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a b s t r a c t

To improve the accuracy of the Ritchey–Common (R–C) test, this study proposes a method that utilizes
the relation between system pupil and test flat coordinates to obtain a flat surface and integrate the least
square method to eliminate the effect of misalignment. A Ritchey angle between 201 and 501 would be
suitable for a simulation test. Testing accuracy is ensured when the error of the Ritchey angle is
controlled within 711. To avoid measurement error of the Ritchey angle, the ratio of image size to the
pupil plane is used to calculate the value. The accuracy can reach 0.21. The three Ritchey angles chosen
for the experiment are separated into two groups. The residual error between ZYGO and the group of
24.81 and 40.31 is 0.0013 wavelength (λ¼632.8 nm). The experimental results confirm that this R–C
method is effective and accurate.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

Large optical flats are often used as reference surfaces in auto-
collimation optic tests. Thus, a high-quality surface or a suitable and
highly precise test method is necessary. The diameter of these flats
continues to increase, but no large aperture interferometer is available
to cover the entire mirror during tests [1,2]. Instead, several indirect
methods are used in large optical flat tests, such as the pentaprism
scanning system and the Ritchey–Common (R–C) method. In a
pentaprism scanning system [3], the pentaprism may be used to scan
in lines to obtain the surface slope of the mirror at each point. The
slope data can then be used to integrate the flat surface profile.
However, this method is time consuming and unstable during testing
[4,5]. The R–C test requires a well sphere with a diameter that is
approximately 1.3 times larger than that of the test flat used as a
reference [6]. This sphere is easier to fabricate than a large inter-
ferometer. This method is common, stable, and effective and can thus
be used to test large flat mirrors by using an interferometer with a
small diameter.

This study aims to solve the difficulties in the R–C test by proposing
a method for obtaining a test flat mirror surface. This method utilizes
the relationship between system pupil and flat mirror coordinates to
derive the surface from two different test angles. The least square
method is used to eliminate the misalignment error to obtain the real

surface of the flat mirror. A suitable range of the Ritchey angle is
identified, and its error allowance is determined by simulation. The
ratio of image size to the pupil plane is used to calculate the Ritchey
angle in each test.

2. Theory analysis for rectifying misalignment

Fig. 1 shows the R–C test configuration using a commercial
interferometer [7]. In the test, the light beam from the interfe-
rometer passing through the transmission sphere diffuses; the
focus of the transmission sphere is the center of curvature of the
reference sphere. The beam is folded at some degree by the large
optical flat to be tested, forming what is called the Ritchey angle θ.
The beam is then reflected back off the flat into the interferometer
by the return sphere.

2.1. Relationships in coordinate mapping

In the R–C test, when the test beam is inserted through the flat
mirror at a certain angle, the image on the pupil plane is compressed
in the sagittal direction and forms an oval [8,9]. Thus, the system pupil
coordinates no longer correspond to the test flat mirror coordinates,
and the angle between these two sets of coordinates becomes the
same as the Ritchey angle θ. These two sets of coordinates are
illustrated in Fig. 2, where xs and ys are the flat mirror coordinates
and xp and yp are the system pupil coordinates.
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The geometric relationship between these two sets of coordi-
nates yields two transformation formulations:

xs ¼
d� xp

d� cos θ�xp � sin θ
ð1Þ

ys ¼
yp � ðdþxp � sin θÞ

d
ð2Þ

where d is the distance between the focus of the transmission
sphere and the center of the flat mirror. ys, yp are in the same
direction, their values are approximate but unequal. The incident
angle within the flat mirror is represented by

cos φ¼ d� cos θ�xp sin θffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2þxp2þyp2

q ð3Þ

After two reflections, the wavefront variation caused by the flat
surface error is

Sðxs; ysÞ ¼ T
Wðxp; ypÞ
4� cos φ

� �
ð4Þ

where T ½U � is the function operator that shows the mapping
relationship between the system pupil and flat mirror coordinates
through formulas (1) and (2).

2.2. Correction of misalignment

Given that the R–C test requires a sphere for reference, piston
misalignment, tilt and defocus cause errors in test data. And
power, a common error for large flats, appears as astigmatism in
test wavefront. To obtain precise results, multiple tests should be
undertaken. Multiple testing is usually done in two ways: by

changing the Ritchey angle or by rotating the flat along its normal
axis. Considering the conditions in our laboratory, we choose the
first method.

We mainly discuss defocus because the influence of piston and
tilt can be neglected. In the experiment, the slope of the flat mirror
in the tangential direction does not shift the principal ray. Thus,
a constant slope in different tests does not introduce a wavefront
error. Effect of the transfer and reference spheres can be calibrated
and subtracted from the test wavefront. This study uses the
relationship between the two sets of coordinates to fit the flat
surface and the least square method to eliminate the misalign-
ment error of the optical path. If W1(xp,yp) and W2(xp,yp) are the
wavefront deviations in the two tests, the two surface errors S1(xs,
ys) and S2(xs,ys) can be obtained by using the relation between the
two sets of coordinates; each result contains the alignment error.
If the real surface error is S0(xs,ys), the two results can be written as

S1ðxs; ysÞ ¼ S0ðxs; ysÞþa1 � D1ðxs; ysÞ ð5Þ

S2ðxs; ysÞ ¼ S0ðxs; ysÞþa2 � D2ðxs; ysÞ ð6Þ
where a1 and a2 are the defocus coefficients of the Zernike polynomial
in the two tests and D1 and D2 are the defocus aberrations indicated

Fig. 1. R–C test set-up.

xs

xp

ys(yp)

z

Fig. 2. Relation between the pupil and the flat coordinates.

Fig. 3. Defocus shape of different Ritchey angles. (a) 20° surface of defocus and
(b) 34° surface of defocus.
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by the Zernike polynomial in the flat mirror coordinates. Fig. 3 shows
the defocus shape, where θ is 201 and 341.

Formulas (5) and (6) yield a polynomial irrelevant to the flat
surface:

ΔS¼ S1�S2

¼ a1D1�a2D2

¼ aD ð7Þ

In formula (7),a and D are vectors for calculation. Fitting all
effective data in a unit circle by using least square yields

a¼ΔSDT ðDDT Þ�1 ð8Þ

The coefficients a and optimum Sn0 can then be derived through
formula (5) or (6).

This method is also suited for flat mirrors with other shapes.
The accuracy of the relationship between the two sets of coordi-
nates should always be ensured during the test.

3. Analysis for Ritchey angle

The algorithm mode indicates that the choice of Ritchey angle
affects the accuracy of the test result. To derive a true flat surface
deviation, we conduct further analyses.

3.1. Influence on aberration

According to the principle of the R–C test, the image on the
pupil plane is compressed as an oval shape when the flat mirror is
inserted into the test beam at a certain angle, which affects the
test wavefront. To derive an appropriate test range of the Ritchey
angle, we use Zemax software to simulate this test path.

Usually if the flat surface is smooth enough, surface error can
be described by Zernike polynomials as formula (9).

S¼ ∑
n;m

ai � Zn;m ð9Þ

In formula (9), S is the flat surface error, ai is the Zernike
coefficient of flat mirror and Zn,m represent the series of Zernike
polynomials. Zernike polynomials fitting residual error PV can
reach to 0.1λ and RMS can reach to 0.01λ. An arbitrary surface is
first generated with Zernike polynomials for simulation.

S¼ 0:0049Z2;0�0:0012Z2;2þ0:006Z2;�2�0:0011Z3;1þ0:0048Z3;�1

�0:0013Z4;0�0:0029Z3;�3�0:0015Z3;�3þ0:0016Z4;2þ0:008Z4;�2

þ0:0014Z5;1�0:003Z5;�1þ0:0024Z6;0�0:0025Z4;4�0:0021Z4;�4

þ0:0017Z5;3þ0:0018Z5;�3�0:0045Z6;2þ0:0022Z6;�2þ0:0013Z7;1

þ0:005Z7;�1�0:0035Z8;0 ð10Þ

In order to obtain more exact and comprehensive analysis, we
choose Zernike polynomial from 4th to 25th to fit flat surface,

Fig. 4. Wavefront in different Ritchey angles. (a) θ=20° wavefront, (b) θ=40° wavefront, (c) θ=50° wavefront and (d) θ=70° wavefront.
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which contains low-order, intermediate-order and even high-
order aberrations.

The simulation wavefronts in four different Ritchey angles after
ray tracing in such angles are shown in Fig. 4.

In Fig. 4, the surface shape becomes more compressed when
the Ritchey angle becomes larger. Under the same condition, the
wavefront has different results with different Ritchey angles.
Through simulation, the variations of some aberrations are shown
(Fig. 5) when the Ritchey angle is 101 to 801.

Fig. 5 indicates that the terms of wavefront aberration changes
when the Ritchey angle increases. When the test angle changes from
101 to 501, the curves of the aberrations vary relatively slowly, then the
subsequent test data will be processed precisely. When the test angle
is larger than 501, the curves significantly vary rapidly, reducing the
accuracy of the result. When the Ritchey angle is 201 to 501, the
deviation is stable and suitable for testing. In an actual test, laboratory
conditions, such as equipment structure, should be considered to
determine a suitable Ritchey angle for testing.

Fig. 5. Influence on aberrations at different Ritchey angles, (a) Relationship betweenW2,�2 and θ, (b) Relationship betweenW3,1 and θ, (c) Relationship betweenW3,�3 and θ,
(d) Relationship between W4,�4 and θ and (e) Relationship between W5,�1 and θ.
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3.2. Analysis of Ritchey angles

The triangle method often used, which measures the three-side
lengths (d, s, and L), is shown in Fig. 6. The Ritchey angle is
calculated by

cos ð2θÞ ¼ d2þs2�L2

2d� s
ð11Þ

where d is the distance between the focus point and the flat mirror
center, s is the distance between the flat mirror center and the
reference sphere center, and L is the distance between the focus
point and the reference sphere center. The sum of d and s equals
the radius of the curvature of the reference sphere.

In the simulation, the three-side lengths of the triangle can be
given an exact value, but they must have a measurement error in the
actual test. The three vertices of the triangle cannot be kept constant
while the flat is rotated. Thus, the calculation error is unavoidable.

We analyze the change in the Ritchey angle when d and L have
measurement errors, as shown in Fig. 7. Given that L more
seriously affects the error than d, we should measure L in a more
precise manner.

We also analyze the influence on the flat mirror surface when
Ritchey angle measurement error exists. Assuming that the real
Ritchey angle is 451, the root mean square (RMS) of residual errors
between the fitting result and the original surface is shown in
Table 1.

As shown in Table 1, when the deviation of the Ritchey angle is
lower than 0.11, the accuracy of the residual error between the
fitting results and the original surface can be decreased to 0.0005
wavelength. Thus, test accuracy can be ensured.

To obtain a more exact Ritchey angle, the ratio of the width and
length to the pupil plane image is used to calculate the angle.
Given a 45-degree Ritchey angle in the simulation optical path, we
obtain 44.831 with this method, which is a 0.171 difference from
the given value. The relative error is 0.37%, calculated from
formula (12). Thus, this method can obtain a more precise result
than the triangle method. In formula (12), θ is the true Ritchey
angle, θ′ is the calculated Ritchey angle, and α is the relative error.

α¼ θ′�θ

θ
� 100% ð12Þ

Fig. 6. Triangle method for Ritchey angle measurement.

Fig. 7. Influence of measurement error on Ritchey angles. (a) Influence of d on
Ritchey angle and (b) Influence of L on Ritchey angle.

Table 1
Residual errors.

(Δθ) �0.21 �0.41 �0.61 �0.81 �1.01
Residual error (λ) 0.00026 0.00026 0.00026 0.00016 0.00016
(Δθ) 0.21 0.41 0.61 0.81 1.01
Residual error (λ) 0.00026 0.00036 0.00046 0.00046 0.00046

Fig. 8. Experimental layout. Fig. 9. Reference sphere surface condition.
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4. Analysis of experiment and test results

In this experiment, a flat mirror with a diameter of 100 mm is
tested. A well sphere with a diameter of 280 mm and a radius of
curvature of 1172 mm is used as a reference. The testing system
consists of an interferometer, transmission sphere, flat mirror, and
reference sphere (Fig. 8). A 4D interferometer is used in R–C test to
overcome the effect of vibration, and a ZYGO interfermeter is used
for direct test. According to the analysis above, 24.81, 40.31, and
53.11 are chosen for the test; 53.11 is beyond the suitable range for
the sake of comparison.

The surface of the reference sphere is shown in Fig. 9. We set
up an R–C test configuration and make sure that the interferom-
eter center should be coincident with the flat mirror and reference
sphere centers. After obtaining wavefront data in 24.81, we change
the Ritchey angle to 40.31 to do for the second test. When the flat
mirror is rotated, d must be invariant so that the relationship
between the two sets of coordinates can stay remain in good
agreement, we make use of calibrating crosshair on flat mirror and

reference sphere to ensure this. The third test (53.11) is conducted
in the same way.

Wavefront deviations in the three angles are shown in Fig. 10.
The width of the sagittal plane of the wavefront profile becomes
narrower when the Ritchey angle increases. The three test data
sets are divided into two groups: the first group consisting of 24.81
and 40.31 and the second consists of 24.81 and 53.11. The method
proposed above is then used to solve the problem.

The power aberration caused by misalignment in the test must
be removed from the flat surface data. We use least square method
to remove the power effect in each group. The coefficients of the

Fig. 10. Wavefront of three different Ritchey angles. (a) 24.8° wavefront, (b) 40.3° wavefront and (c) 53.1° wavefront.

Table 2
Coefficients of defocus.

First group Coefficient (mm) Second group Coefficient (mm)

24.81 0.0154 24.81 0.0219
40.31 0.0179 53.11 0.0306
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power aberration are shown in Table 2. Finally, the flat surface is
shown in Fig. 11.

The PV of the first group is 0.149 wave, and its RMS is 0.0177
waves; the PV of the second group is 0.166 wave, and its RMS is
0.0221 wave. For the diameter of 4D is limited, the direct result
measured by Zygo which PV is 0.145 wave and the RMS is 0.019
wave, as shown in Fig. 12 [10]. The residual error is about 0.0013
and 0.0031 waves, respectively. Thus, the accuracy of this method
can reach 0.01 waves, thus fulfilling the requirements of high-
accuracy surface tests. The residual error is larger in the second
group for a test angle that exceeds the suitable range. Therefore,
a suitable angle can help improve test accuracy.

The experimental results demonstrate the effectivity and accu-
racy of this R–C method, but some problems must be solved. First,
the high-frequency errors of the flat mirror are not resolved when
test data are interpolated from an elliptical region into a round
region. Second, a high-accuracy measurement equipment is neces-
sary to reduce position error because rotating the flat mirror

inevitably varies d. Third, vibration often occurs during testing,
and multiple tests should be taken to avoid incidental error.

5. Conclusion

To improve the accuracy of the R–C test, this study introduces a
method that eliminates the misalignment effect and obtains a real
surface configuration that utilizes the relationship between system
pupil and test flat mirror coordinates. Based on the simulation,
a Ritchey angle between 201 and 501 is suitable for testing. The
allowance for the Ritchey angle error is 711; this allowance
protects the result from significant influences. To reduce calcula-
tion errors, we use the ratio of image size to the pupil plane in
calculating the Ritchey angle; this approach is more effective than
the trigonometric approach. Finally, we test a flat mirror with a
diameter of 100 mm in three different Ritchey angles. The results
of the R–C test and the direct measurement with Zygo are very
close; their accuracy can reach 0.01 wave. In the first group,
PV and RMS can reach 0.004 and 0.0013 wave, respectively, which
are better than the values in the second group. Therefore, two
Ritchey angles in the suitable range improve test accuracy.
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