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1. INTRODUCTION
It is very important to determine the transverse modal content
of a laser beam in the beam characterization [1–6]. This work
is closely related to the coherence property of the laser beam,
which cannot be measured directly. The parameters of the
laser beam, which can be measured directly, are not very
abundant, and the intensity distribution is the easiest obtained
information. Thus, getting the modal spectrum of the laser
beam using only the intensity information becomes an essen-
tial issue in the problem of modal decomposition.

Gori et al. [7] first provide a proof about whether the inten-
sity distribution is enough for a complete modal decomposi-
tion for a laser beam, and give a conclusion that the modal
content can be determined for a one-dimensional case, but
the result of a two-dimensional case may not be unique
due to the existence of the vortex phase. However, this ambi-
guity in two-dimensional cases can be eliminated if we impose
some limitation on the beam. For instance, we could give a
limitation that there is no vortex phase in the beam, and in
this situation, the modal content is accessible using only in-
tensity information. Dragoman [8] even proves that the unam-
biguous coherence status of a vortex beam is available from
intensity measurement alone with the help of an anamorphic
optical system.

Based on previous work, Santarsiero et al. [9] give an inno-
vative method for modal decomposition. With this method,
one time measurement of the transverse intensity of the laser
beam is sufficient for obtaining the modal content. But the in-
sufficiency of the method is that it is only available for the
beam that is made up of an incoherent mixture of Hermite–
Gauss (HG) modes. The method of Santarsiero et al. is gen-
eralized by Xue et al. [10] for the beam that has a coherent
mixture of HG modes applying several intensity profiles along
the propagation direction. The generalized method of

Xue et al. could give the incoherent expansion coefficients
of modal expansion, but it cannot give the cross-correlation
expansion coefficients. The other cross-correlation expansion
coefficients are given by Laabs et al. [11], integrating the prod-
uct of the ambiguity function and the Laguerre–Gauss func-
tion in phase space. And then based on the works of Xue
and Laabs, Borghi et al. [12] point out that the complete modal
structure can be recovered without using the ambiguity func-
tion. The method of Borghi et al. uses an integral over the
whole space (from negative infinity to positive infinity) along
the beam propagation direction. However, the application of
this method to the practical problem is difficult due to the re-
quirement of the intensity information in the whole space,
which cannot be obtained from experimental measurements.
We present a new method using the linear equations to give a
complete modal decomposition result based on the previous
work in [12]. Applying this method, we give the result of modal
decomposition using the intensity information from several
measurements in finite distances along the propagation direc-
tion, and overcome the difficulty of the integral over the
whole space.

This paper is organized as follows. In Section 2, we give the
basic theory of the linear equations method for modal decom-
position. Section 3 mainly reports the simulation of this
method in order to prove the correctness of the theory.
The minimum and maximum mode orders should be known
a priori for our modal decomposition algorithm, so we pro-
vide an estimation method to obtain the two parameters in
Section 4. Finally, Section 5 presents our conclusion.

2. THEORETICAL ANALYSIS
A. Preliminaries
We only consider the one-dimensional case for simplicity. In
the two-dimensional case, if the beam contains no vortex
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phase structure, the intensity information can determine the
modal contents unambiguously [13]. Thus, extension to the
two-dimensional case is straightforward for the vortex-free
beam. Our method does not work when vortex phase struc-
tures are present in the modes of the source. However, other
unambiguous analysis methods, for example, the method us-
ing computer-generated hologram-based correlation filters
[14], exist when the beam is not vortex-free. We assume that
the spatial scale, e.g., the waist width v0 of the fundamental
mode, can be derived from knowledge of the parameters of
the laser cavity. For a partially coherent beam, the field dis-
tribution is considered as the superstition of a set of HG
modes that all have a common waist position [1]. So we
can express the field U�x� as

U�x;φ� � �������������
cos φ

p
exp�ikz� exp

�
ik
2R

x2
�

×
X∞
n�0

cnGn�x cos φ� exp�−inφ�; (1)

where cn are the modal coefficients and n denotes the mode
number, and k � 2π∕λ is the wave number while z is the
propagation distance. The parameter φ is the Gouy phase,
which has the form of φ � tan−1�z∕f �, where f � kv20∕2 is
the Rayleigh distance. The Gouy phase φ changes from
−π∕2 to π∕2 when the beam propagates from negative infinity
to positive infinity. Equation (1) becomes more easily manip-
ulated using φ to take the place of the propagation distance z.
The parameter R denotes the radius of the wave front of the
HG mode, which is useless to our discussion. The function
Gn�x� is the field distribution of the nth HG mode when
the waist position is located at the transverse plane of
z � 0. Gn�x� is the form of
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where Hn�x� are the nth-order Hermite polynomials.
The intensity distribution of the laser beam can be derived

from Eqs. (1) and (2) as [12]

I�x;φ� � hU�x;φ�U��x;φ�i

�
X∞
n�0

X∞
m�0

2 cos φ

1� δm;0
Refhc�ncn�mi exp�−imφ�g

× Gn�x cos φ�Gn�m�x cos φ�; (3)

where Refgmeans selecting the real part of the function in the
bracket and δm;0 is the Kronecker function. In order to sim-
plify the expression of Eq. (3), we introduce the coordinate
scaled intensity distribution Î�ξ;φ� by changing the variables
as Î�x;φ� � I�x;φ�∕ cos φ and ξ � x cos φ. Substituting this
change into Eq. (3), we get that

Î�ξ;φ� �
X∞
n�0

X∞
m�0

2
1� δm;0

Refhc�ncn�mi exp�−imφ�g

× Gn�ξ�Gn�m�ξ�: (4)

The coordinate scaled intensity distribution Î�ξ;φ� disregards
the attenuation and transverse expansion of I�x;φ�, which are

caused by the propagation of the laser beam, because they
have no connection with the mode superposition effect.

B. Linear Equations Method for Modal Decomposition
The expansion coefficients hc�ncn�mi in Eq. (4) are generally
complex numbers, so we can express them as

hc�ncn�mi � Mn;m exp�iθn;m�: (5)

Mn;m and θn;m are the amplitudes and arguments of the expan-
sion coefficients hc�ncn�mi, respectively. The amplitudes Mn;m

represent the power contents of the correlated modes, and the
arguments θn;m are the phase delays between the transverse
modes of order n and n�m. The practical optical beam gen-
erally has finite modes [10], so we can define a lowest-order n0

and a highest-order N for modal coefficients cn in Eq. (1).
Substituting Eq. (5) into Eq. (4) and considering that the mode
order is limited, we can obtain

Î�ξ;φ� �
XN−n0

m�0

XN−m

n�n0

2
1� δm;0

Mn;m cos�mφ − θn;m�

× Gn�ξ�Gn�m�ξ�: (6)

The maximum value of m in Eq. (6) is N − n0. If m is deter-
mined, the mode order n is limited in the range of n0 to N −m
and the expansion coefficients hc�ncn�mi are zeros out of this
range. We introduce two new parameters Am�x� and Bm�x�
here for further discussion:

Am�ξ� � 2
XN−m

n�n0

1
1� δm;0

Mn;m cos θn;mGn�ξ�Gn�m�ξ�; (7)

Bm�ξ� � 2
XN−m

n�n0

Mn;m sin θn;mGn�ξ�Gn�m�ξ�: (8)

Taking Eqs. (7) and (8) into Eq. (6), we can change Eq. (6) into
a series form:

Î�ξ;φ� �
XN−n0

m�0

�Am�ξ� cos�mφ� � Bm�ξ� sin�mφ��: (9)

The intensity information for modal decomposition can be
given from the experiments. Considering the experimental
conditions in practice, some processes are needed to solve
the expansion coefficients hc�ncn�mi. First, one can only
measure the intensity distribution at a finite number of
transverse planes in finite distances. If we measure T times
along the propagation direction, the intensity distribution
function Î�ξ;φ� only has certain values at the planes of
φ � φ1;φ2;…;φT . Second, one must use a kind of sensor, a
CCD, for example, to measure the intensity. The sensors sam-
ple the transverse coordinate ξ discretely. We can define the
sampling number in the transverse coordinate as S. Based on
the two procedures given above, the intensity distribution
function Î�ξ;φ� changes to a matrix of order T × S. Further-
more, Eq. (9) becomes linear equations due to the discrete
sampling of φ, and this will be shown more clearly in the
following discussion.
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In order to modify Eq. (9) into matrix form, we introduce
the matrices below:

P1 �

0
BBB@

cos�0φ1� … cos��N − n0�φ1�
..
. . .

. ..
.

cos�0φT � � � � cos��N − n0�φT �

1
CCCA;

P2 �

0
BBB@

sin�0φ1� … sin��N − n0�φ1�
..
. . .

. ..
.

sin�0φT � � � � sin��N − n0�φT �

1
CCCA; (10)

I �

0
BB@

I�ξ1;φ1� … I�ξS;φ1�
..
. . .

. ..
.

I�ξ1;φT � � � � I�ξS;φT �

1
CCA; (11)

A � �A0;A1; … AN−n0
�T ;

B � �B0;B1; … BN−n0
�T ; (12)

where

Am � �Am�ξ1� … Am�ξS� �;
Bm � �Bm�ξ1� … Bm�ξS� �: (13)

The elements of matrices P1 and P2 are the functions of the
Gouy phase φ. If the sampling status of φ is determined, P1 and
P2 can be treated as known matrices. The intensity distribu-
tion matrix I is obtained from experimental measurements,
whose rows are the transverse intensity profiles at each plane
and columns are the intensity distributions along the propaga-
tion direction. A and B are unknown matrices, and the solving
method for these two matrices will be provided below. Sub-
stituting all the matrices into Eq. (9), we can represent Eq. (9)
in matrix form as

I � P1A� P2B � �P1 P2 �
�
A
B

�
: (14)

Let P � �P1;P2� and Ω � �A;B�T ; Eq. (14) is rewritten as

PΩ � I: (15)

Equation (15) is a typical form of a set of linear equations. The
linear equations are solved by

Ω �
�
A
B

�
� P�I; (16)

where P� denotes the Moore–Penrose pseudo-inverse matrix
of P. If the intensity distribution in terms of φ at a certain
transverse coordinate ξ is treated as a signal, the maximum
signal frequency is f m � �N − n0�∕�2π� according to Eq. (9).
The sampling frequency of the signal is f s � T∕π, where T
is the sampling number of φ as defined before. In order to pre-
vent the aliasing error, the Nyquist sampling theorem [15] sug-
gests that f s ≥ 2f m. After some rearrangement, the inequality

becomes T ≥ N − n0. If we choose the value of T satisfying
T > N − n0 in order to get a robust result, the set of linear
equations in Eq. (15) is inconsistent. Based on the theory
of the pseudo-inverse matrix, Ω is the least squared solution
of Eq. (15) with the minimum norm, and it is unique [16]. The
solution Ω is a matrix that has an order of 2�N − n0 � 1� × S
according to Eq. (16).

Equations (7) and (8) are the functions of the scaled coor-
dinate ξ whose value is also discrete; therefore they can be
transformed into two sets of linear equations like Eq. (9).
Some matrices are defined for this transformation:

Gm �

0
BB@

Gn0
�ξ1�Gn0�m�ξ1� � � � GN−m�ξ1�GN �ξ1�

..

. . .
. ..

.

Gn0
�ξS�Gn0�m�ξS� � � � GN−m�ξS�GN �ξS�

1
CCA; (17)

Creal;m � �Mn0;m cos θn0 ;m … MN−m;m cos θN−m;m �T ;
Cimag;m � �Mn0;m sin θn0 ;m … MN−m;m sin θN−m;m �T : (18)

Gm is the same as P1 and P2, which is a known matrix if the
sampling value of ξ is determined. The elements of the two
vectors of Eq. (18) are unknown quantities. Substituting
Eqs. (13), (17), and (18) into Eqs. (7) and (8), we have

GmCreal;m � 1� δm;0

2
AT

m; (19)

GmCimag;m � BT
m: (20)

Equations (19) and (20) are two sets of linear equations for a
particular value ofm. The sampling rate of the intensity sensor
is much higher than the mode order, so we have the inequality
of S ≫ N −m − n0 � 1. This means that Eqs. (19) and (20) are
both inconsistent and their solutions can be obtained using
the same method as Eq. (16). Therefore, the solutions of
Eqs. (19) and (20) are

Creal;m � 1� δm;0

2
G�

mAT
m; (21)

Cimag;m � G�
mBT

m; (22)

whereG�
m is the Moore–Penrose pseudo-inverse matrix ofGm.

Am and Bm are the row vectors of A and B, which can be de-
rived from Eq. (16). Given a certain value of m, the vectors
Creal;m and Cimag;m are the solutions of Eqs. (19) and (20), re-
spectively, and they can be solved by the multiplication of ma-
trices of G�

m, Am, and Bm using Eqs. (21) and (22). Notice that
the elements of vectors Creal;m and Cimag;m are the real part
and image part of the expansion coefficients hc�ncn�mi; thus
the expansion coefficients can be derived as

Cm � �hc�n0
cn0�mi … hc�n0�N−mcn0�N i �T �Creal;m � iCimag;m:

(23)

Based on the discussions given above, we can synthesize the
processes for solving the expansion coefficients hc�ncn�mi into
five steps:
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1. First, we need to obtain the transverse intensity pro-
files at several propagation distances. The intensity profile
of the laser beam is measured using a sensor such as a
CCD. If we measure the intensity T times, it must satisfy
the relation of T > N − n0 due to the Nyquist theorem as
we mentioned before. The minimum and maximum values
of the mode number n are n0 and N , respectively. They must
be known a priori in our algorithm, and the method for esti-
mating them is given in detail in Section 4.

2. Using the intensity matrix I in step one and Eq. (16),
we have a matrix Ω as a result.

3. MatrixΩ has 2�N − n0 � 1� rows according to Eqs. (12)
and (16). We need to choose two rows, Am and Bm, from
matrix Ω and substitute them into Eqs. (21) and (22), respec-
tively. The results are the solutions of vectors Creal;m

and Cimag;m.
4. We obtain a set of expansion coefficients Cm after sub-

stituting Creal;m and Cimag;m into Eq. (23).
5. Using steps 3 and 4, we can only get the expansion co-

efficients when m has a certain value. In order to obtain the
complete sets of the expansion coefficients, we should repeat
steps 3–4 until all the values of m from 0 to N − n0 have been
calculated. Finally, we can get the complete sets of expansion
coefficients hc�ncn�mi, which are the modal structure of
the beam.

After obtaining the complete sets of expansion coefficients
by following the procedures given above, we can use them to
determine the modal coefficients cn if the modes are super-
posed coherently. The amplitudes and arguments of cn are
computed separately. At first, the amplitudes of cn are
given by

jcnj �
��������������
hc�ncni

p
: (24)

When the mode number n satisfies the inequality
n0 < n < N , the arguments of cn can be solved by

arg�cn� �
1
2
�arg�hc�n−1cn�1i� − arg�hc�n−1cni� − arg�hc�ncn�1i��;

(25)

where arg�cn� means the arguments of cn. After solving
arg�cn0�1� and arg�cN−1� using Eq. (25), the arguments of
the order n0 and N , which are the boundary values of n,
are given using the two simple formulas

arg�cn0
� � − arg�hc�n0

cn0�1i� − arg�cn0�1�;
arg�cN� � − arg�hc�N−1cN i� − arg�cN−1�: (26)

Finally, the transverse mode structure of the laser beam is
determined completely after solving all the modal
coefficients cn.

The discussions given above are based on the assumption
that all the modes are superposed coherently. However, we
want to state that our method is still available for the incoher-
ent superposition of the modes. We suppose that there exists a
beam composed of two HG modes Gi�x� and Gj�x� that are
completely incoherent to each other, and the their modal co-
efficients are ci and cj . Taking the coefficients into Eq. (3), we
have the intensity distribution of the beam as

I�x� � jcij2G2
i �x� � jcjj2G2

j �x� � Refhc�i cjigGi�x�Gj�x�: (27)

Equation (3) can be proved correct only if the value of hc�i cji is
zero in this incoherent situation in Eq. (27). In fact, the value
of hc�i cji is zero indeed as we expect because ci and cj have no
certain phase relation and cannot interfere in a stationary
way, which results in the average of c�i cj being zero. Thus,
Eq. (27) becomes the sum of the intensity distributions of
the two beams, which proves the correctness of Eq. (3). Thus
Eq. (3) is still available for the incoherent modal superposition
though it is derived from Eq. (1), which cannot describe the
incoherent beams. Thanks to the fact that the derivation of
this modal decomposition algorithm is based on Eq. (3), we
can state that our method is correct for the cases in which
the beams are coherent, incoherent, or a mixture superposi-
tion of the modes, and the processes of the algorithm are all
the same for these cases. However, for the cases in which the
incoherent superpositions exist, the product c�ncn�m does not
equal the value of hc�ncn�mi. Thus, we should not describe the
beams using the modal coefficients cn but using the expansion
coefficients hc�ncn�mi directly.

3. SIMULATION
In order to verify the correctness of our theory, we use Eq. (1)
to construct a virtual beam that is a coherent superposition of
the modes. The modal coefficients cn need to be chosen ran-
domly in order to ensure the generality of the modal decom-
position result. Table 1 shows a set of modal coefficients that
are randomly chosen. The amplitudes and arguments in
Table 1 are given separately because cn are complex values.
The values of cn that are not included in Table 1 are set to be
zeros. Substituting the coefficients into Eq. (4) and setting the
waist width v0 as 1 mm, we have the coordinate scaled inten-
sity distribution Î�ξ;φ� of this virtual beam and the intensity
profiles of the beam at several planes are shown in Fig. 1. The
intensity profile is varied when the optical beam propagates,
which is due to the existence of the cross-correlation terms of
the expansion coefficients hc�ncn�mi. If the modal structure of
the beam is composed of the incoherent mixture of the modes,
which means that the cross-correlation terms of hc�ncn�mi are
zeros, the intensity distribution is not varied with respect to
the propagation distance z or the Gouy phase φ.

We need to sample the intensity distribution before the mo-
dal decomposition. First, the beam intensity is measured at 20
different positions along the propagation direction, and the
positions are determined by sampling the Gouy phase φ at
an even space between −2∕5π and 2∕5π for simplicity. With
this sampling range of φ, we can find that all the sampling
points are located between the propagation distances z �
−3f and 3f where f is the Rayleigh distance. Second, the in-
tensity distribution is sampled at each transverse plane using
1000 evenly spaced points between the transverse coordinates
ξ � −5v0 and ξ � 5v0. According to Table 1, the minimum
mode order n0 is 3 and the maximum one N is 7. The results

Table 1. Mode Coefficients cn of the nth HG Mode

c3 c4 c5 c6 c7

Amplitude 0.3 0.1 0.2 0.2 0.2
Argument 3∕10π −1∕2π 2∕5π −3∕7π 0
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of modal decomposition are shown in Figs. 2 and 3 after
substituting all the information above into our algorithm.

Figure 2 shows the simulations and theoretical results of
the expansion coefficients hc�ncn�mi when m � 0, 1, 2, and
3. If m � 0, the expansion coefficients hc�ncn�mi represent
the power contents of the modes. And ifm > 0, the expansion
coefficients determine the phase relation of the modes. Due to
the coherent superposition of the modes in this case, we have
the relation that hc�ncn�mi � c�ncn�m. Comparing the results in
Fig. 2, we hardly find any difference between the results of our
algorithm and the values computed by Table 1. This confirms

that our algorithm could give a very exact result of the ampli-
tude of the expansion coefficients hc�ncn�mi. Figure 3 shows
the arguments of the corresponding expansion coefficients in
Fig. 2. The arguments of the expansion coefficients hc�ncni
must be zero because hc�ncni are real values. In Fig. 3(a),
the results of the algorithm are consistent with this fact.
Figure 3(b) shows the results of the algorithm and the strict
solutions whenm � 1. We can see that the simulation error is
also very small in this figure. However, whenm has a value of
2 or 3, some results of this algorithm are not the same as what
we expect. Taking the case of m � 2 for example, the argu-
ment of hc�6c8i should be 3π∕7, which can be derived from
Table 1, but the algorithm gives a zero value as a result. In
fact, the amplitude of hc�6c8i is zero according to Fig. 2(c),
which means that the argument of hc�6c8i is not important in
this situation, because a complex number remains zero when
its amplitude is zero, no matter what its argument is. This
means that our algorithm is accurate enough for solving
the arguments of the expansion coefficients hc�ncn�mi. Using
the results in this simulation, the mode coefficients cn can be
obtained by Eqs. (24), (25), and (26) without effort.

The correctness of the linear equations method described
in Section 2.B is confirmed by this simulation. However, with-
out knowing the minimum mode order n0 and maximum one
N , this simulation cannot come into existence for practical
laser beams. In fact, we can set the parameter n0 to be zero
for practical consideration, because low-order modes always
exist for a real laser beam unless some special techniques,

Fig. 1. Intensity profiles of the beam along the propagation direction.

Fig. 2. Theoretical and numerical results of the amplitudes of the expansion coefficients hc�ncn�mi.
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using an intracavity amplitude mask, for example, are applied
to the laser source. But things are different for the parameter
N . If the chosen value of N is too small, we cannot obtain a
correct result. If the value of N is given too large, this could
cause great calculation burden. Thus giving a method to find
the value of N is necessary.

4. HOW TO FIND THE MAXIMUM MODE
ORDER N
In this section, we provide a method to estimate the parameter
N , which cannot be measured directly. A method that is used
to prove that N is not infinity for a real beam has been pro-
posed in [10]. But we cannot use this method to give an esti-
mation of N . The intensity distribution Î�ξ;φ� can be
represented as a finite Fourier series of φ; therefore the cutoff
frequency of the Fourier transform of Î�ξ;φ� should be �N −

n0�∕�2π� based on Eq. (9). This supposes to be a good begin-
ning to estimate N if the cutoff frequency can be calculated
accurately. But we can never give a cutoff frequency accurate
enough unless we can sample the function Î�ξ;φ� of φ in its 2π
period. It is impossible to measure Î�ξ;φ� in terms of φ from
−π to π because the Gouy phase is limited in the range of −π∕2
to�π∕2 and the values out of this range are meaningless in the
physical sense. So the cutoff frequency method for estimating
N is not appropriate as well. We propose a new method to
estimate N using the average of the intensities along the
propagation direction.

We measure the intensity distributions in the range of −φ0

to φ0 of the Gouy phase φ with even space along the beam
propagation direction. We denote the total sampling numbers
as K and the sampling interval as Δφ � 2φ0∕�K − 1�. Thus, the
positions where the intensity distribution is measured can be
presented as φk � −φ0 � kΔφ, k � 1; 2; 3… The average of
these measured intensity data along the propagation direction
is then given by

hÎ�ξ�iφ � A0�ξ��
1
K

XN−n0

m�1

XK
k�1

�Am�ξ�cos�mφk��Bm�ξ�sin�mφk��

� A0�ξ��
1
K

XN−n0

m�1

XK
k�1

Am�ξ�cos�mφk�: (28)

The fact that sine is an odd function is used in Eq. (28). It can
be noted that Am�ξ� is an even function when m is an even
number and it is an odd function when m is odd. Taking
the parity of Am�ξ� into consideration, we have

~A0�ξ� �
hÎ�ξ�iφ � hÎ�−ξ�iφ

2

� A0�ξ� �
1
K

X
h
N−n0

2

i

h�1

A2h�ξ�
XK
k�1

cos�mφk�; (29)

Fig. 3. Theoretical and numerical results of the arguments of the expansion coefficients hc�ncn�mi.
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where ��N − n0�∕2� means to take the largest integral number
that is smaller than �N − n0�∕2. The function ~A0�ξ� can be
treated as an estimation of A0�ξ� and the error of this estima-
tion is determined by the last term in Eq. (29). There are only
even order terms of Am�ξ� in Eq. (29), so we need to discuss
the these terms in detail below.

According to Eq. (7), the function A2h�ξ� can be expanded
by the bases Gn�ξ�Gn�2h�ξ�, which we can denote as

A2h�ξ� � SpanfG0�ξ�G2h�ξ�; G1�ξ�G2h�1�ξ�;…; GN−2h�ξ�GN�ξ�g:
(30)

The basesGn�ξ�Gn�2h�ξ� are unrelated to each other. The Fou-
rier transform of the bases can be represented in a closed
form as [12]

F fGn�ξ�Gn�m�ξ�g�u� � �−i�mψm
n �π2v20u2�; (31)

where

ψm
n �x� � Rnx

m
2Lm

n �x� exp
�
−

x
2

�
; (32)

Rn are constants related with the order n, and Lm
n are the gen-

eralized Laguerre polynomials. Based on the recurrence rela-
tion of the generalized Laguerre polynomials [17], we can
derive the following relation:

xL2h
n �x� � �2h − 1�

Xn
m�0

L2�h−1�
m �x� − �n� 1�L2�h−1�

n�1 �x�: (33)

Substituting Eq. (32) into Eq. (33) and then taking the inverse
Fourier transform of Eq. (33), the bases Gn�ξ�Gn�2h�ξ� are
represented by another set of bases Gn�ξ�Gn�2�h−1��ξ� as

Gn�ξ�Gn�2h�ξ� � −Rn

"Xn
m�0

�2h − 1�
Rm

Gm�ξ�Gm�2�h−1��ξ�

−

n� 1
Rn�1

Gn�1�ξ�G�n�1��2�h−1��ξ�
#
: (34)

Applying Eq. (34) to all of the bases in Eq. (30) recurrently, the
bases used to expand A2h�ξ� are finally changed to be

A2h�ξ� � SpanfG0�ξ�2; G1�ξ�2;…; GN−h�ξ�2g: (35)

The function ~A0�ξ� is considered as the sum of the functions
A2h�ξ� according to Eq. (29), which means that ~A0�ξ� has all
the bases of the functions A2h�ξ� when h is from 0 to
��N − n0�∕2�. This suggests that

~A0�ξ� � SpanfG0�ξ�2; G1�ξ�2;…; GN �ξ�2g: (36)

Equations (35) and (36) mean that the functions A0�ξ� and
~A0�ξ� have the same bases and we can obtain maximum mode
order N from the expansion result of ~A0�ξ�. After replacing
A0�ξ� by ~A0�ξ� in our modal decomposition algorithm, the
procedures to obtain the expansion coefficients hc�ncni can
be employed to expand the function ~A0�ξ� using the bases
Gn�ξ�2, and the maximum expanding order is considered to

be N . The estimation method of N is described in detail as
follows:

1. First, the average of the evenly sampled intensity dis-
tribution Î�ξ;φ� is calculated. Substituting the result into
Eq. (29), we obtain the function ~A0�ξ�.

2. Next we expand the function ~A0�ξ� by replacing the
function A0�ξ� by ~A0�ξ� in Eq. (21). Before solving Eq. (21),
we should determine the order of the matrix G0. Here we give
zero value to n0 and an arbitrary number of columns to the
matrix G0 at first.

3. We can treat the maximum order of the nonzero terms
of the expansion result as the real value of N . If the number of
columns of G0 that we choose arbitrarily is too small, we
cannot determine the maximum order of the nonzero terms.
In this case, we should expand the number of columns of G0

and solve Eq. (21) again until we find the nonzero term of the
maximum order.

The method given above is very similar to using our modal
decomposition algorithm as a trial repeatedly to find the cor-
rect value of the maximum mode order N ; however, we want
to state that this estimation method has two advantages com-
pared with using the modal decomposition algorithm directly.
First, this estimation method does not have a demand that the
sampling number K must satisfy the sampling criterion. Thus
measuring the laser intensity three or four times is enough to
perform this task. Second, the function ~A0�ξ� is obtained

Fig. 4. Expansion results of the function ~A0�ξ� with different sam-
pling numbers. (a) The sampling number K is 3. (b) The sampling
number K is 5.
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directly from the average of the sampling data, so we do not
need to solve a set of linear equations as what we do to obtain
A0�ξ�. Based on the two advantages, we can greatly increase
the speed to find the value of N using a very small amount of
data and hardware resources.

We use the data gathered from the virtual beam constructed
in Section 3 to examine the correctness of this estimation
method. The expansion results of the function ~A0�ξ� using
the bases Gn�ξ�2 are shown in Fig. 4, where we use two differ-
ent kinds of sampling information of intensity distributions to
calculate the function ~A0�ξ�. In Fig. 4(a), we set the value of φ0

to be π∕5, which defines a sampling range from −π∕5 to π∕5
for the Gouy phase, and the total sampling number K to be 3.
The sampling range in Fig. 4(b) remains the same as that in
Fig. 4(a), but the sampling number K is set to be 5. Comparing
the two expansion results in Figs. 4(a) and 4(b), it is interest-
ing to note that the maximum orders of the nonzero terms are
both 7, which is the exact value of the maximum mode order
indicated by Table 1, though the sampling numbers of the data
to obtain ~A0�ξ� are different. Thus these results prove the cor-
rectness of the derivation for this estimation method and also
indicate that this estimation method needs a lower sampling
rate than the modal decomposition algorithm.

5. CONCLUSION
This paper introduces a modal decomposition method using
the intensity information. The modal coefficients are obtained
by solving the sets of linear equations in our theory. The re-
quired intensity information is discrete both in the propaga-
tion direction and in the transverse section of a plane since
we use matrices in this algorithm. This discretization is of
practical meaning because we cannot obtain a continuous in-
tensity distribution from experimental measurements. During
the calculation, we only use the intensity information, which is
limited in finite distances and overcomes the difficulty of the
integral in the whole space in [12].

The simulation for a virtual beam whose modal compo-
nents are already known is taken and the results show that
the solutions for arguments and amplitudes of the expansion
coefficients hc�ncn�mi are exactly consistent with the theoreti-
cal values. In our modal decomposition algorithm, the mini-
mum mode order n0 and the maximum mode order N
should be known a priori. The value of n0 is generally set
to be zero for practical consideration. However, the parameter
N is harder to find and an inappropriate value of N may cause
great calculation burden. Thus we propose an estimation
method to find the value ofN quickly without any prior knowl-
edge about the mode contents of the beam. A simulation
proves that this estimation method could give the exact value

of N and could lead to efficiencies for searching the value
of N due to the lower sampling number and more simple
procedures.
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