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In this Letter, we study diffuse reflectance and photoluminescence spectra for O2− fully coordinated green-emitting
Ce3� andN3− partially coordinated red Ce3� in Ca3Sc2Si3O12�CSS�:Ce3�, N3− as a function of CeO2 and Si3N4 contents
in the raw material. Our results indicate that the presence of N3− can enhance Ce3� solubility in the form of red
centers in CSS. At low Ce3� concentration, green Ce3� forms preferentially while red Ce3� hardly forms even if
N3− content in the raw material is sufficient. There exists a threshold concentration of green Ce3�; only beyond
that can color tunable luminescence with enriched red emission be achieved. Energy transfer from green Ce3� to
red Ce3� is also studied, as only the green Ce3� is excited by blue light. © 2013 Optical Society of America
OCIS codes: 160.2540, 300.6280, 160.4760, 160.4670.

White light-emitting diodes are considered to be promis-
ing candidates for a future lighting system [1]; they are
commonly fabricated by combining a blue-emitting InGaN
chip with Y3Al5O12:Ce3� (YAG:Ce3�) yellow-emitting gar-
net phosphor [2]. YAG:Ce3� has a high conversion effi-
ciency, but a less red-emitting component. To resolve
this problem, blending YAG:Ce3� with red-emitting phos-
phors is generally employed [3,4]. The phosphor blend,
however, suffers from fluorescence reabsorption that
results in loss of luminous efficiency. Hence, full-color-
emitting single-phase phosphors are expected. Setlur et al.
[5] demonstrated that red-emitting Ce3� sites can be cre-
ated by incorporating N3− into �Lu;Y;Tb�3Al5O12:Ce3�

garnet to replace Al3�-O2− by Si4�-N3−. The red sites
are those Ce3� ions that have N3− in their local coordina-
tions. O2− substituted by N3− with a lower electronegativ-
ity can result in red shift of the lowest 5d level of Ce3� due
to the nephelauxetic effect [5].
Recently, Shimomura et al. [6] reported a novel green-

emitting silicate garnet phosphor Ca3Sc2Si3O12:Ce3�

(CSS:Ce3�) in which Ca, Sc, and Si cations are eight-,
six-, and four-coordinated in dodecahedron, octahedron,
and tetrahedron, respectively [7]. The extended x-ray
absorption fine structure analysis indicated that Ce3�

ions present at Ca2� sites followed by Ca vacancies are
produced for charge compensation [6]. CSS:Ce3� has
high emission efficiency and high thermal stability super-
ior to YAG:Ce3�, but it lacks red emissive components
to be a full-color-emitting single-phase phosphor. In our
previous work [8], we performed N3− incorporation into
CSS:Ce3� and achieved red-emitting Ce3� centers (peak-
ed at 610 nm) as the case of YAG [5]. The luminescence
spectrum of CSS:Ce3� was then modified to contain an
enriched red component so as to generate white light.
Ce3� in CSS has a limited solubility around 1.1 mol. %
as reported by Shimomura et al. [6]. We found that
incorporating N3− can enhance additional solubility in
the form of red Ce3� centers without reducing the solu-
bility for the original green Ce3�. Furthermore, we also
found that the red Ce3� centers hardly form in the case of

low concentration of green Ce3�. Obviously, there exists
a correlation in the formation of red and the green Ce3�

centers. To understand the correlation is therefore of
significance for achieving applicable single-phase white
phosphor with tunable emission spectra to meet practical
demand.

In this Letter, we investigate the formation of green
Ce3� and the Ce3� as a function of CeO2 and Si3N4 con-
tents in the raw material. The priority of formation of the
two Ce3� centers and emission spectra tuning through
energy transfer are reported.

The Ca3Sc2Si3O12∶Ce3�, N3− (CSS:xCe3�, yN3−) phos-
phors were synthesized by conventional solid-state
reaction. The molar ratio of raw materials was �CaCO3�∶
�CeO2�∶�Sc2O3�∶�SiO2�∶�Si3N4� � �3 − x�∶x∶1∶�3 − 0.75y�∶
0.25y. Two sample series were prepared. For series 1, x
was fixed to be 0.06 with y changing from 0 to 1.2. For
series 2, y was fixed to be 0.6 with x changing from 0 to
0.15. The mixtures of raw materials were sintered in
a tubular furnace at 1350°C for 4 h in reductive atmo-
sphere (2%H2 � 98%N2). The photoluminescence (PL),
photoluminescence excitation (PLE), and diffuse reflec-
tance (DR) spectra were measured using a HITACHI
F-4500 spectrometer. The fluorescence lifetime was mea-
sured by a FL920 Fluorescence Lifetime Spectrometer.

Figure 1(a) shows the DR spectra for CSS:0.06Ce3�,
yN3− (sample series 1). The absorption band peaking
around 450 nm is ascribed to the typical 4f → 5d transi-
tion of Ce3� that substitutes for Ca2� in eight oxygen
coordinated dodecahedron in CSS. In the DR spectra
for the samples containing N3−, there appears an addi-
tional absorption band around 510 nm. This new band
has been attributed to the absorption of the Ce3� that
has N3− in its local coordination, as described in our
previous work [8]. Here we name the Ce3� that has no
N3− in its local coordination Ce3��I�, and the Ce3� that
has N3− in its local coordination Ce3��II�. In absence
of N3−, Shimomura et al. have reported that the saturated
Ce3��I�molar concentration available in CSS is 0.011 [6].
The limited solubility of Ce3� in CSS is easily understood
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considering the charge difference between Ce3� and
Ca2�, which therefore requires generation of Ca vacan-
cies for charge compensation. Obviously, the nominal
Ce3� content of 0.06 in the raw material for the present
work exceeds the Ce3� condition in material preparation.
Hence, the actual Ce3��I� concentration in the sample
CSS:0.06Ce3�, 0N3− (bold curve in Fig. 1) can be deemed
to be its saturated concentration of 0.011 in CSS. We can
observe in Fig. 1(a) that Ce3��II� absorption is enhanced
considerably when increasing the nominal content (y) of
N3− in the raw material; meanwhile, Ce3��I� absorption
only increases slightly. This result indicates that the pre-
sence of N3− can promote the total number of Ce3� ions
capably incorporated in the CSS host.
The observed remarkable increase of Ce3� solubility in

the term of Ce3��II� type—though not followed by a
decrease of the Ce3��I� type—indicates that the presence
of N3− can promote excessive Ce3− in the raw material,
which is incorporated into the CSS host to be Ce3��II�. In
view of the similar research on nitridation in YAG:Ce3�

[5], we deduce that a possible mechanism solution is that
Ce3��II� is formed through a local charge balanced sub-
stitution of a Ce3�-N3− pair for a Ca2�-O2− pair in CSS.
With regard to the slight increase of Ce3��I� number with
increasing N3−, there are two possible reasons: one is a
small delocalized effect of N3− substituting for O2− may
on compensating for the positive charge residual of
Ce3�, substituting for Ca2� at a long distance; another
is N3− with a larger ionic radius substitution for O2− may
slightly compensate for the unite cell volume shrinking
induced by generation of Ca vacancy in Ce3��I� forma-
tion. What we are interested in is the formation competi-
tion between Ce3��I� and Ce3��II� as a function of
nominal N3− content and Ce3� content in the rawmaterial.

Figure 1(a) demonstrates that the presence of N3− is more
beneficial to formation of Ce3��II� than that of Ce3��I� in
case of excess Ce3� in the raw material. The induced
question is how the Ce3� content affects the formation
of the two Ce3� centers in case of excess N3− in the raw
material. Accordingly, we prepared CSS:xCe3�, 0.6N3−

(sample series 2) with fixed nominal N3− content at 0.6
and various nominal Ce3� content x from 0 to 0.15 in
the raw material.

Figure 1(b) shows the DR spectra for sample series 2.
It is surprisingly observed that the Ce3��II� absorption
band hardly appears as x below 0.008, while Ce3��I� ab-
sorption continuously increases when increasing x. The
concentration of incorporated Ce3� ions correlates to
their absorptivity in DR spectra. The Ce3��I� absorptivity
(A1) and Ce3��II� absorptivity (A2) are easily obtained
from their DR spectra. As the dependence of A2 on A1
is plotted, as shown in Fig. 2, we can find that there exists
a threshold A1 for starting growth of A2. Beyond the
threshold, Ce3��II� begins to form and grows with in-
creasing Ce3��I� concentration. The threshold A1 corre-
sponds to nominal Ce3� content close to 0.008. The
existence of the threshold indicates that forming Ce3��I�
that substitutes for Ca2� followed by generation of Ca2�

vacancy is more easy than Ce3�-N3− substituting for
Ca2�-O2− at low Ce3��I� concentration, even if N3− con-
tent in the raw material is more sufficient. Keep this in
mind so that the behavior demonstrated in Fig. 2 can
be understood. With increasing Ce3��I� concentration,
more generated Ca2� vacancies will shrink the unite cell
volume, leading to an increase in the formation energy
for Ce3��I�. As Ce3��I� concentration reaches the thresh-
old, the formation difficulty for Ce3��I� is raised; mean-
while the formation of Ce3��II� is stimulated because a
large N3− substituting for a small O2− can readily compen-
sate either the positive charge residual or the unite cell
volume shrinking induced by Ce3��I� formation. Conse-
quently, the two centers promote their formation to
each other as Ce3��I� concentration over the threshold.

Figure 3 shows the normalized PL spectra (λex �
430 nm) for sample series 2(a)–(c) and series 1 (d). The
red spectral components in the PL spectra enhance with
increasing x for sample series 2 and with increasing y for
sample series 1. Each spectrum can be decomposed into
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Fig. 1. (Color online) DR spectra for CSS:0.06Ce3�, yN3−

(sample series 1) (a), CSS:xCe3�, 0.6N3− (sample series 2)
(b), and PLE spectra for sample series 2 (c).
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Fig. 2. (Color online) Dependence of A2 on A1 in sample
series 2.
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Ce3��I� and Ce3��II� emissions. The Ce3��I� emission
spectrum is considered to be one in CSS:Ce3� that exhi-
bits a typical green emission band peaking around
500 nm, as reported in CSS:Ce3� [6]. The Ce3��II� emis-
sion spectrum exhibits a red emission band peaking
around 610 nm, as described in our previous work [8].
Their PLE bands are located around 450 and 510 nm, re-
spectively, well consistent with their DR bands, as shown
in Fig. 1(c). Considering that the excitation wavelength of
430 nm can only directly excite Ce3��I� rather than
Ce3��II�, the observation of remarkable Ce3��II� emis-
sion therefore indicates occurrence of efficient energy
transfer from Ce3��I� to Ce3��II�. This efficient transfer
benefits from a large spectral overlap between the typical
green emission band peaking at 500 nm of Ce3��I� and
the PLE band peaking at 510 nm of Ce3��II�. In the PL
spectra shown in Fig. 3, the enhancement of the red
PL components with increasing x for sample series 2
and with increasing y for sample series 1 reflects the in-
crease in Ce3��II� number, as demonstrated in their DR
spectra. Due to excitation at 430 nm, the excitation of
Ce3��II� is performed completely through Ce3��I� →
Ce3��II� energy transfer. The emission intensity ratio
(I2∕I1) of Ce3��II� (I2) to Ce3��I� (I1) is therefore propor-
tional to η∕�1 − η�, where η is the transfer efficiency,
calculated by

η � 1 − τ∕τ0; (1)

where τ0 (62 ns) and τ are average fluorescence lifetimes
of Ce3��I� in absence of Ce3��II� and in presence of
Ce3��II�, respectively. τ is defined as the value of area

under the decay curve with normalized initial intensity.
Using Eq. (1), the ratio I2∕I1 should be proportional to
τ0∕τ − 1. As we plot I2∕I1 versus τ0∕τ − 1 for sample series
1 and 2 together, these experimental data exhibit a good
proportional relationship, as shown in Fig. 4. (I2∕I1 is
normalized to sample series 2 with x � 0.15.) This result
indicates that the red/green emission intensity ratios fit
energy transfer dynamics upon blue light excitation.

In summary, incorporation of N3− in CSS:Ce3� can
enhance additional solubility in the form of red Ce3� cen-
ters. As CeO2 content is below 0.008 in the raw material,
green Ce3� forms preferentially, while red Ce3� hardly
forms, even if Si3N4 in the raw material is sufficient.
There exists a threshold concentration of green Ce3�;
only beyond that can the red Ce3� form. Therefore color
tunable luminescence with enriched red emission can be
performed through energy transfer from green Ce3� to
Ce3�, as only green Ce3� is excited by blue light.
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