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Abstract: In order to eliminate zeroth order effect and to make the phase 
shifting algorithm insensitive to phase shifting error, an 11-frame phase 
shifting algorithm is proposed in this paper. The analytical expression of 
phase-restoration error function is derived. The principle of phase shifting 
error compensation and the capability of suppressing zeroth order effect are 
explained, in comparison of existing algorithm. The analytical results show 
that this algorithm’s phase-restoration error is proportional to sine of double 
shearing phase and to biquadratic of phase shifting error. Finally, we 
generate the interference patterns of 11-frame algorithm and existing 
algorithm, restore the shearing phases and calculate the phase-restoration 
errors by simulations. The simulation results verify the theoretical analyses. 
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1. Introduction 

With the development of projection lithography technology [1], more attentions to lateral 
shearing interferometry (LSI) are paid due to its advantages of no need of standard reference 
wavefront and insensitivity to environmental factor [2–4]. It has been used in surface 
measurement of optical element and in measurement of optical system’s wavefront [5–7]. 
Phase Shifting Interferometry (PSI) is widely used to calculate the phase of shearing 
wavefront in LSI, and the Bruning 4-frame algorithm, Schwider–Hariharan 5-frame 
algorithm, Schmit 6-frame algorithm and de Groot 7-frame algorithm are the common 
algorithms [8–11], which are not insensitive to phase shifting errors. For the double grating 
lateral shearing interferometer [12,13], with the order-selection mask for spatial filtering the 
zeroth order diffracted beam, the ± 1st order diffracted beams interfere with each other. By 
suppressing the undesired 0th order beam with the spatial filter, there is still a certain 
percentage of the beam leaking through the 1st order window. The common algorithms can 
compensate the phase shifting errors well, but they cannot compensate the errors caused by 
zeroth order effect. Therefore it is significant to design a special phase shifting algorithm to 
suppress the zeroth order effect and also to compensate the phase shifting error. In 2004, Zhu 
et al proposed a 9-frame phase shifting algorithm to suppress the 0th order effect [14]. 
However, as the phase shifting error increases, the accuracy of the algorithm drops 
considerably. In practice, the grating with small grating constant should be chosen because to 
set up the micro displacement stage and detector needs enough space. In this case, there is a 
large amount of phase shifting error caused by the limits of manufactures and installations of 
the displacement stage and grating. So it is necessary to design an algorithm of phase 
calculation, which is much more insensitive to phase shifting error and also can suppress 
zeroth order effect. 

An 11-frame phase shifting algorithm to eliminate zeroth order effect and compensate the 
phase shifting error is proposed in this paper. The analytical expression of phase-restoration 
error function is derived. The principle of the phase shifting error compensation and the 
capability of suppressing zeroth order effect are explained. Finally the simulations are given. 

2. Lateral shearing interferometer and phase shifting algorithm 

The typical double grating lateral shearing interferometer is shown in Fig. 1. The beam 
diffracted by grating goes through the projection lens. The ± 1st order diffracted beams form 
the interference pattern, and the 0th and higher order diffracted beams are eliminated by the 
spatial filter. Although the spatial filter is used, there is still a certain percentage of the 0th 
order beam reaching CCD detector, which generates interference pattern with ± 1st order 
diffracted beams. 

 

Fig. 1. Block diagram of double grating lateral shearing interferometer. 

The phase shifting amount of φ can be written as 
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where m is diffracted order, x is grating displacement and p is grating constant. By controlling 
the grating displacement of x, the phase shifting amount between ± 1st order beams is as 
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The ± 1st order beams are signals and the 0th order beam is noise. The complex amplitudes of 
them can be expressed as 

 1 1 1exp( ),E a kW− − −=  (3) 

 1 1 1exp( ),E a kW=  (4) 

 0 0 0exp( ),E a kW=  (5) 

where E-1,E1 and E0 are the complex amplitudes of −1st,1st and 0th order beams respectively, 
a-1, a1, a0 are the amplitudes, W-1, W1, W0 are the wavefronts, and k is the wave number. The 
fringe intensity distribution of Ij for j-th frame is 
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where ' / 2j jφ φ=  is the phase shifting amount between 1st order and 0th order, '' / 2j jφ φ=  

is that between 0th order and −1st order, 1 1( )k W W−−  is unknown phase needing to be 

restored, 1 0( )k W W−  and 0 1( )k W W−−  are undesired phases distorted by 0th order beam. We 

suppose: 2 2 2

0 1 1
Q a a a

−
= + + , 1 1 12V a a−= , 2 0 12V a a= , 3 0 12V a a−= , 

Equation (6) can be written as following: 

 ( ) ( ) ( )1 1 2 2 3 3cos cos / 2 cos / 2 .j j j jI Q V V Vθ φ θ φ θ φ= + + + + + +  (7) 

Using 11 step phase shifting ( 5, 4, 0, 4,5j = − −   ), we have 

 ( ) ( ) ( )5 5 3 3 1 1 1 17 8 32 sin ,I I I I I I V θ− − −− − − + − = −  (8) 

 ( ) ( )4 4 2 2 0 1 14 8 8 32 cos .I I I I I V θ− −− + + + − = −  (9) 

The phase to be restored is calculated as following: 

 
( ) ( ) ( )

( ) ( )
5 5 3 3 1 11

1
4 4 2 2 0

7 8
tan .

4 8 8

I I I I I I
I I I I I

θ − − −−

− −

 − − − + −
=  − + + + −  

 (10) 

From Eq. (10), we conclude that the phase of θ1 to be restored is not affected by 0th order 
diffraction under the condition of error free of phase shifting, because θ1 is unrelated with θ2 
and θ3. 

3. Error analyses and comparisons 

Due to the manufacture error and alignment error of micro displacement stage and grating, a 
mount of phase shifting error always exists in the phase shifting interferometry. So the phase 
shifting amount is different from Eq. (2), which is as following: 
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 ,
2j j jπφ ε= ⋅ + ⋅  (11) 

where ε is the phase shifting error. It is convenient to divide the numerator part of Eq. (10) 
into 3 parts, named as A1, A2 and A3. Part A1 contains terms with θ1 and constant, and can be 
expressed as: 

 ( ) ( ) ( )3 5

1 1[16cos 16cos 32cos ]sin .A ε ε ε θ= − −  (12) 

We expand Eq. (12) as Taylor expansions for the phase shifting error of ε, and omit the small 
quantity of high order 

 2 4
1 1( 32 96 100 )sin .A ε ε θ= − + −  (13) 

Part A2 contains term with θ2, denoted as: 

 ( ) ( ) ( ) ( ) ( ) ( ) 2
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Equation (14) can be expressed as Taylor expansion form as: 

 ( )2 2
2 2

1

12 2 cos .
VA O
V

ε ε θ = − +   (15) 

For the grating in the interferometer, the designed ± 1st order diffraction efficiencies are 40%. 
Actually they are 35%, so the 0th order diffraction efficiency is less than 30%. Calculation 
shows that the amplitude of 0th order beam going through spatial filter is less than 2% of 
those of ± 1st order beams. So V2 and V3 are much smaller than V1. And phase shifting error 
of ε is a small value. A2 is approximately zero, because A2 is products of two small quantities 
(polynomial of ε and V2/V1). Similarly, Part A3 contains terms with θ3, and it is also 
approximately zero. 

It is convenient to divide the denominator of Eq. (10) into 3 parts, named as B1, B2 and B3. 
Part B1 contains terms with θ1 and constant, and can be expressed as 

 ( ) ( )2 4

1 132cos 64cos cos .B ε ε θ = −   (16) 

We expand Eq. (16) as Taylor expansions for the phase-shift error of ε, and omit the small 
quantity of high order. Then we have: 

 2 4
1 1( 32 96 96 )cos .B ε ε θ= − + −  (17) 

Part B2 contains term with θ2, denoted as: 

 ( ) ( )2 2
2 2

1

16sin 16 16cos cos .
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V
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Equation (18) can be expressed as Taylor expansion form as: 

 ( )2 2
2 2

1

16 cos .
VB O
V

ε ε θ = − +   (19) 

By the method similar to analysis of A2, B2 is approximately zero. Part B3 containing terms of 
θ3 is also approximately zero. 

From Eqs. (15) and (19), it is known that the part containing θ2 and θ3 in numerator and 
denominator is zero. So we can ignore the shearing phase generated by zeroth order beam 

#196661 - $15.00 USD Received 29 Aug 2013; revised 17 Oct 2013; accepted 31 Oct 2013; published 11 Nov 2013
(C) 2013 OSA 18 November 2013 | Vol. 21,  No. 23 | DOI:10.1364/OE.21.028325 | OPTICS EXPRESS  28328



even in the presence of phase shifting error. The algorithm can eliminate the undesired zeroth 
order effect. 

Substituting Eqs. (13), (15), (17) and (19) into Eq. (10), the phase of β1 with phase shifting 
error of ε is restored as: 

 
4

1

4

2 4 1 18 24 24
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Considering the phase-restoration error of ∆θ1 is small amount, the phase-restoration error 
function with 11-frame algorithm can be expressed as 

 ( ) ( )
4

1 1 1 1 1 1tan sin 2 .
16

εθ β θ β θ θΔ = − ≈ − =  (21) 

With 9-frame phase shifting algorithm, the phase can be restored as following expression 
[14]: 
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With above method Eq. (22) is analyzed, and the phase of β’1 with phase shifting error of ε, is 
restored: 
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The phase-restoration error function of Δθ’1 with 9-frame algorithm is expressed as 

 ( ) ( )
2

1 1 1 1 1 1' ' ' tan ' ' sin 2 ' .
4

εθ β θ β θ θΔ = − ≈ − =  (24) 

From Eqs. (21) and (24), in the case of constant phase shifting error such as ε = π/6, the 
relationships between phase-restoration error and shearing phase for 11-frame and 9-frame 
algorithm are shown in Fig. 2. The two phase-restoration errors vary as sine of double shifting 
phases, and the worst condition is at π/4. With the same shearing phase, the restoration error 
of 11-frame algorithm is smaller than that of 9-frame algorithm. So the 11-frame algorithm is 
less sensitive to phase shifting error and has more extensive adaptability. 

 

Fig. 2. The relationship between phase-restoration error and shearing phase. 

Figure 3 shows the phase-restoration error by 11-frame and 9-frame algorithm in the case 
of same shifting phase, such as shearing phase of π/4, according to Eqs. (21) and (24). The 
restoration error of 11-frame algorithm is proportional to biquadratic of phase shifting error, 
and that of 9-frame algorithm is proportional to square of phase shifting error. So with the 
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same phase shifting error, restoration error of 11-frame algorithm is less than that of 9-frame 
algorithm. Especially, with large phase shifting error, the accuracy of 11-frame algorithm is 
much higher than that of 9-frame algorithm. 

 

Fig. 3. The relationship between phase-restoration error and phase shearing error. 

4. Simulations 

In this section, we simulate the procedures of lateral shearing interference and shearing phase 
restoration with zeroth order effect to verify the analyses in Section 3. In the simulations a 
wavefront of spherical aberration is chosen, which is a common aberration in the 
measurement of wavefront. The wavefront of 0.5λ spherical aberration located in unit circle is 
shown in Fig. 4. The wavefront is sheared in x direction, shearing ratio is assumed as 0.1, and 
the noise is V2 = V3 = 2%V1. When the phase shifting amount is zero, the shearing phase and 
its interference pattern are shown in Fig. 5. 

 

Fig. 4. The wavefront of 0.5λ spherical aberration. 

 
 

Fig. 5. The shearing phase (a) and interference pattern (b) when shearing ratio is 0.1, V2 = V3 = 
0.02V1 and phase shearing amount is 0. 
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11 interference patterns are obtained with 11 step phase shifting. The phase shifting 
amount is π/2 for one step, and the phase shifting error is π/6. The shearing phase is restored 
with 11-frame phase shifting algorithm. The restoration phase and its error are shown in Fig. 
6. 

    
 

Fig. 6. The shearing phase (a) and phase-restoration error (b) restored with 11-frame algorithm. 

4 interference patterns are obtained with 4 step phase shifting. The phase shifting amount 
is π/2 for one step, and the phase shifting error is π/6. The shearing phase is restored with 
Bruning 4-frame phase shifting algorithm. The restoration phase and its error are shown in 
Fig. 7. 

 

Fig. 7. The shearing phase (a) and phase-restoration error (b) restored with 4-frame algorithm. 

From Figs. 6 and 7, for the same wavefront with the same phase shifting error, the 
maximum absolute value of 11-frame algorithm’s restoration error is smaller than 0.04 rad, 
and that of 4-frame algorithm is smaller than 0.30 rad. The restoration accuracy of 11-frame 
algorithm is higher than that of 4-frame algorithm. 

9 interference patterns are generated with 9 step phase shifting. The phase shifting amount 
is π/2 for one step, and the phase shifting error is π/6. The shearing phase is restored with 9-
frame phase shifting algorithm. The restoration phase and its error are shown in Fig. 8. 

   
 

Fig. 8. The shearing phase (a) and phase-restoration error (b) restored with 9-frame algorithm. 
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From Figs. 6 and 8, we know that the shearing phase can be restored with both 11-frame 
and 9-frame algorithm when zeroth order effect exists. For the same wavefront with the same 
phase shifting error, the maximum absolute value of 11-frame algorithm’s restoration error is 
smaller than 0.04 rad, and that of 9-frame algorithm is smaller than 0.09 rad. Therefore, the 
restoration accuracy of 11-frame algorithm is higher than that of 9-frame algorithm. This 
proves the analyses in Section 3. With different phase shifting errors the different interference 
patterns are generated respectively with 11step and 9 step phase shifting, and the restoration 
errors are obtained. The restoration rms errors of those algorithms are shown in Fig. 9. The 
phase-restoration errors increase as the absolute values of phase shifting errors. With the same 
phase shifting error, restoration accuracy of 11-frame algorithm is higher than that of 9-frame 
algorithm. Especially, under the condition of large phase shifting error, the accuracy 
difference is much more remarkable. The restoration rms error with phase shifting error of -
π/6 for 11-frame algorithm is 0.011 rad, and it is 0.056 rad for 9-frame algorithm. 11-frame 
algorithm’s error is 1/5 of 9-frame algorithm’s error. The simulations are in good agreement 
with the tendency of Fig. 3, the analyses results in Section 3. 

 

Fig. 9. The relationship between phase-restoration error and phase shearing error given by 
simulation with 11-frame and 9-frame algorithms under the condition of V2 = V3 = 2%V1. 

With the simulation conditions of V2 = V3 = 0.5%V1 and V2 = V3 = 1%V1, the restoration 
rms errors of 9-frame algorithm and 11-frame algorithm are shown in Figs. 9 and 10 
respectively. From Figs. 9–11, for different degrees of zeroth order effect with large amount 
of phase shifting error, phase-restoration error of 11-frame algorithm is much smaller than 
that of 9-frame algorithm. 

 

Fig. 10. The relationship between phase-restoration error and phase shearing error given by 
simulation with 11-frame and 9-frame algorithms under the condition of V2 = V3 = 0.5%V1. 
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Fig. 11. The relationship between phase-restoration error and phase shearing error given by 
simulation with 11-frame and 9-frame algorithms under the condition of V2 = V3 = 1%V1. 

5. Conclusions 

The 11-frame phase shifting algorithm is proposed, and the analytical expression of phase-
restoration error function is derived. The principle of phase shifting error compensation and 
the capability of suppressing zeroth order effect are explained. The algorithm is compared 
with existing algorithm. From analysis results, we conclude that it is better to use 11-frame 
algorithm to restore shearing phase with zeroth order effect and to compensate phase shifting 
error. This algorithm’s phase-restoration error is proportional to sine of double shearing phase 
and to biquadratic of phase shifting error. With the same phase shifting error, phase-
restoration error of 11-frame algorithm is smaller than that of existing algorithm. Finally, we 
simulate the interference patterns of 11-frame algorithm and existing algorithm, restore the 
shearing phases and calculate the phase-restoration errors. The simulations verify our 
theoretical analyses. 
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