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A generalized form of anisotropic surface energy for the description of biaxial nematic
liquid crystals is proposed, and the effects of weak anchoring on the elastic distortion
of the biaxial nematic material on surface grooves is investigated as an extension of our
previous work on the effects of strong anchoring [Zhang Z. D., & Ye W. J. (2009). Liq.
Cryst., 36, 885–888]. With some approximations for the elastic constants, we obtain
a more general expression for the additional elastic distortion energy per unit area
induced by the minor director �m. The results show that finite polar anchoring can
provide an important contribution to the additional elastic distortion energy, and the
additional term reduces to our previous result with strong polar anchoring.

Keywords Biaxial nematic liquid crystal; elastic distortion; surface groove; weak
anchoring

Introduction

As early as in 1972, Berreman [1] studied the contribution of elastic origin to the surface
anchoring of a nematic liquid crystal (LC) in the presence of a non-flat surface. He assumed
that the nematic director on the unidirectionally grooved substrate is oriented along the
grooves, minimizing the bulk elastic energy. In his analysis, he assumed that in a first
approximation the surface can be described by a sinusoidal wave of wave number q =
2π/λ and amplitude A, where λ is the spatial periodicity of the surface. The surface
azimuthal anchoring energy, obtained by assuming that Aq�1 and K1 = K2 = K3 =
K(the elastic constants), is proportional to sin2 φ (φ being the angle between the director
at infinity and direction of surface grooves), and it varies strongly with the amplitude A
and the wave number q. Since Berreman’s theory is the first theoretical study on surface
anchoring attributed to non-flat surface geometry and his model is simple enough, it has
served as a starting point for subsequent numerous theories [2–11] as well as experimental
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54 R.-H. Guan et al.

studies [12–14] in this field. In particular, Fukuda et al. [8] re-examined the theoretical
treatment of Berreman’s theory for the surface anchoring induced by grooves with infinite
polar anchoring (strong anchoring) and argued that Berreman’s assumption of negligibly
small azimuthal distortion of nematic is not valid. He showed that the Berreman’s model
considering azimuthal distortion yields a surface anchoring energy proportional to sin4 φ

and implies that surface grooves alone cannot contribute to the surface-anchoring coefficient
in the usual Rapini–Papoular sense. Furthermore, he considered the contribution from
surface-like elasticity characterized by K24 and showed that the surface-like elastic term
is a nonzero contribution to the Rapini–Papoular anchoring energy [9,10]. In addition,
Faetti [2] and our group [11] investigated the effects of finite polar anchoring at a grooved
interface on the azimuthal anchoring energy in the frame of Berreman’s original theory
and Fukuda et al.’s theory respectively. Both studies showed that the finite polar anchoring
could lead to an important contribution to the azimuthal anchoring energy.

Biaxial nematic LCs are a fascinating condensed matter phase that have baffled scien-
tists engaged in the challenge of demonstrating its actual existence for more than 30 years,
and which have only recently been found experimentally [15–17]. The preferred direc-
tion of the orientation of molecules in the biaxial phase is described by an orthonormal
triad of director vector fields �n, �m, and �l [18]. On one hand, surface anchoring of an LC
has been among the most important subjects of both uniaxial and biaxial nematic research
[15–17,19–21] and elastic distortions of the LC adjacent to non-flat surfaces have long been
argued as the most important source of surface anchoring. On the other hand, by extending
Fukuda et al.’s [8] method to the biaxial nematic LCs, we found that when the main director
�n is anchored along a surface groove, an additional distortion energy is induced by the
minor director �m [22].

In this paper, extending our preliminary work [22], we investigate the effects of finite
polar anchoring on surface azimuthal anchoring energy of biaxial nematic LCs.

Theoretical Basis

The finite anchoring energy per unit area, which accounts for the interaction of a uniaxial
nematic LC with the substrate, is defined as [11,23]

fsu = wp(�n · �ν)2, (1)

where �n is the director at the surface and �ν denotes the local unit vector perpendicular to
the surface. Now we are going to obtain a generalized formula suitable to biaxial nematics
by means of a tensor phenomenological description of surface anchoring of LCs.

In a proper chosen coordinate system denoted by the unit vectors �e′
i , i = 1, 2, 3, the

tensor order parameter
↔
Q is diagonal with elements

Q̄11 = −1

3
(S − T ), Q̄22 = −1

3
(S + T ), Q̄33 = 2

3
S,

and

Q̄ij = 0 if i �= j.

Biaxial nematics are described by the two order parameters S and T , whereas uniaxial
nematics are described by only one order parameter S,in which case the uniaxial axis is
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Anchoring of Biaxial Nematic Liquid Crystals 55

chosen along �e′
3. Consequently, the general expression for the tensor order parameter

↔
Q of

a biaxial nematic can be written as [24]

↔
Q = S

(
�n ⊗ �n − 1

3

↔
I

)
+ 1

3
T

(
�l ⊗�l − �m ⊗ �m

)
(2)

where
↔
I is the unit tensor.

In the treatment of grooved surface for uniaxial nematics [11,23], finite polar anchoring
was assumed to be completely isotropic in the local tangent plane of the grooved surface.
Following this point of view, the most general quadratic form describing isotropic substrates
is [25,26]

fsb = c1�ν · ↔
Q · �ν + c2trQ

2 + c3(�ν · ↔
Q · �ν)2 + c4�ν · ↔

Q
2 · �ν, (3)

where ci (i = 1, 2, 3, 4) are constants. By substituting Eq. (2) into Eq. (3), the finite
anchoring energy per unit area for the interaction of a biaxial nematic LC with the substrate
takes the form

fsb = wp(�n · �ν)2 + wb( �m · �ν)2 + w′
b(�l · �ν)2, (4)

where terms that do not depend on director vector fields �n, �m, or �l have been neglected.
In Eq. (4), wp,wb, and w′

b depend on the order parameters S and T , but they are treated
as constants in our approaches of this paper, based upon the continuum theory of biaxial
nematics [27,28].

We consider a surface groove whose shape can be described by

x = ζ (y, z) = A sin[q(y cos φ + z sin φ)] (5)

where A and q have been defined above, and φ describes the angle between the groove
direction and the z-axis (see Fig. 1). We assume Aq�1 and a biaxial nematic is filled in
the semi-infinite region, x > ζ (y,z). The components of the local unit vector normal to the
surface are given by

νx ≈ 1,

νy ≈ −Aq cos φ cos[q(y cos φ + z sin φ)],
νz ≈ −Aq sin φ cos[q(y cos φ + z sin φ)].

(6)

Let the orientation of the director triad at the uniform state be

�l = (1, 0, 0); �m = (0, 1, 0); �n = (0, 0, 1). (7)

When the distortion of biaxial nematics from the uniform state is small enough, we
can write down the director triad as

�l = (1, ly, lz); �m = (mx, 1,mz); �n = (nx, ny, 1). (8)

As �l, �m, and �n are orthonormal, one has

mx = −ly ; ny = −mz; lz = −nx. (9)
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56 R.-H. Guan et al.

Figure 1. Schematic representation for a sinusoidally shaped groove surface with amplitude A and
spatial periodicity λ. At infinite x → ∞, there are �l = (1, 0, 0), �m = (0, 1, 0), and �n = (0, 0, 1). �

is the angle between z-axis and the direction of the grooves, i.e., the angle made between the main
director �n at infinity and the direction of surface grooves.

Thus, only three out of the six perturbations in Eq. (8) are independent. By substituting
Eqs. (6), (8), and (9) into Eq. (4), one has

fsb = wp {nx − Aq sin φ cos[q(y cos φ + z sin φ)]}2

+wb{ly + Aq cos φ cos[q(y cos φ + z sin φ)]}2,
(10)

where w′
b term, which does not depend on the director triad (on condition that Aq�1), has

been neglected.
According to Saupe [27], the elasticity of biaxial nematics is described by 15 elastic

constants, among which there are 12 constants corresponding to director distortions in the
bulk and three constants amount to surface-like elasticity. The elastic-free energy density,
as given in Ref. [27], is

gb =
∑
a,b,c

1

2
[Kaa(�a · ∇�b · �c)2 + Kab(�a · ∇�a · �b)2 + Kac(�a · ∇�a · �c)2]

+Cab(�a · ∇�a) · (�b · ∇�b) + k0,a∇ · (�a · ∇�a − �a∇ · �a),

(11)

where the summation is over a cyclic permutation of three directors and indices. Hereafter,
the director fields are denoted by �l, �m, and �n for convenience. Choosing nx, ny , and ly as
the three perturbations, the elastic-free energy density is written as [22,28]

gb = 1

2
KLL(ny,x)2 + 1

2
KMM (nx,y)2 + 1

2
KNN (ly,z)

2 + 1

2
KLM (ly,x)2 + 1

2
KMN (ny,y)2

+ 1

2
KNL(nx,z)

2 + 1

2
KML(ly,y)2 + 1

2
KNM (ny,z)

2 + 1

2
KLN (nx,x)2 + CLMnx,xny,y
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Anchoring of Biaxial Nematic Liquid Crystals 57

−CMNly,ynx,z + CNLny,zly,x − 2k0,L(ly,znx,y − ly,ynx,z)

+ 2k0,M (ly,zny,x − ly,xny,z) + 2k0,N (nx,yny,x − nx,xny,y) , (12)

where the indices L, M, and N are used instead of a, b, and c.
Using the full variational principle for the total free energy, we can derive the equilib-

rium conditions:

KMMnx,yy + KNLnx,zz + KLNnx,xx + CLMny,xy − CMNly,yz = 0, (13a)

KLLny,xx + KMNny,yy + KNMny,zz + CLMnx,xy + CNLly,xz = 0, (13b)

KNNly,zz + KLMly,xx + KMLly,yy − CMNnx,yz + CNLny,xz = 0, (13c)

together with the condition at the surface (x ∼ 0):

∂gb

∂nx,x

δnx + ∂gb

∂ny,x

δny + ∂gb

∂ly,x

δly = ∂fsb

∂nx

δnx + ∂fsb

∂ly
δly. (14)

Eq. (14) leads to explicit boundary conditions at x ∼ 0, i.e.,

KLLny,x + 2k0,Mly,z + 2k0,Nnx,y = 0, (15a)

KLNnx,x + CLMny,y − 2k0,Nny,y = ∂fsb

∂nx

, (15b)

KLMly,x + CNLny,z − 2k0,Mny,z = ∂fsb

∂ly
. (15c)

Saupe [27] and Singh et al. [29] pointed that in the uniaxial phase, there are

KLN = KMN = K1, (16a)

KMM = KLL = K2, (16b)

KNL = KNM = K3, (16c)

CLM = K1 − K2, (16d)

CMN = CNL = 0, (16e)

2k0,N = K24 − K2, (16f)

and

KNN = KLM = KML = 0. (17)

Taking Eq. (16) into account, Eqs. (13a) and (13b) lead to

K1nx,xx + K2nx,yy + K3nx,zz + (K1 − K2)ny,xy = 0, (18a)

K2ny,xx + K1ny,yy + K3ny,zz + (K1 − K2)nx,xy = 0. (18b)

Eqs. (18a) and (18b) completely correspond to Eqs. (7) and (8) in our previous work for the
uniaxial nematics [11]. (In order to use Eq. (12), we assume that �n = (nx, ny, 1) instead
of �n = (1, ny, nz) as in [11].)

Singh et al. [29] predicted that on a molecular theory, the seven elastic constants,
namely, KLN, KMN, KMM, KLL, KNL, KNM, and CLM are of the order of the values found in the
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58 R.-H. Guan et al.

uniaxial nematic phase, and among the three C constants associated with mixed models of
deformation, CMN and CNL are about one order of magnitude smaller than CLM . Thus, in
the present work on biaxial nematics, we assume that Eqs. (18a) and (18b) can still be used
approximately, and CMN = CNL = 0, i.e., the mixed elastic constants can be neglected
except CLM. This approximation means that the differences of splay elastic constant and
twist one are neglected for both �l and �m directors. Consequently, Eq. (13c) becomes

KLMly,xx + KMLly,yy + KNNly,zz = 0. (19)

Now the coupling between ni (i = x, y) and ly is neglected for the equations in bulk.
To the same order of approximation, we neglect the influence of surface-like elasticity k0,M

in the boundary conditions (15a) and (15c). Thus, explicit boundary conditions, at x ∼ 0,
are given by Eqs. (20) and (21), that is,

K24nx,y − K2(nx,y − ny,x) = 0, (20a)

K1(nx,x + ny,y) − K24ny,y = 2wp {nx − Aq sin φ cos[q(y cos φ + z sin φ)]} , (20b)

and

KLMly,x = 2wb{ly + Aq cos φ cos[q(y cos φ + z sin φ)]}. (21)

Note that Eqs. (20a) and (20b) completely correspond to Eqs. (9) and (10) in [11].
As a result, the effects of finite polar anchoring on the azimuthal anchoring energy appear
partly in a way of the uniaxial nematics by solving Eqs. (18a) and (18b) under the boundary
conditions: Eqs. (20a) and (20b) at the surface x ∼ 0 and the ultimate conditions nx =
ny = 0 at x → ∞ (see Fig. 1). Once that surface-like elasticity k0,L is also neglected, the
azimuthal anchoring energy for biaxial nematics can be written as

f (φ) = fa(φ) + 
f (φ), (22)

where fa(φ) is given by Eq. (20) in [11], representing azimuthal anchoring energy of the
uniaxial nematics; 
f (φ) is the distortion energy of the minor director �m when the main
director �n is anchored along surface grooves.

Results and Discussion

In order to obtain the additional azimuthal anchoring energy 
f (φ) induced by the elastic
distortion of the minor director, one can obtain the analytical solution of Eq. (19) with the
boundary conditions given by Eq. (21) at x ∼ 0, and ly = 0 at x → ∞,

ly = −Aq cos φR cos[q(y cos φ + z sin φ)] exp[−qxh(φ)], (23)

with h(φ) =
√

(KML cos2 φ + KNN sin2 φ)/KLM , and

R = 2wb

qKLMh(φ) + 2wb

. (24)

From Eq. (12), an additional distortion energy per unit area 
f (φ) is written as


f (φ) = 1

4
A2q3 cos2 φKLMh(φ)R2. (25)
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Figure 2. The dependence of R on the values of 2wb/(qKLM ).

Obviously, with strong polar anchoring, i.e., wb → ∞, R = 1, Eq. (25) reduces to


f (φ) = 1

4
A2q3 cos2 φKLMh(φ), (26)

which is the result given by Eq. (23) in [22].
In one-constant model for the minor director, one has [22,27]

KNN = KML = KLM. (27)

In this case, h(φ) = 1, and Eq. (25) reduces to


f (φ) = 1

4
A2q3 cos2 φKLMR2, (28)

with

R = 2wb

qKLM + 2wb

(29)

Equation (29) shows thatRdepends only on 2wb/(qKLM ), and the dependence of R

on the values of 2wb/(qKLM ) is given in Fig. 2. It is clear that R increases with the value
of 2wb/(qKLM ). In addition, from Eq. (28), we can conclude that the azimuthal anchoring
energy 
f (φ) increases as the value of 2wb/(qKLM ) increases.

Further assuming that φ = 0, Eq. (28) reduces to


f (φ = 0) = 1

4
A2q3KLMR2, (30)

with R = 2wb

qKLM+2wb
. In the case of strong polar anchoring, i.e., wb → ∞, Eq. (30) reduces

to 
f (φ = 0) = 1
4A2q3KLM, which is the result given by Eq. (24) in [22].

Equation (30) holds that in anchoring the �n director along the grooves, the �m director is
distorted, and the distortion energy is approximately given by Eq. (30). In uniaxial nematic
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60 R.-H. Guan et al.

LCs, this distortion energy is zero, i.e., the state of a uniaxial nematic characterized by the
director �n is uniform in space. In the biaxial nematic LCs, Eq. (30) gives a distortion energy
that must be overcome in anchoring the �n director along the grooves.

Conclusion and Discussion

In this work, extending our previous work [22], we have investigated the elastic distortion
of the biaxial nematic LCs on surface grooves with finite polar anchoring and considered
the effect of polar anchoring on the additional elastic distortion energy induced by the
minor director �m. We showed that the finite polar anchoring could provide an important
contribution to the additional elastic distortion energy (Eq. (25) and Fig. 2). Moreover,
considering the infinite anchoring strength, the results are consistent with those in [22].

We note that homeotropic alignment is another important anchoring condition. In order
to realize homeotropic alignment to biaxial nematic LCs, different methods developed
successfully for the uniaxial nematic phase have been used widely. One example is of a
special polymer being coated on the substrate [19,21,30–32]. A process of weak rubbing
may be used to produce surface grooves, which provide a preferred direction, so that
a monodomain state with a uniformly tilted director field can be built up above the bend
Fréedericksz transition in a material with negative dielectric anisotropy. But we have known,
for the uniaxial nematic phase, homeotropic alignment on the surface is not destroyed by
the surface grooves in Berreman’s approximation [33]; i.e., Eq. (22) gives

fa(φ) = 1

4
A2q3

√
K1K3. (31)

Thus, the disturbance of the minor director �m induced by the surface grooves is direct,
and homeotropic anchoring is more difficult than homogeneous anchoring for the biaxial
nematic LCs.

On the other hand, the three constants, KLM, KML, and KNN are much smaller than
the value of the constants found in the uniaxial nematic phase [29] and |R| < 1, therefore

f (φ) is a perturbation term in Eq. (22). Thus, we understand in a sense, why homogenous
alignment for biaxial nematics has been obtained in a wide range of choices [19,21,30–32].
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