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Abstract

The modulation transfer function (MTF) is one of the essential criteria of space optical camera. However,
the traditional measurement methods of MTF are limited by precise equipment and test site. In this paper, a
novel method is proposed to estimate the MTF of space optical camera via BP neural networks and Markov
model. Utilizing this method, the MTF of space optical camera can be estimated only from the images taken
by the camera without additional measurement equipment. The principle is to use the information extracted
from known MTF images to train a BP artificial neural networks (ANN), and then use the BP ANN to
estimate the MTF of space optical camera from remote images. In the meanwhile, the Markov model is used
to correct the results estimated by ANN. The experiment results show that the MTF estimation average
relative error at Nyquist frequency can further narrow to 5% via BP neural networks and Markov model,
compared with 9% using only BP ANN.
Crown Copyright & 2013 Published by Elsevier Ltd. on behalf of The Franklin Institute All rights reserved.
1. Introduction

The number of operating satellites is continuously increasing in recent decades, and more and
more scientific and commercial communities become aware of the importance of satellites
remote sensing in the area of agriculture industry, resources survey, disaster evaluation, etc.
[1,2]. The space optical camera is one of the key payloads on satellites. It can be used to collect
the optical information of interesting target by means of images.
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In observation missions, it often needs to get the performance indexes of space optical camera,
such as orbit altitude, ground resolution, swath, spectral bands and so on [3]. In addition to the
routine indexes, it is useful to obtain the imaging performance of space optical camera [4–6]. There
are many methods to access the imaging performance of space optical camera, including resolution
test pattern method, spot diagram method, etc. However, the most universal and objective method
accepted by researchers is MTF [7]. It can efficiently quantify the ability of a space optical system
to transfer object contrast at a particular frequency. It has been widely used to characterize the
imaging performance of space optical camera, such as the remote sensing satellites SPOT, GeoEye,
SINA-1, etc. [3,8,9]. Meanwhile, the MTF is useful to focus space optical camera or to make a
deconvolution filter, which purpose is to enhance image contrast [10].

There are several methods for measuring MTF, such as discrete or continuous frequency generation,
image scanning, wavefront analysis, etc. [11,12]. However, the methods mentioned above have some
disadvantages. Firstly, the precise test target is difficult to fabricate as space optical camera spatial
resolution is increasing. Secondly, these methods need sophisticated equipment and are limited by the
test site. The limitations of equipment and test site make the MTF test of space optical camera often
before the launch. But it is not enough, the MTF may change due to vacuum in space, vibration during
launch or change in material properties in time [13]. Therefore, new methods should be explored to
measure the MTF of space optical camera without the above restrictions, either on ground assembly or
working in orbit.

In this paper, a method is presented to estimate the MTF of space optical camera via BP neural
networks and Markov model. Benefit from this approach, the MTF of space optical camera can
be estimated from images taken by the camera, and it is not subject to precise measurement
equipment and test site. The simulation method of images with controlled MTF and the
extraction method of image characteristic parameters are presented in detail. And the basic
principle of ANN designing is discussed. Finally, the Markovian prediction model is used to
improve the accuracy of estimation result [14–16].

2. Background

2.1. Markovian jumping system

Markovian jumping system is a set of known subsystem models switching each other at a
specific transition probability [17–19]. For discrete system, the jumping process fγðkÞ; k≥0g,
taking values in a finite set S≜f1; 2; 3;…; sg, governs the switching among the different system
modes. The system transition probabilities are defined as

Pfγðk þ 1Þ ¼ jjγðkÞ ¼ ig ¼ πij ð1Þ
where πij≥0;∀i; j∈S, and ∑s

j ¼ 1πij ¼ 1. Likewise, the transition probabilities matrix is defined
as

Π ¼

π11 π12 … π1s

π21 π22 … π2s

⋮ ⋮ ⋱ ⋮
πs1 πs2 … πss

2
6664

3
7775 ð2Þ

However, the transition probabilities of many Markovian jumping system are partially
unknown [20,21]. For instance, for a system with 4 operation modes, the probabilities matrix Π
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may be defined as

? π12 ? π14

? ? ? π24

π31 ? π33 ?

? ? π43 π44

2
6664

3
7775 ð3Þ

where “?” represents the inaccessible elements. The general express of the transition probabilities
was presented by Zhang for the first time [22,23]. For notational clarity, ∀i∈S, we denote
S¼ Sik þ Siuk with Sik≜fj : πij is knowng and Siuk≜fj : πij is unknowng.
Moreover, if Sik≠ϕ, it is further described as

Sik ¼ ðki1;…; kimÞ ∀1≤m≤s ð4Þ
where kim∈N

þ represent the mth known with the index kim in the ith row of matrix π. Also, we
denote πik ¼∑j∈Sjk

πij. Moreover, if Siuk ¼ ϕ, the Markovian jumping system is the case with all-

known transition probabilities. And if Sik ¼ ϕ, the Markovian jumping system is the case with all-
unknown transition probabilities, the system is also named as switching system.

2.2. Modulation

The modulation of optical system is defined as [24]

M ¼ Imax�Imin

Imax þ Imin
ð5Þ

where Imax is the maximum intensity produced by an image; Imin is the minimum intensity
produced by an image.
Considering an optical signal at a spatial frequency υ given by Fig. 1, the light intensity can be

described as

I xð Þ ¼ Io þ Ia cos 2πυx

¼ Io 1þ 2Ia
2Io

cos 2πυx

� �
Fig. 1. Sinusoidal light intensity distribution.
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¼ Io 1þ Imax�Imin

Imax þ Imin
cos 2πυx

� �

¼ Ioð1þM cos 2πυxÞ ð6Þ
Eq. (6) illustrates that the modulationM is the amplitude of sinusoidal light intensity loaded on

the average light intensity Io.
2.3. MTF

The MTF is the most widely used scientific method, which can characterize the imaging
performance of space optical camera. It is a measure of the ability of an optical system to transfer
various levels of detail from object to image. In other words, it characterizes how well the camera
can reproduce the contrast of the observed target. Depending on the properties of space optical
camera, the contrast of images reproduced by the optical system will decrease as the spatial
frequency increased.

The MTF is defined as the ratio between the image modulation Mi(v) and the object
modulation Mo(v) at a spatial frequency v

MTF vð Þ ¼ MiðvÞ
MoðvÞ

ð7Þ

In the meanwhile, the image within an isoplanatic patch can be represented as a convolution of
a point spread function (PSF) over the scene

imgðx; yÞ ¼
Z þ1

�1

Z þ1

�1
hðx�x′; y�y′Þscnðx′; y′Þ dx′ dy′ ð8Þ

where hðx; yÞ represents the spatial shape of PSF, and hðx�x′; y�y′Þ represents a PSF at location
ðx′; y′Þ in image plane.

Each point in the scene radiates independently and produces a PSF in image plane with
corresponding intensity and location. Mathematically, an image produced by optical system can
be described by convolving the optical PSF over the scene. Since a convolution in space
corresponds to a multiplication in frequency, the optical system can be seen as a spatial filter

Imgðξ; ηÞ ¼Hðξ; ηÞScnðξ; ηÞ ð9Þ

where Imgðξ; ηÞ is the Fourier transform of image, Scnðξ; ηÞ is the Fourier transform of target
scene, and Hðξ; ηÞ is the optical transfer function (OTF).

Obviously, the OTF is the Fourier transform of PSF. However, in order to keep the image
intensity proportional to scene intensity, the OTF of optics is normalized by the total area under
the PSF blur spot

H ξ; ηð Þ ¼
Rþ1
�1

Rþ1
�1 hðx; yÞe�jξxe�jηy dx dyRþ1

�1 hðx; yÞ dx dy
ð10Þ

Finally, the MTF of optical system is jHðξ; ηÞj.
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3. Neural networks training set

3.1. MTF model of space optical camera

Generally, the space optical camera can be divided into three different scanning systems:
whiskbroom imagers, pushbroom scanners, staring imagers [25]. In this paper, the MTF model of
time delay and integration (TDI) charge-coupled device (CCD) space optical camera with
pushbroom scanning system is discussed. It is composed of optics MTF, motion MTF, detector
MTF and charge transfer MTF:

MTF ¼MTFopticsMTFmotionMTFdetectorMTFcharge ð11Þ
Optics MTF is the MTF of the overall lens system. The optics MTF for a circular aperture is

given by

MTFoptics ¼
2
π

cos �1 f x
f oco

� �
� f x
f oco

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f x

f oco

� �2
s" #

;
f x
f oco

o1

0 elsewhere

8><
>: ð12Þ

where fx is the spatial frequency, f oco ¼D0=λ is the optical cutoff, and D0 is the aperture
diameter.
The detector MTF is given by

MTFdetector ¼ sincðπαf xÞ ð13Þ
where α¼ a=Feff , a is the detector size, and Feff is the effective focal length.
The linear motion MTF is given by

MTFmotion ¼ sincðVtif xÞ ð14Þ
where V is the image moving velocity on the image plane when space optical camera flew over a
target on ground, and ti is the integration time of TDI CCD.
Imperfect charge-transfer efficiency results charge-transfer MTF [24]

MTFcharge ¼ expf�nεð1� cos 2πf x=f cÞg ð15Þ
where ε is the charge-transfer inefficiency per transfer, n is the number of transfers in the CCD,
and fc is the clock frequency.
There are many MTF models of space optical camera in the literature [26–28]. In this paper,

the model mentioned above will be used in our work.

3.2. Image simulations

Considering an image obtained by an optical system from a scene, the relationship between the
scene and the image can be modeled as

gðx; yÞ ¼H½f ðx; yÞ� þ ηðx; yÞ ð16Þ
where gðx; yÞ is the image obtained by space optical camera, f ðx; yÞ is the scene, and ηðx; yÞ is the
additive noise.
When imaging optical system is a linear shift-invariant system, the degraded image can be

modeled in spatial domain by

gðx; yÞ ¼ hðx; yÞnf ðx; yÞ þ ηðx; yÞ ð17Þ
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where hðx; yÞ is the degradation function represented in spatial domain, and the operator n

represents spatial convolution.
For processing convenience, Eq. (17) can be converted to frequency domain

Gðu; vÞ ¼Hðu; vÞFðu; vÞ þ Nðu; vÞ ð18Þ
In spatial domain the degradation function hðx; yÞ is known as PSF, and in frequency domain

the degradation function Hðu; vÞ is known as OTF, which is mentioned in Section 2.3.
However, the model we discussed above is a continuous function model, but the realistic

images obtained by the space optical camera are digital discrete, so in order to simulate the
remote sensing images the model of sampled image is given by [28]

gðx; yÞ ¼ ½hðx; yÞnf ðx; yÞ�∑
i;j
δðx�jΔx; y�iΔyÞ þ ηðx; yÞ ð19Þ

where Δx and Δy are the sampling interval considered along the x and y directions. In frequency
domain, Eq. (19) becomes

G f x; f y
� �¼ MTF f x; f y

� �
F f x; f y
� �� �

n∑
i;j
δ f x�

j

Δx
; f y�

j

Δy

� �
þ N f x; f y

� � ð20Þ

Using Eq. (20), the images with controlled MTF and noise can be simulated. In our practice,
the image f ðx; yÞ should have sufficient sample rate compared with the simulated image. In our
work, the image f ðx; yÞ is taken by a space optical camera (GeoEye) with a ground resolution of
0.5 m and a known MTF at Nyquist frequency. The simulated images have a ground resolution
of 2 m and the MTF of images is under controlled. Some examples of simulated images with
controlled MTF at Nyquist frequency are presented in Fig. 2.
4. Image characteristic parameters

4.1. Spatial spectrum vector

By the definition of MTF, when MTF is higher at a spatial frequency it means that the spatial
frequency of the image is less attenuated by space optical camera. Therefore the spatial spectrum
Fig. 2. Simulated remote sensing images with controlled MTF at Nyquist frequency.
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vector given by Eq. (21) is selected as a parameter linked to the image MTF [29]

V
	
f Þ ¼ ∑

v
jSðf ; vÞj;∑

u
jSðu; f Þj


 �
ð21Þ

where Sð�Þ is the Fourier transform of images, V(f) is the spectrum vector at spatial frequency f.
Fig. 3 shows four remote sensing images with different landscape structures and different

MTF at Nyquist frequency. (a) and (b) of Fig. 3 are plain images with simple landscape structure.
(c) and (d) of Fig. 3 are grove images with complex landscape structure. The spectrum vectors at
Nyquist frequency of the four images are presented. And the Discrete Fourier transform of Fig. 3
is presented in Fig. 4.
Figs. 3 and 4 show that the spectrum vector decreases in directions x and y along with the MTF

degradation for the same images (Fig. 3(a) and (b), (c) and (d)). It means that the spectrum vector
is an effective parameter to characterize the MTF degradation. On the other hand, it can be
concluded from Fig. 3 that the spectrum vector is also sensitive to the landscape structure of
images. The images with complex landscape structures have a greater spectrum vector. So in
order to estimate the MTF from the spectrum vector of images, the element of landscape
Fig. 3. The MTF and spectrum vector of different images. (a) MTF¼0.45, V(fN)¼ (41976,41076); (b) MTF¼0.09, V
(fN)¼ (10848,9304); (c) MTF¼0.45, V(fN)¼ (60255,57305); (d) MTF¼0.09, V(fN)¼ (21993,23156).



Fig. 4. Spectrum of plain and grove images when MTF¼0.45 and MTF¼0.09.
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structure in images needs to be separated from the spectrum vector of images, this will be further
discussed in Section 4.2.

4.2. Landscape structure parameters

In order to characterize the landscape structure of a remote sensing image, the notion of
variogram is introduced [30,31]. It is often used for image processing [32,33]. The variogram
γðhÞ of an image is a measurement of the average grey level variation of two points separated by
a given number of pixels h.

For all pixels p of an image s,

γ hð Þ ¼ 1
2E js pþ hð Þ�s pð Þj2� � ð22Þ

where E is the statistical expectation.
In the meantime, the asymptote of variogram curve γðhÞ is the image variance. It can be

inferred as

γ hð Þ ¼ 1
2E s2 pð Þ þ s2 pþ hð Þ�2s pð Þ � s pþ hð Þ� �

¼ 1
2 E s2 pð Þ� �þ 1

2E s2 pþ hð Þ� ��E
�
s pð Þ � s pþ hð Þ� ð23Þ

when h-1, s(p) and sðpþ hÞ are mutual independent, so

E½sðpÞ � sðpþ hÞ� ¼ E½sðpÞ� � E½sðpþ hÞ� ð24Þ
moreover, for all h there is a relationship between E½sðpÞ� and E½sðpþ hÞ�: E½sðpÞ� ¼ E½sðpþ hÞ�,
so the asymptote of variogram curve can be inferred as

lim
h-1

γðhÞ ¼ E½s2ðpÞ��E2½sðpÞ� ¼ s2 ð25Þ



Fig. 5. Two images with different landscape structures.
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In order to verify the effect of variogram to characterize the landscape structure of images, the
variogram curves of two images with different landscape structures in Fig. 5 are shown in Fig. 6. It
can be concluded that the variogram curves of these two images have their own characteristic shape,
which are highly linked to the landscape structures of images. In other words, the shape of variogram
curves is sensitive to the landscape structure of images. In the meantime, Fig. 6 illustrates that the
variogram is not only sensitive to image landscape structure but also MTF. The variogram of two
images decreases in y direction along with the MTF degradation at Nyquist frequency.

4.3. The statistical parameters

There are various statistical parameters of images such as mean, variance, skewness, kurtosis
and so on. In practice, not all the statistical parameters of image should be selected as the neural
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networks input. The basic rule is that the parameters which can entirely or partially characterize
the MTF of images can be selected as the neural networks input. Unrelated parameters with MTF
of images should be avoided in the neural networks. Otherwise it would be difficult to train the
neural networks to reach satisfied estimation accuracy.

For example, mean and variance are two general statistical parameters in images. So we
should confirm that which parameters can be selected as the neural networks input, it depends on
the parameters and MTF are relevant. Fig. 7 shows the relationship between MTF and mean of
city and field images. The mean varies along with the image scenery, but it cannot characterize
the variation of MTF in images. That is to say the mean is not sensitive to MTF of images.
Therefore the mean of images is not suitable for the neural networks input. However, Fig. 8
shows that variance of field and city images have a strong correlation with MTF of images. So
the variance of images in our work can be accepted as the input parameters of the neural
networks.

4.4. Quality index Q

4.4.1. Definition
Let x¼ fxijji¼ 1; 2;…;N and j¼ 1; 2;…;Mg and y¼ fyijji¼ 1; 2;…;N and j¼ 1; 2;…;Mg be

the original image and degraded image respectively. The quality index Q is defined as

Q¼ 4sxyxy
ðs2x þ s2yÞ½x2 þ y2� ð26Þ

where

x ¼ 1
NM

∑
N

i ¼ 1
∑
M

j ¼ 1
xij;

y ¼ 1
NM

∑
N

i ¼ 1
∑
M

j ¼ 1
yij;
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Fig. 7. Relationship between MTF and mean of city and field images.
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s2x ¼
1

NM�1
∑
N

i ¼ 1
∑
M

j ¼ 1
ðxij�xÞ2;

s2y ¼
1

NM�1
∑
N

i ¼ 1
∑
M

j ¼ 1
ðyij�yÞ2;

sxy ¼
1

NM�1
∑
N

i ¼ 1
∑
M

j ¼ 1
xij�x
� �

yij�y
� �

:

The dynamic range of Q is ½�1; 1�. The best value 1 is achieved if and only if yij ¼ xij for all
i¼ 1; 2;…;N and j¼ 1; 2;…;M. The quality index actually composed of three different factors:
loss of correlation, luminance distortion, and contrast distortion. So the definition of Q can be
rewritten as three components

Q¼ sxy
sxsy

� 2xy

x2 þ y2
� 2sxsy
s2x þ s2y

ð27Þ

The first component is the linear correlation coefficient between x and y, whose dynamic range
is ½�1; 1�. The second component measures how close the two mean values of x and y are, whose
dynamic range is ½0; 1�. The third component measures how similar the two variances of the
images x and y are. Its range of value is ½0; 1�. The quality index Q is a powerful parameter in
image quality measurement [34]. It is sensitive to a lot of image distortion type such as blurring,
JPEG compression, additive Gaussian Noise, contrast stretching and so on [35]. Of course, it is
no problem to serve as the neural networks input. Fig. 9 shows the relationship between the
quality index Q and the MTF of field and city images, which illustrates that the quality index Q
and the MTF are related.

4.4.2. Quality index Q extraction
The quality index Q can characterize the deviation between the original image and the

degraded image. It is a comparison parameter. Therefore, in order to extract the quality index Q,
the a priori feature points need to be found in a remote sensing image. Benefit from the a priori
feature points, the original image in a particular area can be deduced. Finally, using the deduced



Fig. 10. Extraction quality index Q from an image.
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original image and the actual image in a particular area the quality index Q can be extracted. As
shown in Fig. 10, the high-contrast edge of a building can be used as a priori feature point.
Using the a priori feature point, the original high-contrast edge in the rectangular area of size 14
pixels � 56 pixels can be inferred. Then the quality index Q of the image can be extracted from
the rectangular area.

In practice, the high-contrast edge of a rectangular area can be used as a priori feature point,
but it is not the only feature point, other a priori feature points which can help us to deduce the
original image will be accepted. In addition, the image area used for extracting the quality index
Q should keep the same size in a measurement work.

5. Neural networks and Markov model

5.1. The input vector of neural networks

The neural networks input vector VMTF is composed of 9 components discussed above. The
parameters of the input vector are linked to the MTF of images. Finally, the input vector can be
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described as

VMTF ¼ fvariance; skewness; kurtosis; γð1Þ; γð3Þ; γð5Þ; γð50Þ;Vðf NÞ;Qg′ ð28Þ
5.2. Neural networks algorithm and training

In our work, a neural networks is constructed to estimate the MTF of remote sensing images
using the vector VMTF as neural networks input. This neural network is a back propagation
networks using Levenberg–Marquardt algorithm. It has one input layer, two hidden layers, and
one output layer. The transfer function of the two hidden layers is hyperbolic tangent sigmoid
function, and the output layer transfer function is Purelin function. The number of input layer
nodes is 9, and the number of output layer nodes is 1. Meanwhile, the number of the hidden layer
nodes should be designed and optimized. It is crucial for the performance of the neural networks
to estimate the MTF of image taken by space optical camera.
In order to train the neural networks, 100 images with the size of 2000 pixels � 2000 pixels

contained with different landscape structures are obtained from the remote sensing satellites
GeoEye and WorldView. Each original image is simulated to images with different MTF at
Nyquist frequency from 0.09 to 0.45 using the method mentioned in Section 3.2. The size of the
simulated images is 500 pixels � 500 pixels. In order to alleviate the training difficulty, the input
data of the neural networks is to be normalized between 0 and 1.
In practice, the initial number of the hidden layer nodes can be deduced from the geometric

pyramid rule. For a neural network with input nodes n and output nodes m, the rule defines
r¼

ffiffiffiffiffiffiffiffiffi
n=m3

p
, the first hidden layer nodes, initial value is mr2, the second hidden layer nodes, initial

value is mr. In our experiment, the initial input nodes n¼9, output nodes m¼1, the first hidden
layer nodes is 5, and the second hidden layer nodes is 2. Then adjust the number of hidden layer
nodes, until the network reaches to the satisfied training error 0.001. In the end, the first hidden
layer nodes is 8, the second hidden layer nodes is 3. The curve of training error is shown in
Fig. 11.
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Fig. 11. The training error of the BP neural networks.



Y. Gu et al. / Journal of the Franklin Institute 350 (2013) 3100–3115 3113
5.3. Markovian prediction model to correct the results

When using the trained neural networks to estimate the MTF of images at Nyquist frequency,
the results will fluctuate at a certain range due to the neural networks cannot be trained perfectly.
In order to correct the estimated results and improve the accuracy, the Markovian prediction
model is applied in our work. The relative error sequence of estimated results can be written as
δi, where i¼ 1; 2;…; n. And then use the rule of golden section to divide the range of relative
error into several error states. Next, use Markov transition matrix to characterize the transition
relationship of error states. Finally, the new results estimated by trained neural networks can be
further corrected by the Markovian prediction model.

The normalized relative error can be divided into several error states as follows:

λi ¼Ωqδ; i¼ 1; 2;…; n ð29Þ
where δ is the mean of a relative error sequence δi, the ratio of golden section Ω≈0:618, and q is
an integer according to the scope of relative error to select.
6. Experiments

In order to verify the MTF estimation performance of the trained neural networks, an
experiment is carried out. A test set which has 1110 images is build with the method mentioned
in Section 3.2. The real MTF of the images in the test set is known in advance. In the experiment,
we use the trained neural networks to estimate the MTF of images, and get the estimation results.
Compare the estimation results with the real MTF of images we simulated, the relative error is
used as a metric for the neural networks performance. The equation of relative error is as follows:

Eerror ¼ jMestimation�Mactualj=Mactual ð30Þ
Using the trained neural networks to estimate the MTF of images with different landscape structures

at Nyquist frequency, results show that the average relative error between the actual MTF and the
estimated MTF is less than 9%, in the meanwhile, benefit from the Markovian prediction model, the
results estimated by the neural networks can be further corrected, and make the average relative error
narrow to 5%. The estimation average results and relative errors using BP neural networks and
Markovian prediction model compared with only BP neural networks are presented in Table 1.

In the experiment there are some tips need to note:
(a)
Tabl
MTF
with
(AN

Actu

ANN
Eerro

ANN
Eerro
The image training sample set should have a representative, it needs to include all kinds of
scenery types, such as images of town, city, plain, grove, desert and so on. And the number
e 1
estimation average results in column direction at Nyquist frequency and relative errors from more than 1000 images
different MTFs using trained BP artificial neural networks (ANNs) and via ANN and Markovian prediction model
N+MM), respectively.

al MTF 0.09 0.12 0.16 0.19 0.21 0.25 0.29 0.33 0.38 0.42

0.0781 0.1325 0.1463 0.2060 0.2250 0.2698 0.3158 0.3062 0.4099 0.4520

r 13.26% 10.23% 8.58% 8.41% 7.12% 7.90% 8.91% 7.21% 7.85% 7.62%
+MM 0.0823 0.1279 0.1504 0.1981 0.2174 0.2610 0.3049 0.3187 0.3920 0.4351

r 8.52% 6.61 % 6.03% 4.28% 3.53% 4.40% 5.13% 3.42% 3.15% 3.59%
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of images in the sample set should be greater than the number of the hidden layer nodes
in ANN.
(b)
 It needs some time and patience to determine the number of hidden layer nodes of the ANN.
If the number of the nodes is small it will be hard to resolve the complex problems. And if
the number of the nodes is large it will increase the training time or make the ANN
training hard.
(c)
 Since the ANN needs a lot of parameters extracted from images to estimate the MTF, too
large image will make the computing inefficient. So in order to guarantee the estimation
precision, the image taken by space optical camera should be segmented into the size same as
the ANN training sample images. Use the ANN to estimate the MTF of every segmented
images. The mean of the estimation MTFs can be the final result. In our work, the image size
is 500 pixels � 500 pixels.
7. Conclusion

In this paper, a novel method to estimate the MTF of space optical camera from images via BP
neural networks and Markov model is presented. Results show that the method is possible for
any type of scenery taken by space optical camera. The main advantage of this method is that the
MTF of space optical camera can be estimated only from the image taken by the camera without
other equipment. It makes the MTF testing of space optical camera more flexible and convenient.
Experiment results show that the average estimation relative error can further narrow to 5% via
BP neural networks and Markovian prediction model, compared with 9% using only the BP
neural networks. It can be envisaged that the results will be more accurate along with the more
parameters sufficiently linked to the MTF of space optical camera to be found. We believe that
these results will contribute to the development of the performance evaluation of space optical
camera.
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