

In the second set of experiments (Exp. 2 and Exp. 3)
performed over the Cameraman image, the blur
kernel (PSF) and the noise variances are shown in
Table 1. The simulation results are reported under
Exp. 2 and Exp. 3 of Table 2, respectively. As can
be seen from the ISNR, our algorithm shows the best
performance compared to other image deconvolution
methods.

In the third set of tests, a Lena image, shown in
Fig. 3(b), is blurred by a 5 × 5 separable filter with
weights �1; 4; 6; 4; 1�∕16 in both the horizontal and
vertical directions and then contaminated with
AWGN by σ � 8. The results are summarized under
Exp. 4 column of Table 2. A portion of the deblurred
images from different methods are shown in Fig. 5.
In Figs. 5(c)–5(f), it can be seen that there are no
slight differences among them in the visual perfor-
mance. The reason for this may be that the size of

Table 1. Description of the Observation Parameters for the Six
Experiments

Blur σ2

Exp. 1 9 × 9 uniform 4
Exp. 2 hi;j � �1� i2 � j2�, i, j � −7;…; 7 16
Exp. 3 25 × 25 Gaussian PSF with standard

deviation 1.6
8

Exp. 4 �1; 4; 6;4; 1�T �1;4; 6; 4;1�∕256 64
Exp. 5 25 × 25 Gaussian PSF with standard

deviation 1.6
8

Exp. 6 9 × 9 uniform 4

(a) (b)

(c) (d)

Fig. 3. Images used in this paper for different experiments.
(a) Cameraman image, (b) Lena image, (c) house image, and
(d) boat image.

Table 2. ISNR for Different Experiments

Methods Exp. 1 Exp. 2 Exp. 3 Exp. 4 Exp. 5 Exp. 6

Our method 6.16 5.18 3.40 5.01 4.99 5.61
ForWaRD 4.88 4.31 2.83 3.21 3.53 4.75
TVS 5.72 4.52 3.11 4.12 4.51 5.20
L0-AbS 5.45 4.37 3.02 4.42 4.55 5.25
SURE-LET 5.08 4.21 2.95 4.80 4.02 5.41

Fig. 4. Details of the image deconvolution experiment with
a Cameraman image. (a) Original image, (b) blurred image,
(c) ForWaRD result, ISNR � 4.88 dB, (d) TVS result, ISNR �
5.72 dB, (e) L0-AbS result, ISNR � 5.45 dB, and (f) our result,
ISNR � 6.16 dB.

6796 APPLIED OPTICS / Vol. 52, No. 27 / 20 September 2013



the PSF is small (5 × 5), the blur effect of degraded
image [shown in Fig. 5(b)] is not obvious. But our
multidirectional filters algorithm performs the best
in terms of ISNR. This experiment shows that even
in the case of extreme noise levels, our method can
provide better reconstruction than some of the com-
petitive deconvolution methods.

In the fifth experiment, we apply a Gaussian PSF
on the House image. The deconvolution results ob-
tained by different methods are reported under
Exp. 5 column of Table 2. Our multidirectional filter
based method performed, yielding ISNR values of
4.99 dB. The details of the images obtained by the
different methods are shown in Fig. 6. The result
of TVS [12] is shown in Fig. 6(c), there are some
blocking artifacts in the image. The restoration re-
sult of the L0-AbS algorithm [22] is shown in
Fig. 6(d), it can bee seen that the vertical white edge

of the wall is still blurry. Figure 6(e) shows the result
of SURE-LET [25]. By careful examination, we see
that there are a few artifacts around the vertical
edges in window. Our result is shown in Fig. 6(f).
It is obvious that our method recovers the sharpness
of some edges (for instance, vertical edges in win-
dow). This experiment shows that our proposed
method can provide better reconstruction than some
of the competing deconvolution methods.

In the final experiment, the original image of Boat
is blurred by a 9 × 9 uniform box-car blur, the noise
variances are σ2 � 4. From Table 2, we notice that
our method performs the best in terms of ISNR.
The restoration result of the ForWaRD [4] is shown
in Fig. 7(c). By careful examination we find that there
are some visually annoying artifacts in the image.
The restoration result of the L0-AbS algorithm
[22] is shown in Fig. 7(d). It can be seen that some
image details on the boat are lost. The restoration
result of SURE-LET [25] is shown in Fig. 7(e), there
are a few artifacts around the side of boat. The resto-
ration result of our proposed method is shown in
Fig. 7(f). One can see that it is more visually pleasant
than Figs. 7(c)–7(e). Results have shown that the
multidirectional filters-based method obtains a de-
blurring result with better quantitative and visual
performance.

5. Conclusion and Future Work

In this paper, we presented a deconvolution method
based on multidirectional noise removal filters using
a Radon transform. We use directional filters to re-
duce the effect of the noise while keeping the image
information unaffected in its orthogonal direction.
By applying a series of directional filters, we showed
how to recover correct one-dimensional projections of
the true image in all directions, which we use to es-
timate an accurate image using the inverse Radon
transform. We also introduced a noise-tolerant
nonblind deconvolution technique based on guided

Fig. 5. Details of the image deconvolution experiment with a
Lena image. (a) Original image, (b) blurred image, (c) TVS result,
ISNR � 4.12 dB, (d) L0-AbS result, ISNR � 4.42 dB, (e) SURE-
LET result, ISNR � 4.80 dB, and (f) our result, ISNR � 5.01 dB.

Fig. 6. Details of the image deconvolution experiment with a
House image. (a) Original image, (b) blurred image, (c) TVS result,
ISNR � 4.51 dB, (d) L0-AbS result, ISNR � 4.55 dB, (e) SURE-
LET result, ISNR � 4.02 dB, and (f) Our result, ISNR � 4.99 dB.

Fig. 7. Visual comparison of Boat image in Exp. 6. (a) Crop
from Boat image, (b) blurred image, (c) ForWaRD result,
ISNR � 4.75 dB, (d) L0-AbS result, ISNR � 5.25 dB, (e) SURE-
LET result, ISNR � 5.41 dB, and (f) our result, ISNR � 5.61 dB.
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filters, which leads to high-quality reconstruction re-
sults. The proposed method was tested using syn-
thetic experiments and outperformed four existing
state-of-the-art deconvolution algorithms. The pro-
posed model and algorithm can be extended to more
general image restoration problems such as denois-
ing and super-resolution.
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