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In this paper, we propose a new approach for performing efficient edge-preserving image deconvolution
algorithm based on a nonlocal domain transform (NLDT). We present the geodesic distance-preserving
transforming procedure of a 1D signal embedded in 2D space into a new 1D domain via a transformation
for simplicity. The nonlocal domain transform derives from the (1D) nonlocal means filter kernel and
iteratively and separably applies 1D edge-aware operations. In order to solve the main issue with noisy
images that is finding robust estimates for their derivatives, we develop an efficient joint nonlocal
domain transform filter in the deblurring process. Furthermore, we derive the discrepancy principle to
automatically adjust the regularization parameter at each iteration. We compare our deconvolution
algorithm with many competitive deconvolution techniques in terms of ISNR and visual quality.

& 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Image deconvolution is a classical inverse problem existing in a
wide variety of image processing fields, including physical, optical,
medical, and astronomical applications. For example, practical
satellite images are often blurred due to limitations such as
aperture effects of the camera, camera motion, or atmospheric
turbulence [1]. Deconvolution becomes necessary when one
wishes a crisp deblurred image for viewing or further processing.
The degradation procedure is often modeled as the result of a
convolution with a low-pass filter

yðn1;n2Þ ¼Huorigðn1;n2Þ þ γðn1;n2Þ
¼ ðhnuorigÞðn1;n2Þ þ γðn1;n2Þ ð1Þ

where uorig and y are the original image and the observed image,
respectively. γ is the noise introduced in the procedure of image
acquisition, and it is generally assumed to be independent and
identically distributed (i.i.d.) zero-mean additive white Gaussian
noise (AWGN) with variance s2. “n” denotes convolution, and h
denotes the point spread function (PSF) of a linear shift-invariant
(LTI) system H.

In the discrete Fourier transform (DFT) domain, Eq. (1) can be
written as

Yðk1; k2Þ ¼Hðk1; k2Þ � Uorigðk1; k2Þ þ Γðk1; k2Þ ð2Þ

where Y, H, Uorig and Γ are the discrete Fourier transform of y, h,
uorig, and γ, respectively. Given y and h, we seek to estimate uorig.
ll rights reserved.

: +86 04313218515.
9@mails.jlu.edu.cn (H. Yang).
The process of deconvolution is known to be an ill-posed problem,
which can be interpreted as an inverting lowpass filtering, back-
ward diffusion, or entropy decreasing. Thus, to obtain a reasonable
image estimate, a method of reducing/controlling noise needs to
be utilized.

To find a unique and stable solution, a number of deconvolution
algorithms have been proposed. In these methods, the Wiener
filter [2,3] and the constrained least squares algorithm [2] can
solve this problem in the frequency domain in a fast speed.
However, they often obtain a noisy result with ringing effects. As
a result, the visual quality of the recovered image often degrades.
Increased performance of deconvolution methods can be attrib-
uted to the inclusion of the wavelet-based estimators. One such
technique called the Fourier-Wavelet Regularized Deconvolution
(ForWaRD) was proposed in [4], which works with any ill-
conditioned convolution system. This method can obtain good
results via tandem scalar shrinkages in both the Fourier and
wavelet domain. Recently, considerable effort has been spent on
designing alternative sparsity constraints which preserve such
features. Methods based on these sparsity constraints and incom-
plete measurements [5] have been successfully used for image
deconvolution. Transformations such as wavelets, curvelets [6],
shearlets [7] and wave atoms [8] are popular for image represen-
tation and are often used for image restoration. It has been shown
that learning representation from examples instead of using
prespecified ones usually leads to improved results [9,10].

Another popular deconvolution method is based on total
variation [11,12]. The TV deconvolution method finds approximate
solutions to differential equations in the space of bounded varia-
tion (BV) functions. Variations of this method have also been
proposed in [13] (FTVd), [14] (TVMM), [15] (TVS). These methods
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are well known for its edge-preserving, can generally achieve
state-of-the-art results. In [16], iterative shrinkage/thresholding
(IST) algorithms were placed on solid mathematical grounds, and
FISTA (Fast IST algorithm) [17], TwIST (Two-step IST) [18] have
improved the IST algorithm.

An inhomogeneous deconvolution model under the Bayesian
framework exploiting a non-parametric adaptive prior distribution
derived from non-local means method (NLRS) was proposed in
[19]. In particular, the SV-GSM [20] which employs Gaussian scale
mixtures in overcomplete directional and multiresolution pyra-
mids, and the BM3D (Block Matching 3D) [21,22] which employs a
non-local modeling of images by collecting similar image patches
in 3D arrays, are among the current best image deconvolution
methods. There are many useful algorithms and additional tech-
niques which may be found within the references [23,24].

In this paper, we adopt a different approach to the problem of
image restoration by exploiting a novel nonlocal domain transform
(NLDT) to regularize the inverse problem. Recently, Gastal and
Oliveira [25] propose a O(N) time filter known as the Domain
Transform (DT) filter. The key idea is to iteratively and separably
apply 1D edge-aware filters. In our work, we replace the point
similarity in DT [25] with the self-similarities of neighborhoods to
find a new transformation (nonlocal domain transform) that
maintains the edge-preserving property of the filter. Our decon-
volution algorithm is based on the decoupling of deblurring and
denoising steps in the restoration process. In the deblurring step,
an efficient deblurring method using fast Fourier transforms can
be employed. In the denoising step, we present a new approach
based on the nonlocal domain transform for efficiently performing
edge-preserving filtering. The idea is originally from geodesic
distance map, which keeps the edge characteristics in image
processing. The transformation enables the aggregation of 2D cost
data to be accomplished using a sequence of 1D filters. Further-
more, regularization parameter λ plays an important role in our
work. By adjusting λ, a compromise is achieved to suppress the
noise and preserve the nature of the original image. In this paper,
we apply the discrepancy principle to automatically determine
regularization parameter in each iteration.

The contributions of our work include: (1) a nonlocal domain
transform for efficiently performing edge-preserving filtering of
images is proposed; (2) we present an efficient edge-aware image
deconvolution method based on the joint nonlocal domain trans-
form strategy; (3) we apply the discrepancy principle to auto-
matically find a value of the regularizer λ.

In Section 2, we discuss the fundamentals of the domain
transform and propose the nonlocal domain transform. In
Section 3, we show how the nonlocal domain transform is used
for regularizing the deconvolution problem and how to compute
the regularizer λ. Simulation results are presented in Section 4 and
concluding remarks are presented in Section 5.
2. Nonlocal domain transform

Our algorithm is inspired by the interpretation of edge-
preserving filters [26]. Let I : Ω⊂R2-R be a 2D image. Also, let
p̂ ¼ ðxp; yp; IðpÞÞ be a point with spatial coordinates p¼ ðxp; ypÞ and
range coordinate I(p).

Let Fðp̂; q̂Þ be an edge-preserving filter kernel. In [25], authors
addressed the fundamental question of whether there exists a
transformation T and a filter kernel K that, for any input image I,
produce an equivalent result as the edge-preserving kernel F:

JðpÞ ¼
Z
Ω
IðqÞFðp̂; q̂Þ dq¼

Z
Ω
IðqÞKðTðp̂Þ; Tðq̂ÞÞ dq ð3Þ
This is a dimensionality reduction technique that replaces the
evaluation of a computationally expensive filter F with a lower-
dimensional linear filter K and a domain transformation T.

2.1. Domain transform

A new O(N) time edge-preserving filter known as Domain
Transform filter was proposed in [25]. This very efficient filter is
derived from the (1D) bilateral kernel. The key idea is to iteratively
and separably apply 1D edge-aware filters. We introduce the
domain transform (DT) as follows.

The domain transform [25] states that the L1 distance between
two neighboring points in the original domain R2 and the distance
between two corresponding samples in the new dimensionality
reduction domain R must be equal. Let I(x) be a 1D signal for x∈Ω,
and S¼ fx0; x1;…; xng be a sampling of Ω, where xiþ1 ¼ xi þ l, for
some sampling interval l. The goal is to seek a transform T that
satisfies

jTðxi; IðxiÞÞ−Tðxj; IðxjÞÞj ¼ jxi−xjj þ ∥IðxiÞ−IðxjÞ∥; ð4Þ
where xi; xj∈S, j � j is the absolute value operator, and ∥ � ∥ is some
chosen metric.

For simplicity, in [25], authors use the nearest-neighbor l1
norm; to be isometric, the desired transform must satisfy the
following equality (in l1 norm):

ctðxþ lÞ−ctðxÞ ¼ lþ jIðxþ lÞ−IðxÞj ð5Þ
where ctðxÞ ¼ Tðx; IðxÞÞ represents the transformation operator at
point x. Following the derived strategy presented in [25], we
divide both sides of Eq. (5) by l and take the limit as l-0. The
obtained result is the derivative of ct(x) with respect to x:

ct′ðxÞ ¼ 1þ jI′ðxÞj ð6Þ
Integrating (6) on both sides and letting ctð0Þ ¼ 0, one get

ctðαÞ ¼
Z α

0
ð1þ jI′ðxÞjÞ dx ð7Þ

One call ct a domain transform (DT).
The analysis presented in [25] shows that we can also control

the influence of spatial and intensity range information similar to
the bilateral filter by embedding the values of sr and ss in the
transformation:

ctðαÞ ¼
Z α

0
1þ ss

sr
jI′ðtÞj

� �
dt dx ð8Þ

This is an excellent property since we do not lose the controll-
ability of spatial and intensity information in spite of using lower
dimensionality.

In [25], authors demonstrate realization of 1D domain trans-
form filter by using a recursive edge-preserving filter. For a
discrete signal I½n� ¼ IðxnÞ and a given domain transform ct, this
filter can be defined in the transformed domain as

J½n� ¼ ð1−ωdÞI½n� þ ωdJ½n−1� ð9Þ
where d¼ ctðI½n�Þ−ctðI½n−1�Þ is the distance between neighbor
samples I½n� and I½n−1� in the transformed domain. While the
two samples are different, such as at the edges of the signal, the
value of d is sufficiently small for preventing the propagation
chain, so that the edges can be preserved. We denote the result as
J ¼DTðIÞ.

The filter variance ω of Eq. (9) can be computed as ω¼
expð−

ffiffiffi
2

p
=ssÞÞ (see more details in [25]). The filter is stable since

ω∈½0;1�, and its implementation in O(N) time is straightforward.
Domain transform filter is a new approach for performing

high-quality edge-preserving filtering of images and videos in real
time. The realization for 1D filter based on recursion has very
distinct impulse responses, making more appropriate for specific
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applications. It manages to continuously smooth image regions
while preserving strong edges.

2.2. Nonlocal domain transform

Recently, Buades et al. have proposed a natural and elegant
extension of the image bilateral filtering paradigm, so-called Non-
Local means (NL-means) filter [27]. For a given pixel p, its new
intensity value is computed as a weighted average of grey level
values within a search window. The weight of the pixel q in this
weighted average is proportional to the similarity (according to
the euclidean distance) between the neighborhood configurations
of pixels p and q. In this procedure, the denoising process is due to
the regularity assumption that self-similarities of neighborhoods
exist in a real image and that one (or several) neighborhood
configuration(s) can efficiently predict the central value of
the pixel.

In this section, the idea proposed by [27] is herein used to
derive an efficient nonlocal domain transform (NLDT). For 1D
signals, we replace the point similarity in domain transform [25]
with the self-similarities of neighborhoods to find a transforma-
tion T that maintains the edge-preserving property of the filter.

In our work, we use the weighted l1 distance as the metric ∥ � ∥
in Eq. (4). The distance between two sampling xi and xj depends on
the similarity of the intensity level vectors IðLiÞ and IðLjÞ, where Li
denotes a line neighborhood of fixed size and centered at a point
xi. This similarity is measured as a decreasing function of the
weighted l1 distance, ∥IðxiÞ−IðxjÞ∥¼ ∥IðLiÞ−IðLjÞ∥1;a ¼ GanjIðxi þ �Þ−
Iðxj þ �Þjð0Þ, where a40 is the standard deviation of the Gaussian
kernel. T only needs to preserve the weighted distances between
neighboring samples xi and xiþ1.

Finally, let ctnlðxÞ ¼ Tðx; IðxÞÞ. To be weighted isometric, the
desired transform must satisfy the following equality:

ctnlðxþ lÞ−ctnlðxÞ ¼ lþ GanjIðxþ lþ �Þ−Iðxþ �Þjð0Þ

¼ lþ
Z s

−s
GaðpÞjIðxþ l−pÞ−Iðx−pÞj dp; ð10Þ

which states that the weighted l1 distance between neighboring
samples in the new domain (R) must equal the distance between
them in the original domain (R2), and Ga is a Gaussian kernel, the
line neighborhood of size is 2 s. To avoid the need for the absolute
value operator on the left of (10), we constrain ct(x) to be
monotonically increasing (ctnlðxþ lÞ≥ctnlðxÞ). Dividing both sides
of (10) by l and taking the limit as l-0 we obtain

ct′nlðxÞ ¼ lim
l-0

1þ
Z s

−s

1
l
GaðpÞ Iðxþ l−pÞ−Iðx−pÞ dp

����
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Fig. 1. Left: Input signal IðxÞ ¼ 10 sin ð2π=512Þxðx∈½0;511�Þ. Righ
¼ 1þ lim
l-0

Z xþs

x−s

1
l
ðGaðx−tÞ Iðt þ lÞ−IðtÞ Þ dt

����
¼ 1þ

Z xþs

x−s
Gaðx−tÞjI′ðtÞj dt ð11Þ

where ct′nlðxÞ denotes the derivative of ctnl(x) with respect to x.
Integrating (11) on both sides and letting ctnlð0Þ ¼ 0, we get

ctnlðαÞ ¼
Z α

0
1þ

Z xþs

x−s
Gaðx−tÞjI′ðtÞj dt

� �
dx ð12Þ

The distance between any two points α and β in Ω, β≥α, in the
new transformed domain, which corresponds to the arc length
from α to β of the signal I, is also subsequently computed by

ctnlðβÞ−ctnlðαÞ ¼
Z β

α
1þ

Z xþs

x−s
Gaðx−tÞjI′ðtÞj dt

� �
dx ð13Þ

As such, the transformation given by Eq. (12) preserves the
weighted geodesic distance between all points on the signal. We
call ctnl a nonlocal domain transform.

Similar to the domain transform (8), we obtain the final
nonlocal domain transform to encode the values of sr and ss in
the transformation itself:

ctnlðαÞ ¼
Z α

0
1þ

Z xþs

x−s

ss
sr

Gaðx−tÞ I′ðtÞ dt
�� Þ dx

���
ð14Þ

The recursive edge-preserving filter (9), J½n� ¼ ð1−ωdnl ÞI½n�þ
ωdnl J½n−1�, can be used for performing this filtering operation on
digital signals. For the nonlocal domain transform, dnl ¼ ctnlðI½n�Þ−
ctnlðI½n−1�Þ.

As explained previously in Section 2.1, this recursive filter can
preserve the signal's edges well. From Eq. (14), one can see that the
regions with large gradient magnitude (such as the edges of the
input signal) are preserved, whereas those where gradient magni-
tude is not significant are smoothed by using the same response of
a linear smoothing filter. Note that in both cases, our nonlocal
domain transform filter behaves as an edge-aware one. We denote
the nonlocal domain transform as J ¼NLDTðIÞ.

Fig. 1 gives an example of the defined nonlocal domain tran-
sform for an input signal. The input signal IðxÞ ¼ 10 sin ð2π=512Þx
ðx∈½0;511�Þ) is shown in the left of Fig. 1, and the right of Fig. 1
shows the associated nonlocal domain transform ctnlðαÞ computed
using Eq. (14).

The problem with domain transform (DT) filters is that com-
paring only grey level values in a single pixel is not so robust when
these values are noisy. The NLDT compares not only the grey level
in a single point but also the geometrical configuration in a whole
neighborhood. This fact allows a more robust comparison than DT
filter.
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t: Its nonlocal domain transform computed using Eq. (14).



Fig. 2. Illustration of the process with separate horizontal and vertical filtering. From left to right: left-to-right, right-to-left, top-to-bottom, bottom-to-top.
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2.3. Filtering 2D images

Eq. (14) defines a nonlocal domain transform for 1D signals.
Gastal et al. [25] suggested that we can filter 2D signals using a
chain of 1D operations by performing separate filtering. The
horizontal and vertical passes are conducted for each row and
column, respectively. More precisely, assuming the horizontal pass
is first performed using the initial input signals, and the vertical
pass is then applied to the result using the horizontal filtered
output. This situation is illustrated in Fig. 2. The required number
of horizontal and vertical filtering depends on (the geometry of)
the image content, and, therefore, is hard to predict. In practice,
four iterations usually suffice to achieve good results.
3. Nonlocal domain transform based image
deconvolution algorithm

3.1. Fourier based regularized deconvolution

Having established a method for obtaining a good image
estimate when the image is corrupted by colored noise H−1γ, let
us focus on how we are to use this method as part of a
deconvolution routine. The blurring model is described by
Eq. (1), a suitable pseudo-inverse estimate which can be found
by regularizing the convolution operator from a discrete Fourier
basis. Using the regularized inverse operator

Hðk1; k2Þ ¼
Hðk1; k2Þ

jHðk1; k2Þj2 þ λ
ð15Þ

for some regularizing parameter λ∈Rþ, H is the complex conjugate
of H. An image estimate uλ in the Fourier domain is given by

Uλðk1; k2Þ ¼ Yðk1; k2Þ � Hðk1; k2Þ

¼Uðk1; k2Þ
jHðk1; k2Þj2

jHðk1; k2Þj2 þ λ
þ Γλðk1; k2Þ ð16Þ

where Γλ denotes the DFTs of leaked noise γλ. This type of
regularization applied is often referred to as FoRD. The strengths
of FoRD can be found in [4].

3.2. Joint filtering

To suppress the amplified noise and artifacts introduced by
FoRD method, we plan to apply the nonlocal domain transform to
denoise the estimate image uλ. But in the denoising process, the
main issue with noisy images is finding robust estimates for their
derivatives, which cannot be done using simple forward differ-
ences. One possible solution is pre-filtering the image with a low-
pass filter to avoid large oscillations in the image gradient. So, we
propose the joint filtering, where the content of one image is
smoothed based on the edge information from a reference image.

The main problem of the nonlocal domain transform filter in
image denoising is that the dnl in Eq. (9) could not be estimated
accurately based on the noisy image. If a reference contains a
much better estimate of the true high-frequency information than
the noisy image [28], we can present a joint nonlocal domain
transform filter to compute the parameter dnl as follows:

dnl ¼ ctnlðIref ½n�Þ−ctnlðIref ½n−1�Þ ð17Þ
where Iref is the reference image. The result can be written as
J ¼ JNLDTðI; Iref Þ.

After the Fourier shrinkage step [see Eq. (16)], the deblurred
image uλ contains the leaked noise γλ. So, the dnl could not be
estimated accurately based on the noisy image uλ. Considering that
the pre-denoising image preserves most of the important image
features, we can use it as a reference image [see Proposed
Algorithm]. In this way, the dnl could be estimated more accurately
using Eq. (17).

3.3. Proposed deconvolution algorithm

Based on Morozov discrepancy principle, which selects λ by
matching the norm of the residual to some upper bound, a good
regularized solution u should lie in the set fu; ∥hnu−y∥22≤c2g, where
c is a constant that depends on the noise level [29,30]. In general,
when the variance of the noise is available, the upper bound is
given by c2 ¼N2s2.

It was observed, however, in [30] that the choice of λ based on
c2 ¼N2s2 usually yields an oversmooth solution, which implies
that λ is too large. In order to obtain a smaller λ, which could
preserve the image edges or textures and also suppress the
amplified noise, we use a smaller set K¼ fu; ∥hnu−y∥22≤ρN2s2;
ρo1g in this paper.

Let uE is the pre-estimate image, we solve the following
problem with uE and K:

û ¼ arg min
u

fλ∥u−uE∥22 þ ∥hnu−y∥22g ð18Þ

and we choose the parameter λ to let û∈K.
This minimization problem (18) can be solved in the Fourier

domain easily by

Û ðk1; k2Þ ¼
Hðk1; k2Þ � Yðk1; k2Þ þ λUEðk1; k2Þ

jHðk1; k2Þj2 þ λ
ð19Þ

where Û , H, Y and UE are the 2-D DFTs of û, h, y, and uE,
respectively.

From Eq. (16), one can find that the Fourier based regularized
method (FoRD) is the special condition of Eq. (19) with uE ¼ 0.
Furthermore, regularization parameters λ and ρ play the important
roles in our work. In Section 3.4, we will discuss how to
choose them.

We summarize the main steps of the proposed image decon-
volution algorithm as follows:

Proposed Algorithm.
1.
 Set k¼0, uk ¼ 0, ss, sr and uref ¼ y.

2.
 Repeat:

3.
 Use uk and the set K¼ fu; ∥hnu−y∥22≤ρN2s2g to obtain the

estimate vk using the Eq. (19).
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4.
Fig
(PS
Apply our joint domain transform and edge-preserving filters
to vk, compute the parameter d using Eq. (17) with reference
image uref, and obtain an estimate ukþ1 ¼ JNLDTðvk;uref Þ.
5.
 Set k¼ kþ 1, uref ¼ ukþ1, and update sr .

6.
 Until stopping criterion is satisfied.

We adaptively set the spatial variance ss ¼ rh=3, where rh is the
radius of the blur kernel h. During the iterative restoration
procedure, sr is then refined, at each step k of the iterative
restoration process. We adaptively set the range variance sr to
0:04� jmaxðuref Þ−minðuref Þj2 by following [31].

3.4. Choose regularization parameter

Note that the Fourier-based regularized inverse operator in Eq.
(15) and the solution in Eq. (18) depends on the choice of
regularization parameter λ. The deblurred image depends greatly
on the degree of regularization which is determined by the
regularization parameter [32]. And the value of λ is related with
the other parameter ρ. Now, we describe a simple and effective
method to compute the parameters λ and ρ automatically. It
depends only on the data and automatically adjusts the regular-
ization parameter according to the data.

First, we show how to determine the parameter λ. If the pre-
estimate image uE∈K, we set û ¼ uE , and λ¼ ∞; else, the parameter
λ in Eq. (19) can be chosen as follows: in the case where we know
some statistics of additive noise, e.g., the standard deviation of
noise, a proper parameter λ is chosen such that the restored image
û in (19) satisfies

∥hnû−y∥22 ¼ ρN2s2 ð20Þ
By Parseval's theorem, this is equivalent to finding λ satisfying

ρN2s2 ¼ ∥H � Û−Y∥22 ¼ ∥
λðH � UE−YÞ
jHj2 þ λ

∥22 ð21Þ

Notice that the right-hand side is monotonically increasing
function in λ, hence there exist a unique solution λ, which can be
determined via bisection.

From Eq. (21), one can see that the λ increases with the increase
of ρ. A typical choice is to set ρ¼ 1 [29,30]. But in practice, we find
that the large λðρ¼ 1Þ often causes a noisy result with ringing
effects, though it can substantially reduce the noise variances. So,
we should choose a smaller λðρo1Þ which would obtain an edge
preserving image with a few noise. Then, in the denoising step, our
effective approach based on domain transform can be employed.

The parameter ρ should satisfy an important property: the ρ
decreases with the increase of image variance. For example, a
smooth image which contains a few high-frequency information
will not produce the strong ringing effects with large ρ, and a
large ρ could substantially suppress the noise. According to this
. 3. 2D edge-preserving filtering. From left to right: noisy image (PSNR¼28.48
NR¼33.35 dB).
property, we choose the ρ as follow:

ρ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−

∥y−EðyÞ∥22−N2s2

∥h∥21∥y∥
2
2

s
ð22Þ

where E(y) denotes the mean of y.
Concerning the algorithm complexity we note that the algo-

rithm is fast as it is based on fast domain transform. We start by
analyzing the cost of each iteration. The Step (3) can be carried out
with cost OðN2 log NÞ using the FFT algorithm; in Step (4),
recursive filtering is used to compute joint domain transform.
The cost of this phase is OðN2Þ. And the cost of computing the
parameter λ is also low because it is to use FFT algorithm.
4. Experiments

First, we have performed an experiment to evaluate the
effectiveness of the proposed NLDT filter compared with the DT
filter. The results are shown in the Fig. 3. The proposed NLDT filter
outperforms the DT filter in PSNR for the “Peppers” image.

Then, we present results of our proposed algorithm and
compare them with some of the deconvolution methods such as
ForWaRD [4], SV-GSM [20], TVS [15], NLRS [19], L0-AbS [23]. We
also use the domain transform (DT) filter to replace the nonlocal
domain transform (NLDT) in the Proposed Algorithm, and we
show that the proposed NLDT-based filter can outperform DT-
based filter when applied to deconvolution problem. In these
experiments we will use the improvement in signal-to-noise-ratio
(ISNR) to measure the performance. The ISNR is defined as
ISNR¼ 10 log10ð∥uorig−y∥22=∥uorig−û∥22Þ, where û is the correspond-
ing estimated image.

We consider six benchmark deconvolution problems. In these
experiments, original images are Cameraman (experiments 1,
2 and 3) of size 256�256, Lena of size 512�512 (experiments
4), House of size 256�256 (experiment 5) and Boat of size
512�512 (experiment 6). Table 1 summarizes the different degra-
dation models used, which are defined by the blur type and the
variance of the additive white Gaussian noise for each of the
experiments. The original images are shown in Fig. 4. We have
tested our method with different blur models at various noise
levels. Good and consistent results have been achieved.

In the experiments, the proposed method outperforms the
other techniques in terms of ISNR. We note that the results of the
six standard experiments for different images are included in
Table 2 as follows.

In this paper, we also used the Normalized cross-correlation
(Ncc) to measure the “visual quality” performance. Table 3 sum-
marizes the results of the six standard experiments in terms of Ncc.
The Ncc is defined as Ncc¼ Σðu−EðuÞÞðû−EðûÞÞ=∥u−EðuÞ∥∥û−EðûÞ∥,
where E(u) denotes the mean of u.
dB), DT-based denoising result (PSNR¼32.52 dB), NLDT-based denoising result



Table 1
Description of the observation parameters for the six experiments.

Scenario Blur s2

Exp 1 9� 9 uniform (Cameraman) 0.308
Exp 2 hi;j ¼ ð1þ i2 þ j2Þ; i; j¼ −7;…;7 (Cameraman) 2

Exp 3 25�25 Gaussian PSF with standard deviation 1.6 (Cameraman) 4
Exp 4 ½1;4;6;4;1�T ½1;4;6;4;1�=256 (Lena) 49
Exp 5 25�25 Gaussian PSF with standard deviation 1.6 (House) 4
Exp 6 9� 9 uniform (Boat) 0.308

Fig. 4. Images used in this paper for different experiments. (a) Cameraman image, (b) Lena image, (c) House image, (d) Boat image.

Table 2
ISNR for different experiments.

Methods Exp 1 Exp 2 Exp 3 Exp 4 Exp 5 Exp 6

NLDT 9.18 8.01 3.88 4.42 5.43 8.15
DT 8.47 7.36 3.47 3.93 4.84 7.39
ForWaRD 7.40 6.75 3.14 2.93 3.85 6.78
NLRS 7.81 7.14 3.29 3.84 4.03 7.33
TVS 8.41 7.37 3.39 3.53 4.54 7.85
L0-AbS 9.01 7.70 3.58 4.06 4.79 7.76
SV-GSM 7.33 7.45 3.25 3.61 4.11 7.89

Table 3
Normalized cross-correlation (Ncc) values for different experiments.

Methods Exp 1 Exp 2 Exp 3 Exp 4 Exp 5 Exp 6

NLDT 0.9921 0.9922 0.9840 0.9932 0.9926 0.9896
DT 0.9857 0.9903 0.9819 0.9919 0.9917 0.9869
ForWaRD 0.9871 0.9896 0.9813 0.9915 0.9897 0.9852
NLRS 0.9886 0.9899 0.9816 0.9911 0.9906 0.9877
TVS 0.9898 0.9907 0.9822 0.9913 0.9908 0.9883
L0-AbS 0.9911 0.9912 0.9829 0.9923 0.9916 0.9879
SV-GSM 0.9865 0.9911 0.9825 0.9907 0.9911 0.9890
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All the experiments were performed using MATLAB, on a
computer equipped with an Pentium(R) Dual-Core CPU E5300
@2.60HZ and 2G RAM, and running Windows XP. In Table 4, we
compare the speed of the algorithms in Table 2.
In the first set of tests, we consider the setup of [4], where a
Cameraman image is blurred by a 9�9 uniform box-car blur. The
AWGN variance, s2 ¼ 0:308. A comparison of different methods in
terms of ISNR is shown in Table 1 under the Exp 1 column. The
proposed method yields a value 9.18 dB which is better than the
values obtained by any of the other methods. In Fig. 5, we show



Table 4
CPU time (s) for different experiments.

Methods Exp 1 Exp 2 Exp 3 Exp 4 Exp 5 Exp 6

NLDT 2.53 2.46 2.56 12.2 2.47 11.85
DT 2.41 2.38 2.50 11.92 2.35 11.66
ForWaRD 9.02 9.07 9.03 42.82 9.07 43.10
NLRS 130.17 101.34 120.59 500.42 93.77 438.62
TVS 54.41 21.73 17.85 55.39 14.85 186.74
L0-AbS 25.88 26.17 25.68 67.14 26.23 66.83
SV-GSM 16.49 16.72 16.58 132.67 16.52 133.75

Fig. 5. The results of the first experiment with a 256�256 Cameraman image. (a) Orig
ISNR¼7.81 dB, (e) TVS result, ISNR¼8.41 dB, (f) our method result, ISNR¼9.18 dB.

Fig. 6. Details of the image deconvolution experiment with a Lena image. (a) Origin
ISNR¼3.84B, (e) TVS result, ISNR¼3.53 dB, (f) our method result, ISNR¼4.42 dB.
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details of the observations and the corresponding restored images
for Experiment 1.

In the second set of experiments performed over the Camera-
man image, we replicate the experimental setup of [20] (Exp 2 and
Exp 3). The ISNR are summarized in Table 2 under the Exp 2 and
Exp 3 columns. Again, our deconvolution algorithm outperforms
the other methods in terms of ISNR.

In the fourth experiment, the original image of Lena is blurred
by a 5�5 separable filter with weights ½1;4;6;4;1�=16 in both the
horizontal and vertical directions and then contaminated with
AWGN by s¼ 7. A portion of the image is zoomed in to reveal the
inal image, (b) blurred image, (c) ForWaRD result, ISNR¼7.40 dB, (d) NLRS result,

al image, (b) blurred image, (c) ForWaRD result, ISNR¼2.93 dB, (d) NLRS result,



Fig. 7. Details of the image deconvolution experiment with a House image. (a) Original image, (b) blurred image, (c) ForWaRD result, ISNR¼3.85 dB, (d) TVS result,
ISNR¼4.54 dB, (e) L0-AbS result, ISNR¼4.79 dB, (f) Our method result, ISNR¼5.43 dB.

Fig. 8. Visual comparison of Boat image in Exp 6. (a) Crop from Boat image, (b) blurred image, (c) DT result, ISNR¼7.38 dB, (d) NLDT result, ISNR¼8.15 dB.
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visual details of the results obtained by the different methods, and
is shown in Fig. 6(a)–(f). As can be seen from the figure, our NLDT-
based method recovers details better than the other methods.

In the fifth experiment, we apply a Gaussian PSF on the House
image. The deconvolution results obtained by different methods
are reported under the Exp 5 column of Table 2. Our nonlocal
domain transform based method performs yielding ISNR values of
5.43 dB. This experiment shows that our proposed method can
provide better reconstruction than some of the competitive
deconvolution methods. The details of the images obtained by
the different methods are shown in Fig. 7

In the sixth experiment, the original image of Boat is blurred by
a 9�9 uniform box-car blur, the noise variances are s2 ¼ 0:308.
From Table 1, we can notice that our method performs the best in
terms of ISNR. Fig. 8 shows a visual comparison between the
proposed method and the DT-based method. Results have shown
that the NLDT-based method obtains an edge-preserving deblur-
ring result with better quantitative and visual performance.
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In Fig. 9, we display a few curves for different λ values obtained
from Experiments 1, 4, and 5. These curves are chosen to be the
regularization parameters in each experiment. Hence, unlike some
of the other deconvolution algorithms such as that in [13], our
method automatically determines the regularization parameter at
each iteration.
5. Conclusion and future work

In this work, we have proposed an effective edge-preserving
image deconvolution method. Our algorithm is based on a non-
local domain transform that preserves the geodesic distance
between points on the curve, adaptively warping the input signal
so that 1D edge-preserving filtering can be efficiently performed in
linear time. We demonstrated the realization for our 1D edge-
preserving filters, based on recursion.

To suppress the amplified noise and artifacts, we present a joint
nonlocal domain transform filter to denoise the estimate image
obtained by FoRD. In addition, we have adapted a method of
automatically determining the regularization parameter at each
iteration. We have compared the performance of the proposed
method against some state-of-the-art methods. Results have
shown that the proposed method is attractive to obtain an edge-
preserving deconvolution result with better visual and quantita-
tive performance.

In this paper, we have assumed knowledge of the convolution
operator. However, the convolution operator is unknown in many
cases. In such “blind” deconvolution problems, the convolution
system must be estimated from observations. It would also be of
interest to apply the method developed here to blind deconvolution.
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