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Interaction with Matter, Changchun, 130033, China; bUniversity of the Chinese Academy of Sciences, Beijing 10039, China

(Received 12 August 2013; accepted 29 October 2013)

In order to avoid the influence of shot noise due to the powerful local oscillator (LO) in traditional heterodyne detection,
the signal-to-noise ratio (SNR) was analyzed for laser heterodyne detection with a weak LO at the photon level. First,
the expression for the SNR with a pulsed laser was applied to the condition of partial CW and weak LO laser
heterodyne detection, the spectrum of the heterodyne signal with the center frequency 212 kHz was obtained, and the
theoretical value of the SNR found to be in agreement with experiment. Second, the techniques of data segment
fractionizing and power spectral sensity (PSD) averaging were used to investigate the SNR. The results show that the
volume of the data required can be decreased by a factor of 10 compared with the traditional PSD averaging, the data
resource is fully used while signal processing, and the signal-to-noise improved ratio (SNIR) nearly obeys the

ffiffiffiffi
m

p
rule

(m is the averaging time) under a small quantity of data segments. Finally, the limiting factors about the SNIR during
the PSD averaging have been determined so that good use can be made of the data.

Keywords: MPPC; weak local oscillator; PSD averaging

1. Introduction

In the last decade, many efforts have been devoted to
the development and characterization of photon-number
resolving detectors. Some studies on three-dimensional
imaging laser radars with Geiger-mode (GM) avalanche
photodiode arrays have been reported by Lincoln
Laboratory, Massachusetts Institute of Technology [1–4].
Also, some experimental results for heterodyne detection
with a weak local oscillator (LO) were obtained. Many
efforts have been made to develop new multi-pixel
photon counters (MPPCs). The MPPC is a solid state
photo-detector, also known as the silicon photomultiplier.
It is a photon-counting device consisting of multiple
avalanche photodiode pixels connected in parallel and
operating in GM. When photons enter a pixel while it
operates in GM, the pulse output from the pixel is
constant regardless of the number of photons. This
means that each pixel provides only the information
whether or not it received one or more photons. The
output signal from the MPPC is proportional to the num-
ber of excited pixels. It is a relatively new and promising
class of solid-state, low-level light sensor with potential
in a multitude of applications such as high-energy
physics, astronomy, bio-molecular imaging, and medical
imaging [5–9]. At first glance, it may seem absurd to
purposely use a weak LO for heterodyne detection.
Most treatises on the subject assume an LO strength
large enough to overcome the thermal and circuit noise,
for that is how shot-noise-limited sensitivity is

achieved [10–15]. But what if the receiver noise could
be made to be close to zero? This can be obtained with
a photon-counting detector, which has virtually no circuit
noise, so very few LO photons are needed to approach
shot-noise-limited performance. The very low noise of a
photon-counting detector presents several benefits for
heterodyne measurements, including low LO power
requirements (especially important for detector arrays)
and the ability to use the same detector for both coherent
detection and direct detection. In this paper, we focused
on the signal-to-noise ratio (SNR) analysis of the
heterodyne detection with low LO using data segment
fractionizing and power spectral sensity (PSD) averaging.
The improvement of the SNR was obvious with the
above method, and some limiting reasons have been
discussed so we can establish some steady groundwork
for the detection of weak signals with a low power laser
heterodyne system.

2. Experimental setup

The experimental setup is shown in Figure 1. A light
beam with a wavelength of 532 nm is transmitted from a
single-frequency laser. The laser beam is incident on the
surface of a rotating diffuser, which was driven by AC
servo motor, and the rotating velocity of the diffuser can
be adjusted through the changing of the driving voltage.
The scattering photons from the diffuser were gathered
by the telescope, and a set of attenuators were placed in
front of the MPPC module. Of course, the LO beam is
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also incident on the same MPPC detector surface with
the same path while reflected by a beam splitter. The
output from the MPPC module can be divided into three
parts: the analog voltage output, comparator and the PC
monitoring output.

Figure 1 shows that the analog voltage and the
comparator outputs can be observed through an
oscilloscope or a spectrum analyzer. The analog voltage
output reflected the number of arriving photons and the
arrival time. The amplitude of the voltage corresponded
to the arriving photons during in the gated time (50 ns
according to the MPPC detector), and 100 mV voltage
denoted one arriving photon under theoretical conditions.
In general, one arriving photon also called one photon
event (pe) in the area of photon counting. The analog
voltage and comparator outputs and the PC monitoring
output are shown in Figure 2.

Figure 2(a) shows that the comparator output has
about 20 ns time difference from the oscilloscope; this
was determined by the inner circuit of the comparator.
The threshold of the comparator can be modulated
through the PC monitoring interface (Figure 2(b)).

3. The SNR of the weak LO heterodyne

There are many reports about the SNR and PSD analysis
for photon counting heterodyne detection [3]. The main
mathematical description will be given in this paper. This
theory assumes that the initial phase of the beat signal is
unknown and random from pulse to pulse. In other
words, the coherent integration time is equal to the
duration of the pulse but shorter than the pulse period. In
general, this is a good assumption because both the
movement of the target and the finite laser coherence time

Figure 1. Sketch map of the photon counting heterodyne system with MPPC detectors (The colour version of this figure is included
in the online version of the journal.)

Figure 2. Waveform comparison between (a) the analog voltage and comparator outputs and (b) the PC monitoring output.
(The colour version of this figure is included in the online version of the journal.)
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will result in a random phase shift from pulse to pulse. If
we consider the segmental continuous signal, the
hypothesis above is approximately come into existence.

We start with the beat current between the laser echo
and the LO. Taking the Fourier transform of this current
yields the PSD per received pulse. Averaging several
PSDs beats lowers the noise in the PSD and yields a
strong peak at the intermediate frequency (fif) of the
target. The photon-counting detector that collects the
incident signal and LO photons is a square-law detector
and the resulting current is a sum of delta functions,
where each delta function corresponds to a photoelectron
event. The detected current for received pulse number k
is equal to:

I ðkÞðtÞ ¼
XN ðkÞ

s þN ðkÞ
LOþN ðkÞ

D

i¼1

dðt � tiÞ; (1)

where Nk
S is the number of signal photoelectrons for the

kth pulse, Nk
LO is the number of LO photoelectrons for

the kth pulse, Nk
D is the number of dark counts for the

same kth pulse, and ti is the arrival time of the ith photo-
electron. The bandwidth of the detector and electronics
can be taken into account by replacing the delta function
with the impulse response of the electronics. In any case,
a threshold detector (such as the photon-counting
detector) will record a discrete edge for the beginning of
the pulse, so the impulse response of the electronics is
largely irrelevant – although slow edges will result in
larger timing jitter in the recording. In Fourier space,
Equation (1) becomes the phasor sum:

eI ðkÞðf Þ ¼ XN ðkÞ
s þN ðKÞ

LO þN ðkÞ
D

i¼1

expð�j2pftiÞ ¼
XN ðkÞ

s þN ðKÞ
LO þN ðkÞ

D

i¼1

expð�juiÞ;

(2)

where the phase φi is a product of the frequency f and
the photon arrival times: φi = 2πfti, In the complex plane,
for a given frequency, the sum of the phasors is
analogous to the well-studied random walk problem, and
the resulting two-dimensional (2-D) phase distribution
function (PDF) for ~I ðkÞðf Þ is a 2-D Gaussian distribution.
The distribution of the phasors for fn is a 2-D Gaussian
centered around the origin. The phasor sum for f = fif is
a 2-D Gaussian that has a nonzero mean (i.e. it is not
centered at the origin). The reason for the nonzero mean
is that the arrival times of the photons occur, on average,
at intervals of 1/fif.

For f = fn, the time intervals are completely random,
so the phases of the individual phasors are independent
of each other and uniformly distributed from −π to π.
For f = fif, the photon arrival times ti are not random, but
follow a sinusoidal PDF with a frequency that is equal
to the beat frequency between the signal and LO. The
resulting phases of the individual phasors then nearly

line up and result in a nonzero mean for the 2-D
Gaussian distribution. The distribution for the arrival
times ti can be derived from the classical expression for
the current corresponding to a heterodyne signal for
received pulse k:

I ðkÞclassicalðtÞ ¼ N ðkÞ
S þ N ðkÞ

LO þ N ðkÞ
D

þ 2m
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N ðkÞ
S :N ðKÞ

LO

q
cosð2pf if t þ hðkÞÞ; ð3Þ

where m2 is the mixing efficiency and θ(k) is the initial
phase. In Equation (3), we ignored the terms proportional

to
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N ðkÞ
S :N ðkÞ

D cos
q

ð2pf if tÞ and
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N ðkÞ
LO :N

ðkÞ
D cos

q
ð2pf if tÞ

terms that are from the beating between the signal and
the dark current spectral power at the LO frequency; and
between the LO and the dark current spectral power at
the signal frequency. These terms are much smaller thanffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

N ðkÞ
S :N ðkÞ

LO cos
q

ð2pf if tÞ and, hence, can be safely
disregarded.

As implied by Equation (3), each received pulse has a
different NS and NLO and a different initial phase. Since
NLO obeys a Poissonian distribution, the probability that
there are q LO photoelectrons for pulse k is:

P
N ðKÞ

LO
ðqÞ ¼ ð�NLOÞq expð��NLOÞ

q!
; (4)

where �NLO is the average number of LO photoelectrons
per pulse averaged over all pulses and all time. In
addition, we assume that the dark counts also obey a
Poissonian distribution. The first and second moments of
this distribution are given by

E½N ðkÞ
LO � ¼ �NLO; (5)

E½ðN ðkÞ
LO Þ2� ¼ �NLO þ ð�NLOÞ2; (6)

The number of signal photoelectrons, NS, obeys a
Poissonian distribution for a specular target and a nega-
tive binomial distribution for a diffuse target. For a
diffuse target, the probability that there are q signal
photoelectrons for pulse k is

P
N ðkÞ
S
ðqÞ ¼ CðqþMÞ

Cðqþ 1ÞCðMÞ 1þ M
�NS

� ��q

1þ
�NS

M

� ��M

;

(7)

where �NS is the average number of signal photoelectrons
per pulse averaged over all speckle realizations and all
pulses, and the parameter M represents the ‘diffuseness’
of the target or, more quantitatively, the number of
degrees of freedom of the intensity included within the
measurement interval. For example, detecting both
polarizations doubles M. The smaller the value of M, the
more diffuse the target. In the limit of large M, the
negative binomial distribution converges to a Poissonian
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distribution, i.e. the target can be treated as being
effectively specular. The first and second moments of
Equation (7) are given by

E N ðkÞ
S

h i
¼ �NS ; (8)

E ðN ðkÞ
S Þ2

h i
¼ �NS þ 1þ 1

M

� �
ð�NSÞ2: (9)

For a perfectly diffuse target with a polarizer before
the detector so that only the vertical or the horizontal
polarization of the scattered light is seen by the detector,
M = 1, and the distribution given by Equation (7) simpli-
fies to the Bose–Einstein (or geometric) distribution

P
N ðkÞ
S
ðqÞ ¼ 1

1þ �NS

�NS

1þ �NS

� �q

: (10)

The first and second moments of Equation (9) are
given by:

E½N ðkÞ
S � ¼ �NS ; (11)

E N ðkÞ
S

� �2
� �

¼ �NS þ 2ð�NSÞ2: (12)

We now proceed to derive the PDFs for the magni-
tude of the single-pulse PSD at the signal and noise
frequencies. Since the PSD averaged over k pulses is
related to the detected current according to
PSD ¼ ð1KÞ

PK
k¼1

eI ðkÞðf Þ		 		2, where eI ðkÞðf Þ is given by
Equation (2). Through the analysis of the amplitude and
phase for eI ðkÞðf Þ, we can obtain the PSD of the
intermediate frequency and the noise signal.

In this paper, the random variable G stands for the
value of the PSD at a given frequency. Hereafter, for
convenience we use Gif to denote the value of the
PSD at f = fif and Gn to denote the value of the PSD
at f = fn. So the first and second moments of the
intermediate frequency and the noise signal can be
expressed:

E½Gif � ¼ m2 �NS �NLO þ ð�NS þ �NLO þ �NDÞ; (13)

E½G2
if � ¼ 2ð�NS þ �NLO þ �NDÞ þ 2ð�NS þ �NLO þ �NDÞ2

þ 2�N2
S

M
þ 4m2 �NS �NLO �ND þ m4 1þ 1

M

� �
�N 2
S
�N 2
LO

þ m2ðm2 þ 8Þ�NS �NLO þ m2ðm2 þ 4Þ�NS �N
2
LO

þ m2ðm2 þ 4Þ 1þ 1

M

� �
�N2
S
�NLO; ð14Þ

E½Gn� ¼ �NS þ �NLO þ �ND; (15)

E½G2
n� ¼ 2ð�NS þ �NLO þ �NDÞ þ 2ð�NS þ �NLO þ �NDÞ2 þ 2�N 2

S

M
;

(16)

where m2 is the mixing efficiency of the signal and LO
photoelectrons. According to the expression of the
variance:

r2G ¼ E½G2� � ðE½G�Þ2; (17)

the variance for a diffuse target can be evaluated as:

r2Gif
¼ 2ð�NS þ �NLO þ �NDÞ þ ð�NS þ �NLO þ �NDÞ2

þ 2�N2
S

M
þ 2m2 �NS �NLO �ND þ m4 �N2

S
�N2
LO

M
þ m2ðm2 þ 8Þ�NS �NLO þ m2ðm2 þ 2Þ�NS �N

2
LO

þ m2 m2 þ 2þ m2 þ 2

M

� �
�N2
S
�NLO; ð18Þ

r2Gn
¼ 2ð�NS þ �NLO þ �NDÞ þ ð�NS þ �NLO þ �NDÞ2 þ 2�N2

S

M
:

(19)

According to the definition of the SNR:

SNR ¼
�Gif � �Gn

rGif þ rGn

� �2

; (20)

the SNR can be written as follows：

SNR ¼ ðm2 �NS �NLOÞ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð�NS þ �NLO þ �NDÞ þ ð�NS þ �NLO þ �NDÞ2 þ 2�N2

S
M

þ2m2 �NS �NLO �ND þ m4 �N2
S
�N2
LO

M þ m2ðm2 þ 8Þ�NS �NLO

þm2ðm2 þ 2Þ�NS �N2
LO þ m2ðm2 þ 2þ m2þ4

M Þ�N2
S
�NLO

vuuuut
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð�NS þ �NLO þ �NDÞ þ ð�NS þ �NLO þ �NDÞ2 þ 2�N2

S
M

q

0
BBBBB@

1
CCCCCA

2 :

The expression above shows that the SNR of the
heterodyne signal can be estimated while giving the
appropriate parameters. In this paper, the signal
photoelectrons are equal to the LO photoelectrons; the
experimental and theoretical results are shown in figure 3.

Figure 3. The SNR of the photon counting heterodyne
system. (The colour version of this figure is included in the
online version of the journal.)
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The abscissa in Figure 3 indicates the number of the
integral signal photoelectrons output from the MPPC
detector in one millisecond. In the course of the simula-
tion, the mixing efficiency m2 is 0.2, parameter M is
1.275 (M = 1 corresponds to the ideal diffuser, the target
in the experiment was covered with white paper), the
dark count rate is 0.9 kcps (kilo counts per second). The
graph in Figure 3 shows that the experimental and
theoretical results are consistent with each other during
the selection of proper input parameter. So we can see
the SNR expression of the weak LO heterodyne in
pulsed laser seems reasonable during the analysis of the
SNR for segmental continuous heterodyne detection.

4. PSD of the photon counting heterodyne

The Doppler frequency shift can be achieved from the
analysis of the PSD for the photon counting heterodyne
signal, but the noise of the echo signal will affect the
frequency distinguishing due to the reflecting surface and
the atmospheric transmission paths. Therefore, some
de-noising methods should be adopted to improve the
SNR of the beat signal. But the noise mentioned in this
paper is in frequency domain, so time domain or space
domain methods such as matched filtering, bandpass
filtering, or autocorrelation have no excellent function.
Consequently, we must find some reasonable and
effective techniques to overcome the decline of the SNR.
Fortunately, the method of PSD averaging has been used
diffusely in the frequency domain for many decades, and
this method also proved to be applicable in the area of
photon counting heterodyne (weak LO) detection by
some researchers under the condition of pulsed laser. We
mainly focus on the implication of this method while the

incident laser is segmental continuous (such as the
continuous laser pass through the chopper).

4.1. The traditional PSD averaging

The length of the experimental data is 4,000,000, the
sampling rate is 400 MHz, and the total time for all of
the data is 10 ms. The single PSD of some original
experimental data is shown in Figure 4.

Figure 4 shows that the peak value of the PSD is
located at 212 kHz, but that it has low SNR. In order to
improve the SNR of the beat signal, the traditional PSD
averaging method was applied while using 5, 10, 15, or
20 data segments (Figure 5).

As shown in Figure 5, the SNR has enhanced by
3–4 times while introducing the PSD averaging for 20
data segments (with data length = 4,000,000). But the
background noise is still strong; therefore, a method
named data segment fractionizing and PSD averaging
has been put forward to improve the SNR of the beat
signal. The core of the technique is truncating the raw
data for several small segments, then, giving the PSD
sum of the all data segment, the SNR will increase with
this operation.

4.2. Data segment fractionizing and PSD averaging

As explained before, we have improved the SNR by
averaging the 20 PSDs through the traditional PSD
averaging method to some extent, and the data length is
4,000,000 (the depth of the FFT is 222 = 4,194,304), but
has no obvious effects. So the data segment fractionizing
and PSD averaging method has been adopted in order to
achieve large-scale SNR improvement. We have
mentioned the fractionizing of the original data, but how
to decide the length of the smaller data segment is
important in the processing, because the SNR of the
fractionized data segments has some restriction, as
explained in the following.

4.2.1. The times of PSD averaging

The method of PSD averaging has effects in improving
the SNR due to the statistical property of the noise and
the signal; the PSD of the noise is disordered versus the
frequency, but the signal’s PSD will keep some peak
value at a fixed frequency point. From this single theory,
we had hoped that the times of the PSD averaging would
increase, so the SNR would achieve stable enhancement,
but the experiment results did not accord with our
theoretical prediction.

4.2.2. The duration of the data segment

The larger the time of PSD averaging, the shorter
duration of each data segment for the fixed original data.

Figure 4. The power spectrum of the heterodyne signal with
single measurement. (The colour version of this figure is
included in the online version of the journal.)
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This means that the number of signal periods decrease,
or, in other words, the echo photons become weak.
Therefore, the peak value of PSD for the signal will
decrease due to the reduction of the data segment’s dura-
tion according to the FFT theory, so the anti-noise ability
will be weakened. From this single theory, we hope that
the longer the data length (or duration) the better, which
means that the times of PSD averaging will be reduced
for the fixed-length original data. This phenomenon
conflicts with the restriction condition explained above.

In order to obtain the comparison of the data
segments before and after the fractionizing, we first give
the PSD averaging after the one tenth division.
Therefore, the original PSD averaging for 5, 10, 15, and
20 data segments become 50, 100, 150, and 200 short
data segments PSD averaging. At this time, the data
length in time domain was condensed into one tenth of
the original data length, but the points of the FFT have
no change before and after the data length condensing so
that the frequency resolution remains unchanged. At the
same time, we give the PSD averaging of the first 10
and 20 short data segments in order to show the
improvement of the SNR. So, the six PSD averaging
situations are shown in Figure 6(a) to 6( f ), respectively.

From Figure 6, it can be seen that the first 20 PSD
averaging of the short data segments has a similar SNR
to the original 20 PSD averaging of the long data
segments (equal to 200 short data segments after frac-
tionizing). In other words, the data size has only about
1/10 of the original data length after data fractionizing,
while it has the same SNR. This is important in real-time
data processing and effective use of memory cells. We
can draw the following conclusions from the six results
in Figure 6.

Firstly, the SNR increases with an increase of
the number of PSD averaging steps, as shown in
Figures 6(a)–6(c).

Secondly, the SNR has no obvious increase on
further raising the number of PSD averaging steps
(Figures 6(d)–6( f )). In other words, the improvement of
the SNR appears to exhibit saturation effects.

Thirdly, the PSD in the low frequency range (near
the DC component) has an obvious increase in each
result in Figure 6 compared with those in Figure 5. This
is harmful for signal extraction in the low frequency
area.

Now, we will give some detailed analysis about these
three conclusions.

(a) (b)

(c) (d)

Figure 5. The averaged power spectrum of the heterodyne signal with several measurements. PSD accumulating with (a) 5, (b) 10,
(c) 15, and (d) 20 data segments. (The colour version of this figure is included in the online version of the journal.)
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5. SNR enhancement for data segment fractionizing

5.1. The principle of SNR enhancement for data
segment fractionizing

Most of the time, the consideration is always of
improving SNR in either time domain or space domain,

and the noise is usually supposed to be white Gaussian
noise. This kind of noise has the property of a constant
power spectrum, but a practical signal does not have this
property. The power spectrum always fluctuates around a
certain value during all time; this is similar to a

(a) (b)

(c) (d)

(e) (f)

Figure 6. The averaged power spectrum of the heterodyne signal with several measurements after data fractionizing. PSD
accumulating with the first (a) 10, (b) 20, (c) 50, (d) 100, (e) 150, and (f) 200 short segments.
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stationary random process. Therefore, the method of
SNR enhancement in the frequency domain can draw
lessons from signal averaging in time domain. For the
sake of convenience, the whole course was considered as
linear averaging, and the useful signal and noise can be
written as:

f ðtÞ ¼ fsðtÞ þ nðtÞ; (22)

where fs(t) is the periodic signal and n(t) is noise. If we
sample the periodic signal at a fixed point with time
interval T at the starting time tk, then the ith sampling
can be expressed as:

f ðtk þ iTÞ ¼ fsðtk þ iTÞ þ nðtk þ iTÞ; (23)

where i is the sampling ordinal number. For a periodic
signal and synchronous sampling, the starting time tk can
be supposed as zero, so the expression above becomes:

fsðtk þ iTÞ ¼ f ðiTÞ: (24)

The summation of the ith sample after m repeated
samplings is:

Xm
i¼1

f ðtk þ iTÞ ¼
Xm
i¼1

fsðiTÞ þ
Xm
i¼1

nðtk þ iTÞ: (25)

The signal after m summations can be written as:

Xm
i¼1

fsðiTÞ ¼ mfsðiTÞ; (26)

But the noise after m summations will increase with
the rules of statistical average enhancement:

Xm
i¼1

nðtk þ iTÞ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n21ðtk þ TÞ þ n22ðtk þ 2TÞ þ :::þ n2mðtk þ mTÞ

q
; ð27Þ

If the averaging effective value for each noise
sampling is nðtÞ, then the noise after m samplings is:

Xm
i¼1

nðtk þ iTÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m½nðtÞ�2

q
¼ ffiffiffiffi

m
p � nðtÞ: (28)

Therefore, the SNR after m times averaging is:

SNRjm¼
S

N

� �
m

¼ mfsðiTÞffiffiffiffi
m

p � nðtÞ ¼
ffiffiffiffi
m

p fsðiTÞ
nðtÞ ¼ ffiffiffiffi

m
p � S

N

� �
in

;

(29)

and the signal-to-noise improved ratio (SNIR) is:

SNIRjm¼
S

N

� �
m

¼ SNRmjout
SNRmjin

¼
ffiffiffiffi
m

p � ðS=NÞin
ðS=NÞin

¼ ffiffiffiffi
m

p
:

(30)

We can see from the expression above that the SNIR
obeys the

ffiffiffiffi
m

p
law after m times sampling averaging. In

other words, the SNR will increase with many samples
averaging for a periodic or repeating signal, and the
more the averaging times, the higher the SNR. This
method mentioned the periodic signal; in fact, the peak
signal in frequency domain is similar to periodic signal,
and the more the data segments, the more the signal
period. Therefore, the SNR in frequency domain will be
enhanced due to the data segment fractionizing method.
The theoretical and experimental results are shown in
Figures 7(a) and 7(b) for different experiments.

The improvement of SNR was consistent with
theoretical forecast after 10 times of averaging, as shown
in Figure 7. This shows that the averaging method in
time domain can be used in frequency domain, but the
premise is that the noise remains highly random, and this
property cannot be described with a single Gaussian
white noise process. On the contrary, the total noise
contains various kinds of noise; therefore, the averaging
method in frequency domain certainly will have much
difference with the same method in time domain.

5.2. The reason why the SNIR has no obvious
increase

The statement above has illustrated that the signal
averaging in time domain and frequency domain have
much difference, at last, the theory and experiment has
much divergence due to the averaging times increasing.
The SNIR of the first 50 short data segment averaging
steps are shown in Figures 8(a) and 8(b) for different
experiments.

As can be seen from Figure 8, the theory and
experiment exhibit good consistency under a fewer
averaging times (such as 10 times), but the offset
between theory and experiment becomes much greater
when the averaging times increases, with the experimen-
tal value always lower than the theoretical calculation.
The reasons for this are as follows.

First, the statistical property of the noise in frequency
domain is not a stationary random process. Therefore,
the averaging results cannot obey the regulation of statis-
tics enhancement, and this reason results in the statistical
average value increasing, with the SNR decreasing.

Second, the periodicity of the frequency signal has
been destroyed because of the outside interference and
the stabilization of the processing system. This reason
will cause the averaging signal amplitude less than m
times of the initial amplitude, so the SNR will decrease
compared with the theory.

It can be seen from the two reasons above that the
segment fractionizing and PSD averaging has the ability
for SNR enhancement, but the increment speed gradually
reduces while increasing the averaging times.
Consequently, we must select appropriate averaging
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(a) (b)

Figure 7. The SNR enhancement of the first 10 short data segments of the heterodyne signal after data fractionizing. The (a) first
and (b) second experimental results. (The colour version of this figure is included in the online version of the journal.)

(a) (b)

Figure 8. The SNR enhancement of the first 50 short data segments of the heterodyne signal after data fractionizing. The (a) first
and (b) second experimental results. (The colour version of this figure is included in the online version of the journal.)

(a) (b)

Figure 9. The (a) experimental and (b) numerically simulated results for the influence of the DC component. (The colour version of
this figure is included in the online version of the journal.)
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times for effective SNR increases, and it is not necessary
to seek redundant short data segments averaging.

5.3. The influence of DC signal component

The analysis above showed that PSD averaging can
improve the SNR, and the method of PSD averaging
based on data segment fractionizing shows significant
improvement compared with the original PSD averaging.
However, the influence of DC component becomes more
serious while the data length shorter. The numerical
simulation of the influence of DC signal (has no useful
signal peak) and the experiment result are shown in
Figure 9.

The total length of the simulation is 4,000,000
points, the corresponding time span is 10 ms (which is
divided equally into 10 small segments), and the sample
rate is 400 MHz. From the expression of finite time
constant amplitude oscillation:

EðtÞ ¼ A � expð�i2pm0tÞ ! �T=2 6 t 6 T=2
0 ! The others



; (31)

the corresponding PSD is:

jEðmÞj2 ¼ T2fsin c½Tðm� m0Þ�g2: (32)

Now the definition of the spectrum width can be
given as the two-frequency space for the PSD decline
as the half of the peak value. Then, the spectrum width
is Δν = 1/T, and the parameter T is the signal period
(the time span for non-periodic signal). Therefore, the
shorter the data length, the wider the spectrum width
from the analysis above. This is the reason that the DC
component has more influence while the data length
becomes shorter. If the useful signal is near the DC
component, signal extraction will be difficult. The
results of an experiment showing the influence of DC
component with different data length are provided in
Figure 10.

As can be seen from Figure 10, the shorter the data
length, the more severe the impact of DC component. So
the choice of data length during the course of data
segment fractionizing and PSD averaging should depend
on the signal frequency.

6. Conclusion

In this paper, we have applied the SNR expression of a
weak LO pulsed laser heterodyne signal to the analysis
of partial CW laser heterodyne detection based on the
MPPC module. The theoretical simulations and experi-
mental results exhibit good agreement during the
research, and the center frequency of the useful signal is
221 kHz. According to the definition of SNR, we have
given the comparison of the SNR of the traditional PSD
averaging and the PSD averaging after data segment
fractionizing. The experimental results showed that when
the data volume is reduced by a factor of 10 compared
with the original data under the same SNR value, the
availability of the measured data has improved greatly.
Moreover, the SNIR after data segment fractionizing and
PSD averaging obeys the

ffiffiffiffi
m

p
law after m times

sampling averaging, but the SNIR will appear saturated
due to the increase of averaging data volume.
Meanwhile, we must pay attention to the influence of
DC component in the course of data segment fractioniz-
ing and PSD averaging, especially for the low-frequency
signal processing.
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