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Abstract. Image restoration and deconvolution from blurry and noisy
observation is known to be ill-posed. To stabilize the recovery, total
variation (TV) regularization is often utilized for its beneficial edge in
preserving the image’s property. We take a different approach of TV
regularization for image restoration. We first recover horizontal and
vertical differences of images individually through some successful
deconvolution algorithms. We restore horizontal and vertical differ-
ence images separately so that each is more sparse or compressible
than the corresponding original image with a TV measure. Then we
develop a novel deconvolution method that recovers the horizontal
and vertical gradients, respectively, and then estimate the original
image from these gradients. Various experiments that compare the
effectiveness of the proposed method against the traditional TV meth-
ods are presented. Experimental results are provided to show the
improved performance of our method for deconvolution problems.
© 2013 SPIE and IS&T. [DOI: 10.1117/1.JEI.22.1.013006]

1 Introduction
Image blurring is one of the prime causes of poor quality in
digital images. The degradation procedure is often modeled
as the result of a convolution with a low-pass filter

fðn;mÞ ¼ Huðn;mÞ þ ηðn;mÞ ¼ ðh � uÞðn;mÞ þ ηðn;mÞ;
(1)

where u and f are the original image and the observed image,
respectively. η is the noise produced in the processing of
image acquisition, and it is generally assumed to be indepen-
dent and identically distributed (i.i.d.) zero mean additive
white Gaussian noise (AWGN) with variance σ2, and ”*”
denoting the convolution operator. In the image deconvolu-
tion process, h represents the point-spread function (PSF) of
a linear invariant system H. Mathematically, computing u

from Eq. (1) can be often modeled as deconvolution process.
The difficulty of such a modeling is that the computation of u
by direct inversion of h is not reasonable due to noise cor-
ruption, thus the problem Eq. (1) is usually ill-posed. Hence,
in order to solve this ill-posed problem, one needs to have
some prior knowledge of the kind of typical images expected
to be restored. This prior information should help to recover
the missing information. Usually, it is standard to approach
the inverse problem by the regularization method.

In recent years, a number of deconvolution algorithms
have been proposed. In these methods, the Wiener filter1,2

and constrained least squares algorithm1 can solve this prob-
lem in the frequency domain at a fast speed. However, they
often obtain a noisy result with ringing effects. A popular
regularization is total variation (TV). The TV deconvolution
method finds approximate solutions to differential equations
in the space of bounded variation (BV) functions. The space
of BV functions is a reasonable functional model for images
since it contains piecewise smooth functions that allow for
discontinuities. The standard total variation (TV) image
denoising method estimates the original image by solving
the following minimization problem

û ¼ argmin
u

kf − uk2 þ λTV½u�; (2)

where k ⋅ k is the L2 norm of the function and TV½u� ¼
∫ Ωj∇uj is the total variation norm of u. The TV functional
was first proposed by Rudin, Osher and Fatemi in Ref. 3
in context of image denoising. An adaptive total variation
image deconvolution method on the use of majorization-
minimization (MM) algorithm was proposed in Ref. 4.
This method can achieve good performance even when com-
pared with approaches where the regularization parameter is
hand-tuned for optimal performance. It has proved to be par-
ticularly relevant in recovering piecewise smooth functions
without smoothing sharp discontinuities. Due to its virtue of
preserving edges, it is widely used in many applications of
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image processing, such as deconvolution/denoising5–10 and
decomposition.11–13 A hybrid regularization based on TV
and an L1-norm applied on wavelet coefficients is proposed
in Ref. 14 in order to deal with deconvolution in the presence
of Gaussian noise. In Ref. 15, Neelamani et al. proposed an
efficient, hybrid Fourier-wavelet regularized deconvolution
(ForWaRD) algorithm. The ForWaRD method may lead to
good results via tandem scalar shrinkages in both the
Fourier and wavelet domain. However, in some cases the
restored images have slightly low contrast and ripple arti-
facts. An extension in terms of Shearlet and incomplete mea-
surements, known as ShearDec, ForIcM was proposed in
Refs. 16 and 17, respectively. The basic idea for these
approaches is that images can be sparsely approximated by
properly designed frames, and hence the regularization used
for wavelet frame based models is the l1-norm of frame
coefficients.

The images of interest tend to enjoy the property of being
sparse or compressible in some transform domain (e.g.,
wavelet,15 gradient,18 Fourier,15 etc). Images are inherently
sparse in the pixel or gradient domain. For instance, if the
image is piecewise-constant, then a gradient representation
would only contain non-zero values near boundary positions,
we say that it is sparse with respect to the total variation (TV)
measure. Most TV-based image deconvolution approaches
minimize the TV semi-norm, which enforces the necessary
TV sparsity of the solution (see Refs. 5 to 10, and others).
The fast total variation deconvolution (FTVd)19 method is a
state-of-the-art algorithm for TV-based image deconvolution
and it solves TV minimization by augmented Lagrangian
and alternating direction algorithms. The main idea of the
FTVd method is to reformulate a TV problem as a linear
equality constrained problem where the objective function
is separable, and then minimize its augmented Lagrangian
function using Gauss-Seidel updates of both primal and
dual variables. The FTVd method can generally achieve bet-
ter quality faster than several iterative methods for TV image
restoration.20–22

The previous TV-based deconvolution method does not
take advantage of the additional sparsity, which is utilizing
the two horizontal and vertical directional derivatives of the
image. The total variation-based image denoising/deblurring
model has been generalized and extended in numerous
ways, improving its performance in different contexts.23

Sparse-gradient images are more sparse under differences
in a single direction than in the TV sense. By exploiting
this, we present a different approach to the problem of
recovering a sparse-gradient image from the blurred image
in this paper. By using the fact that the Fourier transform
of the gradients of an image are precisely equal to a diag-
onal transformation of the Fourier transform of the original
image, we utilize TV methods to directly recover the hori-
zontal and vertical differences of our desired image. Then,
we recover the original image from our edge estimates by
solving a simple penalized least-square (LS) optimization
problem.

The rest of the paper is organized as follows: In Sec. 2
we briefly describe our problem formulation and notations
used in our paper. We motivate and present our deconvolu-
tion framework and an efficient algorithm that implements
the proposed approach is developed in Sec. 3. Section 4
addresses the numerical implementation for deconvoluting

images problem efficiently and presents several experimental
results. We finally draw a conclusion in Sec. 5.

2 Notation and Problem Formulation
In this paper, we will utilize the following notational conven-
tions when dealing with images. Let u ∈ RN×M denote an
image. Any particular pixel of u will be written as un;m or
uðn;mÞ depending on whichever is more convenient in
any given setting.

The discrete directional derivatives on x and y are defined
pixel-wise as

ðuxÞn;m ¼ un;m − un−1;m (3)

ðuyÞn;m ¼ un;m − un;m−1: (4)

Based on these, the discrete gradient operator ∇ where
∇u ∈ RN×M×2 is defined as

ð∇uÞn;m ¼ ½ðuxÞn;m; ðuyÞn;m�: (5)

From these operators, one can define the discrete TVoperator
on u as

½TVðuÞ�n;m ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jðuxÞn;mj2 þ jðuyÞn;mj2

q
; (6)

from which one can also define the TV seminorm of u as

kukTV ¼ kTV½u�k1; (7)

where k · k1 is the l1 norm defined as

kuk1 ¼
XN
n¼1

XN
m¼1

jun;mj: (8)

To that end, let F denote the 2-D DFT of u and F−1 its
inverse.

3 Description of the Proposed Scheme
In this paper, we use the TV measure in horizontal and ver-
tical differences images, respectively, and not in an observed
image, such as traditional TV-based deconvolution methods.
Figure 1 shows the flowchart of our method. It is possible
to embed any of the various TV-based deconvolution
algorithms (such as alternating minimization, iterative
thresholding algorithms, nonconvex algorithms and convex
optimization algorithms) for solving the traditional TV
model. We show that, instead of restoring an image by TV
minimization, one can restore the image by separately restor-
ing the horizontal and vertical differences, and then integrate
two parts to obtain the final estimate image. Traditional
image deconvolution methods of TV-based regularization
utilize the sparsity of TV measure, which can be expressed
approximately as l1 norm. Figure 2 presents an important
comparison in the sparsity of ½ux�, ½uy�, and u under the
TV measure, where ux and uy are the vertical and horizontal
difference images of u, respectively. The plots of the sorted
absolute values of the coefficients of gradients TV ½ux�, TV
½uy�, and TV ½u� for the Barbara images (see Fig. 2) indicate
that TV ½ux�, TV ½uy� decay much faster than the TV measure.
In fact, it is easy to see from Fig. 2 that the coefficients of TV
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½ux� and TV ½uy� decay faster than the coefficients of TV ½u�.
This means that our method can take advantage of this and
can be able to restore a more sparse image under the differ-
ence measure than the traditional TV-based method.

Our algorithm consists of three main steps.

1. The discrete Fourier transform is first utilized on origi-
nal blur measurements, and obtains the corresponding
vertical and horizontal differences in the Fourier
space.

2. It then utilizes some algorithms from the suite of
image recovery routines (e.g., FTVd, iterative thresh-
olding algorithm, alternating direction method of
multipliers (ADMM), etc.) to recover the difference
images.

3. Finally, it recovers the original image from the esti-
mates of its differences and observed image by min-
imizing the least-square (LS) error function.

In order to get horizonal and vertical differences images,
we use the fact that the Fourier transform of the gradients of

an image are precisely equal to a diagonal transformation of
the Fourier transform of the original image. Here, we give a
simple deduction of vertical difference image ux, and hori-
zontal difference image uy is obtained likewise. The discrete
Fourier transform of image u could be written as

F ðuÞk1;k2 ¼
X
n;m

un;m e−i2nk1π∕Ne−i2mk2π∕M; (9)

and DFT of vertical difference image could be written as

F ðuxÞk1;k2 ¼
X
n;m

ðuxÞn;m e−i2nk1π∕Ne−i2mk2π∕M

¼
X
n;m

ðun;m − un−1;mÞ e−i2nk1π∕Ne−i2mk2π∕M

¼ ð1 − e−i2k1π∕NÞ
X
n;m

un;m e−i2nk1π∕Ne−i2mk2π∕M

¼ ð1 − e−i2k1π∕NÞFðuÞk1;k2 :

Given blurred observations f, we first obtain Fourier
observations Ff through fast Fourier transform, then we
get the Fourier observations of fx and fy based on the
above fact through the following equation

ðFfxÞk ¼ ð1 − e−2πik1∕NÞðFfÞk
ðFfyÞk ¼ ð1 − e−2πik2∕MÞðFfÞk;

where k ¼ ðk1; k2Þ, 1 ≤ k1 ≤ N, 1 ≤ k2 ≤ M. After this is
done, we get the horizonal and vertical differences images
in Fourier domain, and thus we can obtain edge images of
blurry observations. Many image deconvolution algorithms
can be used to recover ux and uy from their respective Fourier
observations. For instance, we assume that the observations
are of the following form:

fx ¼ h � ux þ ηx fy ¼ h � uy þ ηy;

where ðηxÞk ¼ F−1½ð1 − e−2πik1∕NÞðFηÞk� and ðηyÞk ¼
F−1½ð1 − e−2πik2∕MÞðFηÞk�. This assumption is based on
the properties of convolution:

Fig. 1 Flowchart of our method.
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Fig. 2 Magnitude of TV ½u�, TV ½ux �, TV ½uy � coefficients in decreasing
order for Barbara image.
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∂ðh � uÞ
∂x

¼ h � ∂u
∂x

∂ðh � uÞ
∂y

¼ h � ∂u
∂y

:

After that is done, we use the following unconstrained
forms to solve ux and uy from the previous two equations

ûx ¼ argmin
ux

kuxkTV þ λ1
2
kh � ux − fxk22

ûy ¼ argmin
uy

kuykTV þ λ2
2
kh � uy − fyk22:

Then gradients can be estimated by the FTVd method to
solve the previous two optimization problems. After ob-
taining estimates ûx and ûy of ux and uy, respectively, some
kind of integration must be performed to recover estimates û
of u. In order to obtain u from f, ûx and ûy, we adopt the
lease-square method that was proposed in Ref. 18, and solve
the following optimization problem:

û ¼ argmin
u

kux − ûxk2 þ kuy − ûyk2

þ βkukTV þ λku � h − fk2; (10)

where β and λ are penalty parameters that determine the
degrees to which the TV minimization and fidelity con-
straints are enforced. Following the previous definition of
TV, solving optimization problem Eq. (10) can be time-
consuming and difficult. Following Ref. 18, one can replace
the intrinsic l1 norm associated with the TV norm in (2.5)
with an l2 norm. This changes Eq. (10) into the following
least square (LS) optimization problem:

û ¼ argmin
u

kux − ûxk2 þ kuy − ûyk2

þ βðkuxk2 þ kuyk2Þ þ λku � h − fk2: (11)

Due to the existence of the convolution operator, we use fast
Fourier transform (FFT) for speed up. We rewrite Eq. (11) as
the following equivalent problem in the Fourier domain:

Û ¼ argmin
U

kA1U − Ûxk2 þ kA2U − Ûyk2

þ βðkA1Uk2 þ kA2Uk2Þ þ λkUH − Fk2: (12)

where A1 ¼ 1 − e−i2k1π∕N , A2 ¼ 1 − e−i2k2π∕M , and Û, Ûx,
Ûy, U, H, F are the FFT of û, ûx, ûy, u, h, f, respectively.
Then, we can write the solution of (3.4) directly:

Û ¼ Ā1Ûx þ Ā2Ûy þ λH̄F

ð1þ βÞðĀ1A1 þ Ā2A2Þ þ λH̄H
; (13)

where Ā1, Ā2 and H̄ are the complex conjugate of A1, A2 and
H, respectively. The addition, multiplication, and division
are all component-wise operators. Compared to minimizing
Eq. (10) directly in the image space, which involves very-
large-matrix inversion, computation in the Fourier domain
is much faster due to the simple component-wise division.

4 Experimental Results
In this section, we present results of our proposed method
and compare them with some of the deconvolution methods,
such as traditional TV-based image restoration methods
solved by FTVd,19 ForWaRD,15 TVMM.4 In order to validate
our approach with respect to the tested methods, we use the
statistical measure improved signal-to-noise ratio (ISNR),
SNR and the structural similarity index (SSIM), which are
often used in image restoration to measure the performance.
These definitions are:

ISNR ¼ 10 log10

�ku − fk2
ku − ûk2

�

SNR ¼ 10 log10

� kuk2
ku − ûk2

�

SSIM ¼ ð2μuμû þ C1Þð2σuû þ C1Þ
ðμ2x þ μ2y þ C1Þðσ2u þ σ2û þ C2Þ

;

where f, u, and û are the observed image, original image and
recovered image, μu and μû are (respectively) the means of u
and û, σu and σû are (respectively) the standard deviations of
u and û, and σuû is the cross correlation of u and û after
removing their means. The items C1, C2 are small positive
constants that stabilize each term. In our experiments, we set
C1 ¼ 0.01, C2 ¼ 0.03 for the experiments.

We consider nine benchmark deblurring problems. In
these experiments, original images (Fig. 3) are Barbara
(experiments 1, 2 and 3), Lena (experiments 4, 5, 6 and 7)
and Tower (experiments 8 and 9). Table 1 summarizes the

Fig. 3 Images used in this paper for different experiments.
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different degradation models used, which are defined by the
blur type, the variance of the AWGN for each of the experi-
ments. We mark the highest experiment values in bold.
Through the marking values we can see the effectiveness
of the algorithm more clearly.

Sparse-gradient images are more sparse under differences
in a single direction than in the TV sense. By exploiting
it, we develop a novel deconvolution method that recovers
the horizontal and vertical gradients, respectively, and then
estimate the original image from these gradients. In order
to validate the effectiveness of our algorithm, we have com-
pared the ISNR and SNR, and SSIM results given by our
approach and the other published deconvolution methods,
respectively, in Tables 2–4. These present a comparison of
the ISNR, SNR, and SSIM for Barbara, Lena, and Tower

images for a few deconvolution methods (FTVd,19

ForWaRD,15 TVMM4), respectively. From these numerical
performances, one can see that our method obtains good
results in most cases in terms of ISNR, SNR, and SSIM.
The results of ForWaRD15 are obtained with the Matlab
codes24 made available by its authors, for which we used
automatically estimated regularization parameters. The
results for TVMM4 are obtained by the software available
online and the results of FTVd are obtained with the
Matlab codes25 made available by its authors. In order to
fairly compare the results, we have tuned the parameters
to achieve the best quality of the restoration images for
our method. In most of the experiments, the proposed
method outperforms the few deconvolution methods in
terms of ISNR, SNR, and SSIM. We notice that our method
leads to competitive restoration results for various level of

Table 2 ISNR for different experiments.

Exp. Our method ForWaRD FTVd TVMM

Exp.1 4.43 3.69 3.49 3.10

Exp.2 2.34 1.87 1.67 1.33

Exp.3 1.01 0.98 0.90 0.75

Exp.4 3.80 2.93 3.60 3.52

Exp.5 7.11 6.05 6.38 6.36

Exp.6 5.48 4.90 5.12 4.98

Exp.7 3.73 3.50 3.44 3.61

Exp.8 7.49 7.40 7.06 6.85

Exp.9 5.31 5.03 4.90 4.88

Table 3 SNR for different experiments.

Exp. Our method ForWaRD FTVd TVMM

Exp.1 21.82 20.85 20.92 20.49

Exp.2 19.70 18.98 19.03 18.69

Exp.3 18.85 18.64 18.64 18.59

Exp.4 26.89 26.02 26.74 26.62

Exp.5 28.71 27.66 28.01 27.96

Exp.6 26.85 26.29 26.50 26.35

Exp.7 27.24 26.96 26.94 27.11

Exp.8 24.98 4.71 24.53 24.34

Exp.9 22.73 22.32 22.32 22.30

Table 4 SSIM for different experiments.

Exp. Our method ForWaRD FTVd TVMM

Exp.1 0.9344 0.9216 0.9225 0.8351

Exp.2 0.8805 0.8702 0.8655 0.7666

Exp.3 0.8720 0.8714 0.8685 0.7961

Exp4. 0.9536 0.9489 0.9526 0.8059

Exp.5 0.9723 0.9622 0.9693 0.8796

Exp.6 0.9553 0.9477 0.9517 0.8250

Exp.7 0.9687 0.9611 0.9629 0.8807

Exp.8 0.9647 0.9569 0.9539 0.7952

Exp.9 0.9354 0.9309 0.9125 0.7614

Table 1 Images, Blur PSF and noise variance used in each
experiment.

Blur σ2

Exp.1 vði ; jÞ ¼ 1∕ðþi2 þ j2Þ, i , j ¼ −1; · · · ; 7 (Barbara) 2

Exp.2 vði ; jÞ ¼ 1∕ðþi2 þ j2Þ, i , j ¼ −1; · · · ; 7 (Barbara) 8

Exp.3 v is a Gaussian PSF with standard deviation 1.6
(Barbara)

4

Exp.4 v¼ ½14641�T ½14641�∕256 (Lena) 49

Exp.5 vði ; jÞ ¼ 1∕ðþi2 þ j2Þ, i , j ¼ −1; · · · ; 7 (Lena) 2

Exp.6 vði ; jÞ ¼ 1∕ðþi2 þ j2Þ, i , j ¼ −1; · · · ; 7 (Lena) 8

Exp.7 v is a Gaussian PSF with standard deviation 1.6
(Lena)

4

Exp.8 vði ; jÞ ¼ 1∕ðþi2 þ j2Þ, i , j ¼ −1; · · · ; 7 (Tower) 2

Exp.9 vði ; jÞ ¼ 1∕ðþi2 þ j2Þ, i , j ¼ −1; · · · ; 7 (Tower) 8
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blur and noise degradations in the experiments compared
with a few deconvolution methods.

In Fig. 4, we show the restored and zoomed images of
experiment 1 for “Barbara” image, where a comparison
with the FTVd deblurring is made. One can see that fine
details are well preserved and there are few artifacts in
the deblurred image. The zoomed image of the FTVd algo-
rithm is shown in Fig. 4(e). By carefully examination, some
image textures on the trousers are lost, and it has slightly
lower contrast on the trousers. Figure 4(f) shows the resto-
ration result of our proposed method, showing how much
more visually pleasant and brighter it is than Fig. 4(e) and
how it obtains more details. In Fig. 4, fine details are well
preserved and there are few artifacts in the deblurred images
utilizing our proposed method.

In addition, the visual quality of other restored “Barbara”
images can be evaluated in Fig. 5 that we show the result of
experiment 2 and experiment 3, respectively. Here the image
textures on the trousers and headkerchief are well preserved
in the deblurred images. From Tables 2–4, we can see that
our results also perform well in terms of ISNR, SNR,
and SSIM.

We have also done the experiments on the “Lena” image.
The comparison between FTVd method and our proposed
method, and zommed restoration results of the experiment 7

Fig. 5 Deblurring results of our method for Barbara. (a) Noisy blurred
image (Exp.2). (b) Output: ISNR ¼ 2.34, SNR ¼ 19.70, SSIM ¼
0.8805. (c) Noisy blurred image (Exp.3). (d) Output: ISNR ¼ 1.01,
SNR ¼ 18.85, SSIM ¼ 0.8720.

Fig. 6 The result of the seventh experiment with Lena image. From
left to right, from top to bottom. (a) Original image. (b) Noisy blurred
image. (c) FTVd estimate, ISNR ¼ 3.44, SNR ¼ 26.94, SSIM ¼
0.9629. (d) Our algorithm estimate, ISNR ¼ 3.73, SNR ¼ 27.24,
SSIM ¼ 0.9687. (e) Fragments of the FTVd result. (f) Fragments of
the result by our method.

Fig. 4 The result of the first experiment with Barbara image. From left
to right, from top to bottom. (a) Original image. (b) Noisy blurred
image. (c) FTVd estimate, ISNR ¼ 3.49, SNR ¼ 20.92, SSIM ¼
0.9225. (d) Our algorithm estimate, ISNR ¼ 4.43, SNR ¼ 21.82,
SSIM ¼ 0.9344. (e) Fragments of the FTVd result. (f) Fragments of
the result by our method.

Journal of Electronic Imaging 013006-6 Jan–Mar 2013/Vol. 22(1)

Huang et al.: Gradient-based image deconvolution

Downloaded From: http://electronicimaging.spiedigitallibrary.org/ on 03/16/2014 Terms of Use: http://spiedl.org/terms



are shown in Fig. 6. From Fig. 6(e), we can see that some
textures, such as eyelashes are lost and the bongrace (hat)
produces the ring effort. The restoration result of our pro-
posed method is shown in Fig. 6(f). One can see that our
method achieves better visual result and obtain more textures.
The quality of other experiments of the “Lena” image can be
seen in Fig. 7. Analyzing these figures, we can see that the
proposed algorithm is able to suppress the ringing artifacts
better than other compared methods and provides sharper
image edges. Figure 8 shows the observations and the cor-
responding restored images for “Tower” image. Both the
objective and subjective quality of our estimates are high.

5 Conclusions
As sparse-gradient images are more sparse under differences
in a single direction than in the TV sense, it follows that
increased accuracy will be possible when linear differences
of such images are recovered utilizing FTVd algorithms. We
first recover the horizontal and vertical difference images,
respectively. From these linear differences, one can employ
the integration method to recover the original image.
Through extensive experimentation, we have shown that
the proposed algorithm in this paper, which combines
edge estimation via FTVd with the integration method, offers

significant improvement in restoration quality and robust-
ness over leading TV minimizers in various deblurring
scenarios.
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