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Abstract

Circles, two dimensions with equilibrium and noninterference constraints, packing into a circular container
is a NP-hard constrained layout optimization problem. That has broad application in engineering.
Classical Differential Evolution (DE) for solving these problems is readily falling into local optima. An
adaptive chaotic DE algorithm is proposed to improve the performance in this paper. The weighting
parameters are changed dynamically with chaotic mutation in the searching procedure. The penalty
factors of the cost function are modified during iteration. To keep the diversity of the population, we
limit the population’s concentration. To enhance the local search capability we adopt adaptive mutation
of the global optimal individual. The improved algorithm can maintain the basic algorithm’s structure
as well as extend the search scope, and can hold the diversity of population as well as increase the search
precision. Also, our improved algorithm can escape from premature and speedup the convergence.
Experiments indicate the feasibility and efficiency of our algorithm.
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1 Introduction

Layout optimization problem has wide application, such as container packing, spacecraft interior
layout and integrate circuit layout design, etc. It investigates how to distribute geometrical objects
(graph units) with different shape and size in a certain space, at the same time those geometrical
objects should satisfy some certain constraints. Layout problem belongs to combination opti-
mization, and is a NP-hard problem. According to layout dimension, layout problem partitions
to 2 dimensions and 3 dimensions. According to complexity, it partitions to performance-free
constrained layout problem and performance-related constrained layout problem (we call it con-
strained layout problem in brief). Performance-free constrained layout problem, such as container
packing, concentrates on maximize the space utility without interference among graph units or
between graph units and the container. However, performance-related constrained layout problem
needs consider the satisfaction of object inertia, equilibrium or stability besides the satisfaction of
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performance-free constrained layout problem. Circular constrained layout problem is a particular
circumstance of 2 dimension performance-related constrained layout problem. It concerns placing
circles with different or same size into a circular container meanwhile the circles can interfere each
other and the same do the circles and the edge of the container. Furthermore, the center positions
of circles need near the center positions of the container, at the same time, the inequilibrium of
the whole system need reach the minimization.

Teng [1] proposed a mathematic model concerning dishes installed on rotating table, which was
based on the background of rough layout optimization of returned satellite cabin. And a deter-
ministic algorithm was proposed to solve these small scale problems. When the number of cell
to be distributed is increased, it is difficult to search the optimized layout since the layout forms
increase dramatically. In this situation, Teng and his cooperators proposed a series of evolution
algorithms to solve these problems and gained good effects, such as improved genetic algorithm
[2], human-machine interaction based genetic algorithm [3, 4], immune genetic algorithm [5, 6]
and particle swarm optimization based cultural algorithm model [7]. Furthermore, other algo-
rithms like improved particle swarm optimization [8-10], differential evolution [11] and ant colony
optimization [12] were proposed by other literatures.

An adaptive chaotic differential evolution algorithm is proposed in this paper to overcome the
plunging into local optima of traditional differential evolution algorithm. Dynamically permute
the weight parameters by chaotic mutation, which is used to improve the algorithmic performance
that affects by parameters. A method to keep the diversity of population is proposed to enhance
the global search capacity. To improve the local search capacity, a strategy of mutation of the
global best individual is adopted. To accelerate the convergence of our algorithm, an approach
is designed that dynamical changes the penalty factor of cost function. Experimental results
indicate the proposed algorithm can avoid precocious convergence, accelerate the convergence
speed, and gain good results.

This paper is organized as follows. In section 2 we will review the definition and mathematic
model of equilibrium constraint layout problem. We proposed the adaptive chaotic differential
evolution algorithm in section 3, detailed description are discussed, followed by the experimental
evaluation in section 4. The conclusion is given in section 5.

2 Problem Description and Mathematic Model

When placing graph units with different size into a rotating circular container, the centroids
of these graph units are the unknown to be optimized on supposing that the center of mass
coincides with the centroid of graph unit. Assuming there are n different size circles with radius
(r1, r2, · · · , rn) and mass (m1,m2, · · · ,mn). The circular container has radius R, the centre of
a circle is original coordinate (0, 0), rotating at speed ω. Now distributing these n graph units
into the container at the same time as near as possible to the center of the container. That is
a 2n vector X = (x1, y1, · · · , xn, yn)

T ∈ R2n determines a unique layout solution. Here (xi, yi)
represents the centroids of the ith graph unit. Also some constraints should be satisfied: (1) no
interference exists among these graph units; (2) all graph units are contained in the container;
(3) after distribution, the inequilibrium of the system is less than a fixed value [δJ ].

The general mathematic model is to solve X so that it minimizes the maximal circumcircle
radius, i.e.
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3 Adaptive Chaotic Differential Evolution

Differential Evolution (DE) is a heuristic randomized search optimization algorithm in continuous
space proposed by Rainer and Kenneth Price in 1995 [13]. As an excellent optimization algo-
rithm, DE has outstanding representation in function optimization, and has broad application.
The framework of DE is based on genetic algorithm (GA). Differential operation is designed for
genetic individual’s real number encoding, and is used to implement cross and mutation in genetic
algorithm. According to different evolving strategy, DE can be presented as:

DE/x/y/z

Where x is a random selected individual or the best individual in each iteration, y is the number
of differential vector, and z is the cross mode. In this paper, we use DE/rand− to− best/1/exp

Xi = Xi + F1 × (Xgbest −Xi) + F2 × (Xp1 −Xp2)

Where p1, p2 ∈ {1, 2, · · · , N} are random numbers, and N is the population size.

3.1 Adaptive chaotic mutation based parameters tuning

Main parameters in DE include population size N , mutation factor F and cross factor CR.
Different value choice of F and CR bring vast different performance in evolving procedure. Big F
parameter results in a random search for DE, thus it destroys the best solution and lower converge
to global best solution. However, small F reduces the diversity of population and induces pre-
mature of local optima. In contrast, when CR is big, it promotes the local search capacity and
accelerates the convergence while small CR benefits the diversity of population and global search
capacity as well.

Generally, N is located in (5 × D, 10 × D), where D is the dimension. F ∈ (0, 2), in most
examples, F = 0.5 sounds be a nice choice, and usually CR is restricted in [0, 1], better choice is
CR = 0.3 [14].
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Fig. 1: The curve of F and CR when F1 = 0.7, F2 = 0.3, CR1 = 0.6, CR2 = 0.4

To improve the performance, variational parameters are used in evolving, such as adaptive
parameters [15]. Chaotic signal has the properties of traversal and randomness. These properties
can be utilized as an optimizing mechanism avoiding local optima to improve search capacity in
a search procedure. Logistic equation [15] is a classic chaotic system:

zn+1 = µzn (1− zn) n = 0, 1, 2, · · · zn ∈ [0, 1]

Where µ is control variable. Arbitrary z0 ∈ [0, 1], if µ is fixed, can iterate a determinate time
series z1, z2, z3, · · · .
Let rf and rcr are chaotic variables, the parameters in DE can be rewriten as

F = F1 + F2 ×
(
rf − 1

2

)

CR = CR1 + CR2 ×
(
rcr − 1

2

)
When F2 = CR2 = 0, the above formula is degraded to parameter F and CR of standard DE.

Empirical results indicate that F1 = 0.7, F2 = 0.3, CR1 = 0.6, CR2 = 0.4 sounds a good choice.

3.2 Improve the diversity adaptively

Since greedy search strategy is the dominant approach in DE, the convergence is fast meanwhile
it increases the probability of premature. Eventually, all individuals trend to the global best
individual in the evolving procedure. If the global best individual is not the global optimized
solution, it is called premature. The essential cause of premature is that a “cluster” phenomenon
occurs in searching procedure i.e. the diversity of population decreases. Good search strategy
should maintain the diversity at the early stage to perform global search. However, at the late
stage, we should strengthen the local search capacity to improve the accuracy.

Many methods are proposed to maintain the diversity, such as concentration [16], population
activity criteria [17], fitness variance [18]. Concentration is also a criteria of “cluster”. Higher



Q. Yang et al. /Journal of Computational Information Systems 9: 15 (2013) 6171–6181 6175

concentration means more similar individuals or less diversity, and vice versa. It is naturally use
concentration to enlarge the diversity of population in evolving procedure.

The concentration cv of individual v is defined as follows, and cv ∈ (0, 1]

cv =

(
1

M

M∑
w=1

A (v, w)

)(1− it
max It)·γ

where it and maxit are the current iteration and maximum iteration respective. γ is a known
parameter, and γ = 0.5 , A (v, w) is the affinity between individual v and individual w. Since in
DE, individual is encoded in vector, i.e. v = (v1, v2, · · · , vn), w = (w1, w2, · · · , wn), then

A (v, w) = 1/

1 +

√√√√ N∑
i=1

(vi − wi)
2


A(v, w) converges towards 1 when individual v and individual w becomes more similar, oth-

erwise, A(v, w) trends to 0. Comparing with traditional concentration definition in Immune
Algorithm, the proposed equation has an extra power term, which guarantees cv converge to 1
and avoiding vibration in late evolving stage. Moreover, the proposed equation can calculate and
implement easily.

After the calculation of concentration, a conventional selection operator is used.

pv =
cv

N∑
v=1

cv

The selection operator guarantees higher concentrating individual has higher selected probabil-
ity to mutate, and vice versa. The used mutation operator is defined in the following subsection.

3.3 Mutation of best individuals

In the late period of search procedure, the diversity of population is declined. The best individual
(global or local) will maintain unchanged in a considerable time. When individuals become
identity by analyzing the formulation of DE, the mutation and cross operator can not bring new
direction for population, which results in local optima. Here, a maximum consecutive unchanged
counter, gmax, is used as criteria to perturb the best individual.

best′k = ξ (bestk) , k = 1, 2, · · · , D

ξ (x) =

{
x t < gmax

ζ (x) t ≥ gmax & P < P0

Where t is an unchaged counter for best individuals, if it changes, t is set to zero. ζ (x) is
mutation function, it can be an unique random function or a Logistic equation, in this paper,
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ζ (x) N (x, σ) (σ is the range of x). P is the mutation probability and P0 is the threshold of
mutation probability. Empirical results indicate P0 ∈

[
1
D
, 2
D

]
is a good choice.

After modification, the update of each iteration is:

Xi = Xi + F1 × (ξ(Xgbest)−Xi) + F2 × (Xp1 −Xp2)

gmax determines the mutation frequency of the best individual. Small gmax means more
frequent mutation, thus the best individual has more powerful global search capacity with lower
convergence speed. While larger gmax let DE trend towards basic operator, i.e. fast convergence
speed with weak search capacity, which results in local optima. When gmax is equal to maximum
iteration, it degrades to standard DE operator.

3.4 Modification of cost function

According to the definition of constrained layout problem, the cost function and constraint func-
tion as follows:

ϕ (Xi) = λ0F (Xi) +
3∑

k=1

λkfk (Xi)

Where fk (Xi) is the kth constraint, λi, i ∈ {0, 1, 2, 3} is penalty factor. Smaller cost function
value means better solution.

Empirical results [9] indicated that (λ0 = 1, λ1 = 1, λ2 = 1, λ3 = 0.01) was a good choice. This
parameter setting can maintain the satisfaction of the constraints subjected to the cost function.
But some researches figured out that algorithm can accelerate convergence in certain degree
when the object function violates its constraints properly. In this paper, we use the following cost
function:

ϕ (Xi) =



[
1 + α

(
1− it

max It

)]
F (Xi) +

3∑
k=1

λkfk (Xi),

it ≤ β ·max It

λ0F (Xi) +
3∑

k=1

λkfk (Xi) , otherwise

where α, β are known parameters, in this paper, α = 2.5, β = 0.8. It is the iteration number,
maxIt is the maximal iteration number.

4 Experimental Results

4 examples are test to evaluate the performance of our algorithm. All these examples are taken
from the literatures and the comparison between the best so far result and our proposed algorithm.
The computing time is scaled to the same measure. All parameter settings are used in the above
sections.
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Fig. 2: Layout result in Lit. [9] Fig. 3: Our result

Table 1: The radius and mass of each graph unit in experiment 1 and the comparison layout coordinates
results of these graph units. r(mm) is radius in mm, m is the mass in g, the last two columns if the
layout solution (center coordination of graph units) with our algorithm. The center two columns are
results from literature [9]

No. r(mm) m(g) x(mm) y(mm) x(mm) y(mm)

1 10.0 100.0 17.15 -13.59 0.47 -2.18

2 11.0 121.0 -19.89 6.14 -20.51 -3.57

3 12.0 144.0 -1.40 19.84 -10.30 17.00

4 11.5 132.0 18.81 7.84 13.16 15.56

5 9.5 90.25 -17.12 -14.26 -8.63 -20.24

6 8.5 72.25 -0.03 -23.02 9.37 -20.29

7 10.5 110.25 -0.38 -2.95 20.77 -5.08

Table 2: The comparison results of performance with literature [9]. r(mm) is Circumcircle radius in
mm, u(g.mm) is Unequilibrium in g.mm, i(mm) is Interference in mm, time means computing time in
second

Method r(mm) u(g.mm) i(mm) time (s)

Lit. [9] 31.885 0.000002 0 982

Our Alg. 31.841 0 0 12

Experiment 1 [1]. A circular container with radius R = 50mm, which has 7 circular objects
(graph unit), supposing static unequilibrium J has δJ = 3.4g.mm. Other data of graph units and
results are listed in Table 1, Table 2 and Figure 1 respectively.

In table 1 and table 2, we can see that circumcircle radius, unequilibrium and computing time
gained by our algorithm are all superior to literature [9]. The circumcircle radius reduces 0.019%
while computing time decreases 92.77%, and the unequilibrium reaches to zero in our algorithm.

Experiment 2 [2]. Circular container with radius R = 880mm, containing 40 graph units.
Supposing static unequilibrium J has δJ = 20g.mm. Other data of graph units and results are
listed in table 3, table 4 and figure 2.

From the results of example 2, we can see that radius of circumcircle reduces 2.27% and com-
puting time of our algorithm declines 25.83% in our algorithm comparing with literature [11],
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Fig. 4: Lit. [11] Fig. 5: Our result

Table 3: The comparison results of performance with literature [11]

Method r(mm) u(g.mm) i(mm) time (s)

Lit. [11] 768 0.0007 0 573

Our Alg. 750.541 0.004 0 425

while static enequilibrium increases 471.43%.

Example 3 [4]. A known optimized solution layout problem. It concerns placing 9 graph units
into a 75mm radius circular container. Supposing the center coordinate, radius and mass are
(xi, yi), ri, mi respectively, where ri = 30mm, i = 2, 3, 4, 5; ri = 30

(√
2− 1

)
mm, i = 1, 6, 7, 8, 9.

In this example, assume mi = ri. Detailed data are listed in table 5.

From Table 5 and Table 6, we can see that the radius of circumcircle reduces 0.48% and comput-
ing time reduces 28.35% in our algorithm. Meanwhile the static unequilibrium and interference
are reach zero in our algorithm.

Example 4 [9]. Another known optimized solution layout problem. Assuming distributing 5
graph units into a circular container with radius R = 125mm. Detailed data are listed in table 7.

From the example 4, we can see that the consistent results of circumcircle in literature[9] and
our algorithm. static unequilibrium is zero in our algorithm while it is near zero in literature [9].
The interference are zero in both algorithms. However, the computing time costs in our algorithm
reduced 77.95%.

From these experiments, no matter circumcircle radius, static unequilibrium, interference and
computing performance, we can see that the results produced by our algorithm are encouraging

Fig. 6: Lit. [7] Fig. 7: Our result
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Table 4: The radius and mass of each graph unit in experiment 3 and the comparison layout coordinates
results of these graph units. The center two columns are results from literature [7]

No. r(mm) m(g) x(mm) y(mm) x(mm) y(mm)

1 12.43 12.43 -8.40 -58.63 50.05 -29.84

2 30.00 30.00 33.56 25.69 11.11 -40.95

3 30.00 30.00 -25.34 33.75 -11.11 40.95

4 30.00 30.00 25.76 -34.15 -40.95 -11.11

5 30.00 30.00 -34.48 -25.14 40.95 11.11

6 12.43 12.43 -59.04 9.06 -29.84 -52.05

7 12.43 12.43 0.59 -1.12 29.84 52.05

8 12.43 12.43 59.26 -8.01 0.00 0.00

9 12.43 12.43 9.14 58.90 -52.05 29.84

Table 5: The comparison results of performance with literature [7]

Method r(mm) u(g.mm) i(mm) time (s)

Lit. [7] 72.7764 8.1855 4.4751 83.74

Our Alg. 72.4264 0 0 60

Table 6: The radius and mass of each graph unit in experiment 4 and the comparison layout coordinates
results of these graph units. The center two columns are results from literature [9]

No. r(mm) m(g) x(mm) y(mm) x(mm) y(mm)

1 20.71 20.71 0.00 0.00 -0.00 -0.00

2 50.00 50.00 -60.00 -37.42 -43.68 -55.61

3 50.00 50.00 60.00 37.42 55.61 -43.68

4 50.00 50.00 -37.42 60.00 43.68 55.61

5 50.00 50.00 37.42 -60.00 -55.61 43.68

Fig. 8: Lit. [9] Fig. 9: Our result
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Table 7: The comparison results of performance with literature [9]

Method r(mm) u(g.mm) i(mm) time (s)

Lit. [9] 120.7107 0.000703 0 263

Our Alg. 120.7107 0 0 5.54

and it is superior to most existed algorithms. For relatively simple layout problem, all algorithms
have similar results, such as experiment 3 and experiment 4 who have known optimized solution,
all existing algorithms can get nearly optimized solutions while our algorithm has better results.
For more complex layout problem, our algorithm is more superior to other existing algorithms.
These experiments indicate that our newly proposed algorithm is an effective approach to solve
complex engineering layout problems.

5 Conclusion

According to the characteristic of constrained layout problem with unequal circle object, we
analyzed the shortcoming of traditional differential evolution (DE) algorithm, and proposed an
adaptive chaotic mutation DE algorithm. Although DE has simple model and few control param-
eters, the choice of parameters has great influence on algorithm performance. Traditional DE is
difficult to avoid the local optima using fixed parameter setting. We proposed a chaotic mutation
approach for parameter setting of DE to improve the algorithm performance. In the evolving
procedure, the diversity of the population becomes smaller. We analyzed the gathering degree of
the population and proposed a method to improve the diversity. This can keep certain diversity
in evolution to enhance the global search capacity. When the algorithm sink into local optima,
the global best individual will be fixed and result in slower convergence of the algorithm. In this
paper, we proposed an approach, which can strengthen the local search capacity, to mutate the
global best individual. Also an improved cost function was proposed to accelerate the conver-
gence. Our approach is effective in solving constrained layout problem, which has fine solution,
fast running time and could be helpful for complex engineering layout problems.
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