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Abstract: Applying the iterative triangulation stitching algorithm, we 
provide an experimental demonstration by testing a Φ120mm flat mirror, a 
Φ1450mm off-axis parabolic mirror and a convex hyperboloid mirror. By 
comparing the stitching results with the self-examine subaperture, it shows 
that the reconstruction results are in consistent with that of the subaperture 
testing. As all the experiments are conducted with a 5-dof adjustment 
platform with big adjustment errors, it proves that using the above 
mentioned algorithm, the subaperture stitching can be easily performed 
without a precise positioning system. In addition, with the algorithm, we 
accomplish the coordinate unification between the testing and processing 
that makes it possible to guide the processing by the stitching result. 
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1. Introduction 

Subaperture stitching (SAS) was primarily developed to overcome the aperture size 
limitations and slope sampling limitations of conventional interferometer, where the primary 
goal is to obtain a full aperture map from subaperture measurements without having to test 
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the whole part at one time. It’s useful especially for large flat mirrors, spherical surfaces with 
high numerical aperture, large convex surfaces, and aspheric surfaces exceeding the vertical 
range of the interferometer. 

The SAS algorithm has been playing a very important role in the application of the 
subaperture testing (SAT) method. Many stitching algorithms has been provided and obvious 
improvements can be observed from the Kwon-Thunen method [1] and the simultaneous fit 
method [2], to the discrete phase method [3],the QED’s variable optical null technique [4,5], 
and then to Arizona’s method with maximum likelihood algorithm considering error of the 
reference mirror [6,7]. Aiming to improving the efficiency of stitching, unifying the 
processing and testing results well and testing large surfaces with big errors, we proposed a 
kind of algorithm, iterative triangulation stitching algorithm and a method unifying the 
processing and testing results. Advantages of the algorithm were claimed and verified through 
experiments and the performance of the method unifying the processing and testing results 
was also shown in the experiments. 

In this paper, we focus on the iterative triangulation stitching algorithm and experimental 
demonstration of the high accuracy surface shape measurement and the alignment between 
the processing and testing maps with the iterative method. The stitching algorithm has been 
applied for a Φ120mm flat mirror, a Φ1450mm off-axis parabolic mirror and a convex 
hyperboloid mirror. In the testing, if the full map of the mirror can be tested at one time, the 
stitching result can be compared with the full aperture testing result to evaluate the stitching 
accuracy. However in actual measurement, full aperture testing can hardly be achieved 
especially for large plane mirror or convex mirror. In this situation, we propose a method to 
evaluate the stitching accuracy by comparing the stitching result with the subaperture testing 
result which is used to examine the stitching accuracy. This kind of method is also applied in 
the following experiments. This paper is organized as follows. In Section 2, the basic theory 
of iterative triangulation stitching algorithm and the method used to unify the coordinates 
between the processing and testing results are introduced. In Section 3, we apply the above 
algorithm and method to the actual experiment and the relative testing result is introduced. 
The conclusion is given in Section 4. 

2. Theory 

2.1. The iterative triangulation algorithm 

The stitching algorithm is shown in Fig. 1. First we take interferometric measurements and 
correct distortion to each subaperture, choose a subaperture as a standard and put all the 
testing data in a global coordinates according to their relative positions. If the SAT is taken in 
condition of nonnull testing, nonnull testing error should be removed from each SAT result 
[8]. Then we define grid points in the global coordinate and calculate the phase value of the 
grid points in the overlapping area between subapertures according to the Delaunay 
triangulation as shown in 2.1.1. After getting the phase value of the grid points in the 
overlapping area, we calculate the stitching coefficients of each subaperture except the 
standard one according to our method extended from the one put forward by Masashi Otsubo 
[9] as shown in 2.1.2. Then we will get the residual map of every two adjacent maps after 
removing their adjustment terms respectively in their overlapping area. And then we evaluate 
whether the RMS of the residual meets the requirement. If not, we will calculate the two-
dimensional cross-correlation between every two adjacent subapertures to get a more accurate 
positioning to recalculate the stitching coefficients of each subaperture as shown in 2.1.3 until 
the residual meets the requirement. 

Finally a full-aperture map is obtained by connecting each subaperture testing result with 
stitching coefficients removed from its own testing result and the data in the overlapping area 
is calculated with a stitching factor as shown in 2.14. 
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Fig. 1. Flow chart of subaperture stitching algorithm. 

2.1.1 Delaunay triangulation interpolation 

In actual testing, coordinates of subapertures can be unified in a global coordinate according 
to the mechanic alignment accuracy or with marked points, targets and so on. Before we 
calculate the stitching coefficients of each subaperture, the overlapping correspondence in the 
overlapping area should be found in advance to calculate the stitching coefficients of each 
subaperture [10]. If we assume that all phase data have been transformed to their 
corresponding global 3D coordinates, the overlapping correspondence problem can be 
simplified as follows: 

 

Fig. 2. Calculation in the overlapping area. (a) sketch of the projection on the X-Y plane; (b) 
sketch of Delaunay triangulation. 

Before stitching, grid points which represent the same points between subapertures should 
be defined. As shown in Fig. 2(a), a uniform grid is defined on the X-Y plane. Then, all of the 
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points in the i th  and the j th  subapertures are projected onto the X-Y plane. For the sake of 

conciseness, only the grid points falling in the overlapping area are shown as dot points in 
Fig. 2(a). The coordinates of the dot points in the z direction need to be calculated 
respectively in each subaperture. Consider the grid points in the overlapping area between the 
i th  and the j th  subapertures. The testing result of the i th  subaperture is shown in Fig. 2(b) 

where the triangle is the Delaunay triangulation result to the phase data of the i th  subaperture. 
The triangulation result can be described by Eq. (1) 

 
1 1 1

2 2 2

3 3 3

1

1

1

x y a z

x y b z

x y d z

−    
     = −    

    −    

 (1) 

where 1 1 1 2 2 2(x , y , z ), (x , y , z )  and 3 3 3(x , y , z )  are the coordinates of the three points making up 

of the fundamental triangle in the triangulation. a, b and d are coefficients of the equation, 

 z ax by d= − − −  (2) 

which is used to describe the plane equation of the triangle (the coefficient of z won’t be 
zero). 

The dot points in the overlapping area can be found in one triangle and the coordinates of 
these dot points in the Z direction can be interpolated from the plane function according to the 
data from the i th  subaperture by Eq. (2). In the same way, the coordinates of these dot points 

can also be got in the Z direction according to the testing data from the j th  subaperture. 

Because the phase distribution in the overlapping area between the adjacent subapertures 
should be the same, the coefficients of the subapertures can be solved with the method 
described in Section 2.1.2 on the basis of the coordinates of these dot points in each 
subaperture. 

2.1.2. Calculation of stitching coefficients 

The content in this part is extended from the algorithm developed by Masashi Otsubo [9]. We 
assume that there are N subaperture measurements and the coordinates of grid points in the z 
direction have been calculated in each subaperture. For convenience, the N th  subaperture is 

taken as a standard and the map shape of the i th  subaperture can be expressed as, 

 '

1

( , ) ( , ) ( , )
L

i i ik k
k

x y x y a f x y
=

Φ = Φ +  (3) 

where ( , )i x yΦ  is the testing result of the i th  subaperture and ( , )kf x y  can be any predefined 

functions while ika  is the relative coefficient to be fit to each ( , )kf x y  of every subaperture 

except the standard one. L is the number of terms to be fit. When we perform the stitching to 
a plane mirror, usually the fitting functions are limited to tip/tilt and piston and the function 

( , )kf x y  can be written as: 

 
1

2

3

( , ) ;

( , ) ;

( , ) 1.

f x y x

f x y y

f x y

=
 =
 =

 (4) 

The algorithm mentioned in the manuscript can be generalized when more terms need to 
be fit and the fitting functions for each subaperture may not be limited to tip/tilt and piston. 

Least squared fitting is used: 
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Equation (5) can be transformed to a group of linear equations in form of, 

 P Q R= ⋅  (6) 

P, Q and R are defined as follows, 
P is a vector in length of ( 1)N L− ×  row. For convenience, ( 1)j kP − ⋅  is used to represent the 

(( 1) )j L k− ⋅ + th  row of the vector. j represents the sequence number of the subaperture while 

k is the sequence number of predefined functions. That means, 

 
1 ;

1 1.

k L

j N

≤ ≤
 ≤ ≤ −

 (7) 

and ( 1)j kP − ⋅  can be written as, 

 ( 1)
1
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N

j k k j i
i i j
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≠
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 (8) 

Q is a matrix in size of ( 1)N L− ×  and Q((j-1)⋅k)((l-1)⋅k’) is used to represent the element in the 

row (( 1) )j L k− ⋅ + th , column (( 1) )l L k ′− ⋅ +  of the matrix. l also represents the sequence 

number of the subaperture while k ′  means the sequence number of predefined functions. 
Then, 
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and Q((j-1)⋅k)((l-1)⋅k’) can be written as, 
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 (10) 

R is a vector in length of ( 1)( 1) . j kN L R − ⋅− ×  is used to represent the (( 1) )j L k− ⋅ + th  row 

of the vector and ( 1)j kP − ⋅  can be written as, 

 ( 1)j k jkR a− ⋅ =  (11) 

where jka  is the coefficient of the predefined fitting function ( , )kf x y  for the j th  

subaperture. 
By solving the linear equations we can obtain the fitting coefficients ika , and then we can 

combine the subaperture measurements together to get the full aperture map. In the 
overlapping areas, a kind of stitching factor is applied to calculate the phase data which is 
introduced in 2.1.4. 

2.1.3. Position calculation of each subaperture with two-dimensional cross-correlation 

Before applying the stitching factor described in Section 2.1.4 to the subaperture 
measurements, we need to find out whether the stitching accuracy meets our requirement. In 
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theory, the phase data should be the same in the overlapping area after removing the 
adjustment terms. So we calculate the residual map of every two adjacent maps to judge 
whether the RMS of the residual meet the requirement. If it meets the requirement, the full 
map can be obtained as shown in 2.1.4. If not, the relative position between adjacent 
subapertures can be described as, 

 1 2

1 2

;

.

x x dx x

y y dy y

= + + Δ
 = + + Δ

 (12) 

where 1 1 2 2( , ) ( , )x y x yand  are the coordinates of pixels in sub1 and sub2 respectively, 

( , )dx dy  the approximate position relationship between them and ( )Δx,Δy  the accurate 

position relationship to be solved. 

( )Δx,Δy  can be calculated by calculating the two-dimensional cross-correlation of the 

data in sub1 and sub2 as **F G  with the position of the peak ( )Δx,Δy . 

2.1.4. Stitching factor in the overlapping area 

Usually average is introduced to all the subapertures which have valid data over this area, 
however, this value way will leave small steps between adjacent subapertures. Step is the 
sudden change of the data in the map which makes the map unsmooth and discontinuous. It 
usually appears as a line at the edge of the subaperture in the stitching map. To remove the 
step, low-frequency filter can be used in the full aperture map. However, this method also 
takes away the high-frequency message of the stitching result, not only in the overlapping 
area, but also in the non-overlapping area. A kind of stitching factor used in the overlapping 
area is proposed to overcome the dilemma. 

For the sake of conciseness, only two subapertures are considered in the modal as shown 
in Fig. 3. 

 

Fig. 3. Schematic diagram of calculation with the stitching factor. 

In Fig. 3, O1 and O2 are the centers of each subaperture and P is the point to be calculated 
in the overlapping area between the subaperture 1 and 2. 

In the light of the idea of Lagrange interpolation, we assume that the data approaching the 
center of the subaperture is more accurate. The phase data of point P can be written as, 

 2 1
1 2

1 2 2 1

P O P O

O O O O

X X X X
z z z

X X X X

− −
= ⋅ + ⋅

− −
 (13) 

where 1z  and 2z are the measurement results of point P in the subaperture 1 and 2 

respectively. 1 2,PX X and X0 0   represent the vector of the point P, 01  and 02  in the global 

coordinate which can be described as, 
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X x y

X x y

X x y

=
 =
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 (14) 

where ( , )p px y , 1 1( , )O Ox y  and 2 2( , )O Ox y  are the global coordinates of the points P, 01  and 

02  respectively.   means the module of the vector inside. 

In the general case, considering that the point P is in the overlapping area of N 
subapertures, in a similar way to Eq. (13), the phase date of point P can be written as, 

 k kz w z= ⋅  (15) 

where kz  is the phase data of the point P in the k th  subaperture and kw  is the relative 

weighting factor which can be written as, 

 
1 ( 1) ( 1)

1 ( 1) ( 1)

P O P O k P O k P ON

k

Ok O Ok O k Ok O k Ok ON

X X X X X X X X
w

X X X X X X X X

− +

− +

− − − −
=

− − − −

 
 

  (16) 

For any point in the overlapping area, the sum of the stitching factors should be 1. So Eq. 
(15) should be written as, 

 k k

k

w z
z

w

⋅
= 


 (17) 

Based on the Eq. (17), the phase data in the overlapping area can be calculated and 
relative experiment results are described in Part 3. 

2.2. Alignment between processing and testing coordinates 

In the actual processing, testing results are usually used to guide processing. However, the 
testing results are in the testing coordinate which is in unit of pixel while the processing 
coordinate is in unit of millimeter. The alignment needs to be accomplished between these 
two kinds of coordinates and then testing and processing can be unified. Marked points are 
used to accomplish the alignment as shown in Fig. 4. 

 

Fig. 4. The configuration for alignment and correction of mapping distortion. 

In actual SAT, distortion should be removed from each phase map before stitching [11, 
12]. After distortion correction, the coordinates of targets in the testing results can be 
described as ( , ), 1,2,3 ,i ix y i =   while the relative coordinates in the processing coordinate 

system can be written as ( , ), 1,2,3i ix y i =  . Based on the theory of homogeneous coordinate 

transformation, the relationship between them is given by, 
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With 

 

cos sin

sin cos

0 0 1

x

y

s s t
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θ θ
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where ( , )x yt t  is the relative translation between the coordinates of testing and processing and 

θ is the relative rotation degree between them. s is the magnification to each pixel in the 
testing results. After correction of distortion to each phase map, s should be the same to every 
point. 

Then the relationship between the coordinates before and after the transformation should 
be: 

 
'

'

cos sin

sin cos
i i xi

i i yi

x s y s tX
x s y s tY

θ θ
θ θ

⋅ ⋅ − ⋅ ⋅ +   
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 (20) 

where ' '( , )i iX Y  is the coordinate of pixel ( , )i ix y  after alignment between testing and 

processing. By minimizing the sum, 

 ' 2 ' 2

1

(( ) ( ) )
N

i i i i
i

X X Y Y
=

− + −  (21) 

where N is the number of marked points, matrix T can be solved and the relationship between 
the processing and testing coordinates can be obtained. 

3. Experimental verification 

3.1. Φ120mm flat mirror 

In this experiment, the clear aperture of the flat mirror is about 120mm. The SAT is carried 
out with a Φ150mm interferometer and 5-dof adjustment platform [Fig. 5]. Both translations 
(X, Y and Z) and rotational tables (yaw and pitch) are adjusted manually. As a verification 
experiment, four subapertures are measured with the interferometer (up, down, left and right 
subapertures). The SAT results are shown in Fig. 6. At the same time, the full aperture testing 
to the flat mirror can be accomplished with the same interferometer. Figure 7 gives the full 
aperture testing result. In the experiment, the testing accuracy is within 2/1000λ. The 
alignments between subapertures in both X and Y directions are accomplished with the 
marked point. Figures 8 and 9 give the stitching results with traditional stitching algorithm [9] 
and the iterative triangulation algorithm respectively. In the experiment, the stopping criterion 
of the stitching is that the RMS of the residual map between every two adjacent subapertures 
is less than 1.5nm. After 3 circles of iteration, the relative stitching result is calculated. 
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Fig. 5. Experimental setup. 

 

Fig. 6. Measured subapertures. 

 

Fig. 7. Full aperture testing result. 

 

Fig. 8. Stitching result with traditional algorithm. 

 

Fig. 9. Stitching result with iterative algorithm. 

To compare the stitching results between two stitching algorithms, we calculate the 
residual maps between the full aperture testing result and the stitching results with relative 
algorithms respectively. By subtracting the data between stitching result and full aperture 
testing result point by point, the residual map can be got. Figures 10 and 11 give the residual 
maps with these two kinds of algorithm. 
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Fig. 10. Residual map between traditional algorithm and full aperture testing result. 

 

Fig. 11. Residual map between iterative algorithm and full aperture testing result. 

From Fig. 10, obvious steps in the residual map calculated with traditional stitching 
algorithm can be observed at the edge of the subaperture. However, the residual errors 
between the full aperture testing result and the iterative triangulation algorithm stitching result 
(Fig. 11) seem to be uniformly distributed, and there is no step in the residual map which 
means that the stitching result is smooth and continuous. 

The PV and RMS errors of the residual map with tradition algorithm are 0.038λ and 
0.003λrespectively while the PV and RMS errors of the residual map with the iterative 
triangulation algorithm are 0.020λ and 0.002λ respectively which are better than the 
traditional method. At the same time, the PV and RMS errors of the residual map make the 
stitching algorithm and experiment result credible. 

3.2. Φ1450mm off-axis parabolic mirror 

In this experiment, the clear aperture of the off-axis parabolic mirror is about 1450 mm and 
compensator is used to accomplish the test. As the mirror is in the roughly polishing period, 
there are relatively big figure errors in the mirror surface measurement, and local interference 
fringes are so densely packed in the full aperture test that the map of the mirror can't be 
figured out analytically very well. However, interference fringes can be observed more 
clearly with local amplification. So, the goal of full aperture map reconstruction can be 
accomplished by local amplification stitching. A simple 5-dof platform is built for the 
subaperture testing of the mirror as shown in Fig. 12. Both translations (X, Y and Z) and 
rotational tables (yaw and pitch) are adjusted manually. The alignments between subapertures 
in both X and Y directions are accomplished with targets. In the experiment, the testing 
accuracy is within 3/1000λ. In total, 3 subapertures (up, middle and down) are tested and the 
measured results are shown in Fig. 13. 
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Fig. 12. Experimental setup. 

 

Fig. 13. Measured subapertures. 

After correcting distortion to each subaperture, according to the position of targets and 
parameters of optical test, based on the above algorithm, the stitching result is obtained as 
shown in Fig. 14 with PV and RMS values respectively. The stopping criterion of the 
stitching is that the RMS of the residual map between every two adjacent subapertures is less 
than 2nm. After 9 circles of iteration, the relative stitching result is calculated as in Fig. 14. 
There is an impressive advantage which can be got from the stitching result. In Fig. 14, eight 
regular circles are distributed on the stitching map. Since the targets are not reflected, the 
testing result from interferometer is shown in Fig. 15. The data on edge of the target is a little 
lower than the data outside it, which leads to the target shown in the stitching map as a 
regular circle with the stitching algorithm mentioned above. Figure 16 gives out the stitching 
map after replacing the data in the target with interpolation. 

 

Fig. 14. Stitching result. 

 

Fig. 15. Testing result around the target. 
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Fig. 16. Stitching result after replacing the data in the targets. 

Table 1. Coordinates of targets in the testing and processing coordinate system 
respectively. 

Target number 1 2 3 4 

Testing coordinate X:337.5 X:879 X:160.5 X:577 

(unit: pixel) Y:1067 Y:1110.5 Y:827.5 Y:846 

Processing coordinate X:-348.77 X:-194.81 X:-528.91 X:-110.65 

(unit: mm) Y:343.83 Y:394.64 Y:84.75 Y:121.32 

Target number 5 6 7 8 

Testing coordinate X:1103.5 X:334 X:1003 X:885 

(unit: pixel) Y:745 Y:491.5 Y:452.5 Y:312.5 

Processing coordinate X:418.75 X:-353.07 X:341.67 X:213.75 

(unit: mm) Y:17.79 Y:-231.88 Y:-276.62 Y:-413.15 

The processing coordinates of the targets are got from Faro measuring arm as shown in 
Fig. 17 and the relative testing coordinates of the targets can be read from the stitching result 
(Fig. 14). Coordinates of targets in the processing and testing coordinate systems are shown in 
Table 1. The alignment coefficients can be found with Eq. (20-21) solved and the results are 
as follows, 

 y1.0117, -680.25, =-729.1934, =0.9110xs t t θ °= =     

 

Fig. 17. Measuring arm testing. 
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Fig. 18. Surface map after different processing cycles. 

According to the alignment result with above method, after different processing cycles, 
the surface map of the mirror are shown as in Fig. 18. It can be got from Fig. 18 that both the 
PV and RMS become better after a new processing cycle which proves that the processing is 
convergent and the alignment result is convincing. 

 

Fig. 19. Self-examine subaperture map and residual map. 

Usually the stitching accuracy can be evaluated by comparing the stitching result with the 
full aperture testing result as shown in Section 3.1 [13]. However sometimes it is difficult to 
get the full map at one time especially for large flat mirror and convex mirror. In this case, to 
examine the stitching accuracy, we choose a subaperture different from the subapertures used 
for stitching as a self-examine subaperture [Fig. 19(a)]. After distortion correction to the 
subaperture, the residual map between stitching and self-examine subaperture maps is shown 
in [Fig. 19(b)]. The RMS error of the residual map is 0.003λ. 

3.3. Φ130mm convex hyperboloid mirror 

In this experiment, the clear aperture of the convex hyperboloid mirror is about 130mm. 
Conic constant κ is −1.8128 and the vertex radius of curvature R is 1227.65mm. A simple 5-
dof platform is built for the SAT of the mirror as shown in Fig. 20 and the alignments 
between subapertures in both X and Y directions are accomplished with targets. In the 
experiment, the testing accuracy is within 3/1000λ. A Φ150mm aperture interferometer and a 
standard transmission sphere with F = 11 are chosen to accomplish the SAT. 

 

Fig. 20. Experimental setup. 

(a) self-examine subaperture (b) residual map

(a) surface map after one processing cycle (b) surface map after two processing cycles. 
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Fig. 21. Subaperture design. 

The radius of each subaperture r is about: 

 55.8mm
2

R
r

F
≈ ≈  (22) 

Five subapertures are designed to finish the full aperture testing as shown in Fig. 21 and 
the measured results are shown in Fig. 22. 

 

Fig. 22. Measured subapertures. 

In the measurement to the convex hyperboloid mirror with a standard transmission sphere, 
extra aberrations (nonnull testing error) will be added to the testing result [8]. For the central 
subaperture, the extra aberrations behave as a combination of power and spherical aberrations 
(Fig. 23). For the off-axis subaperture, take subaperture 2 as an example. The behavior of the 
extra aberrations is shown in Fig. 24. 

 

Fig. 23. Extra aberrations to the central subaperture (PV 0.431λ, RMS 0.116λ). 
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Fig. 24. Extra aberrations to the off-axis subaperture (PV 0.656λ, RMS 0.169λ). 

In the stitching, the stopping criterion is that the RMS of the residual map between every 
two adjacent subapertures is less than 4nm. After 17 times of iteration, the stitching result is 
shown in Fig. 25. Figure 26 gives out the stitching map after replacing the data in the targets 
with interpolation. 

 

Fig. 25. stitching result. 

 

Fig. 26. Stitching result after replacing the data in the targets. 

As the same with Section 3.2, the processing coordinates of the targets are got from Three 
Coordinate Measuring Machine as shown in Fig. 27 and the relative testing coordinates of the 
targets can be read from the stitching result [Fig. 25]. Coordinates of targets in the processing 
and testing coordinate systems are shown in Table 2. The alignment coefficients can be found 
by Eqs. (20-21) and the results are as follows: 

 0.1258, 64.8861mm, 64.9580mm, 0.0745 .x ys t t θ= = − = − = − °     
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Fig. 27. Three Coordinate Measuring. 

Table 2. Coordinates of targets in the testing and processing coordinate system 
respectively. 

Target number 1 2 3 

Testing coordinate X:319.5 X: 143.5 X:359 

(unit: pixel) Y:418.5 Y:406 Y:302 

Processing coordinate X:15.5400 X:-29.1077 X:25.5894 

(unit: mm) Y:40.2962 Y:37.8461 Y:10.9900 

Target number 4 5 6 

Testing coordinate X:257 X:339.5 X:111.5 

(unit: pixel) Y:259 Y:156 Y:168.5 

Processing coordinate X:-0.0922 X:20.6373 X:-36.8706 

(unit: mm) Y:0.3137 Y:-25.8932 Y:-22.5233 

To evaluate the stitching accuracy, a self-examine subaperture is also taken as shown in 
[Fig. 28(a)]. After distortion correction and nonnull testing error removed from the SAT 
result, the residual map between stitching map and self-examine subaperture map (the data in 
the targets are filled in with interpolation) is shown in [Fig. 28(b)]. The PV and RMS errors 
of the residual map are 0.031λ and 0.005λ respectively. 

 

Fig. 28. Self-examine subaperture map and residual map. 

4. Conclusion 

We have provided an experimental demonstration in applications of a featureless flat mirror, 
an off-axis parabolic mirror with compensator and a convex hyperboloid mirror without any 

(a) self-examine subaperture (b) residual map
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compensation using iterative triangulation algorithm and a method accomplishing the 
alignment between processing coordinate system and testing coordinate system. To evaluate 
the stitching accuracy for mirrors that can’t be tested in full aperture one time, self-examine 
subaperture can be measured to get the residual map as shown above to fulfill the stitching 
accuracy evaluation. It can be proved from the above experimental results that the reported 
method can obtain the reconstructed full-aperture surface map with satisfactory accuracy 
without precise mechanical adjustment device. As the experimental study is only for mild 
aspheres now, further theoretical and experimental developments of the reported method on 
strong aspheres, especially strong convex aspheres and freeform surfaces will be taken to 
accomplish the SAT to such surfaces with or without any compensation. 
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