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In this paper, an automated optimization method in the sequential mode of ZEMAX is proposed in the
design of an aspheric lens with uniform illuminance for an LED source. A feedback modification is in-
troduced in the design for the LED extended source. The user-defined merit function is written out by
using ZEMAX programming language macros language and, as an example, optimum parameters of an
aspheric lens are obtained via running an optimization. The optical simulation results show that the
illumination efficiency and uniformity can reach 83% and 90%, respectively, on a target surface of
40mm diameter and at 60mm away for a 1 × 1mm LED source. © 2011 Optical Society of America
OCIS codes: 080.4298, 220.2945, 230.3670.

1. Introduction

Compared with conventional light sources, LED light
sources have many advantages for general lighting,
such as longer lifetime, lower power consumption,
smaller size, and safety. However, a nonuniform cir-
cular spot on the target plane will be formed when it
is used for lighting directly. To solve this problem,
auxiliary optical elements are often employed to re-
distribute the light of an LED to generate uniform
illumination on the target plane.

At present, the free-form surface is mostly used in
the optical design for LED lighting to achieve desired
uniform illumination. There are many reports about
the methods of free-form lens design [1,2]. One is the
trial and error method [3–6]. Designers can modify
parameters interactively until a satisfactory pattern
is obtained. Nevertheless, it is very time-consuming
and needs lots of special expertise. Another method
is numerical solutions [7–10]. A set of vector equa-
tions, including the law of refraction, curvature of
surface equation, initial conditions, etc., need to be

established with this method. It is very complicated
and challenging to solve such differential equations.

In order tomake thedesignmore convenient, in this
paper the two methods mentioned above are com-
bined effectively. An automated optimization method
based on macro-optimization in the sequential mode
of ZEMAX is introduced for LED uniform illumina-
tion. In general, systems in the sequential mode
usually outperform the system in nonsequential
mode optimization, and the execution of a macro dur-
ing optimization is extremely fast. Also, ZEMAX pro-
gramming language macros are well-integrated
within ZEMAX and require little programming
experience.

First, we deduce the relationships between the lo-
cation of light rays on the target plane and the inci-
dent angle according to the conservation of energy.
Second, merit function (MF) is defined by comparing
the locations of rays on the target plane determined
via the ray-tracing method and numerical solution,
which is modified by employing feedback function
for an extended source. Finally, as an example, opti-
mization is performed in sequential mode of ZEMAX
with the optimization operands defined through use
of the macros. One can control the incident angle of
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light to any desired location and obtain the expected
uniform distributions. What’s more, this approach
makes the design process feasible for LED extended
source.

2. Aspheric Lens Design

The aspheric lens design is discussed and the equa-
tions required are deduced in this section. The meth-
od can be used for any source if only the source
intensity distribution is given out. In this paper, in
order to simplify the mathematical calculation, the
LED source is assumed to be a standard Lambertian
source.

A. Optical Structure

The structure of the proposed free-form surface lens
is assumed to be rotationally symmetric in the design
of a combined reflective-refractive configuration. The
lens model, in a two-dimensional space, is shown in
Fig. 1. The angle θc divides the lens into two parts,
with the total internal reflection (TIR) part located
outside the dash line and the refraction part inside
the dash line. The TIR part consists of three optical
surfaces including a free-form surface on the rear of
the lens of ②, a TIR side surface of ④, and a free-form
refractive surface in the out part of the front of ⑤,
where rays undergo a TIR from the side surface and
refractions at two refractive surfaces. While the light
in the refraction part (inside the θc angle) goes di-
rectly through the lens, two optical surfaces are in-
volved, a plane surface of ① and a common convex
surface of ⑥. To simplify the fabrication and reduce
cost, all of the free-form surfaces of the lens are de-
signed to be even aspheric surfaces.

B. Optimization Theory

1. Conservation of Energy

The light source is assumed to be an ideal point
source. The intensity distribution of the LED source
is approximate as follows [11,12]:

IðθÞ ¼ I0 cos θ; ð1Þ

where θ is the angle between the ray and the z axis,
and I0 is the luminous intensity in the z axis. The
total luminous flux is shown as

Φtotal ¼
Z

IðθÞdΩ ¼ πI0 sin2 θmax: ð2Þ

In our case, we need a uniform irradiance, that is, the
illuminance on the target plane is constant, then we
have EðyÞ ¼ E0. Accordingly, we have

Φ0
total ¼

Z
Rmax

0
EðyÞ · 2πydy ¼ E0 · S: ð3Þ

Here, Φ0
total is the total luminous flux on the target

plane and S is the area of the target plane.
Thus, energy conservation of a lossless optical

system can be expressed as follows:

Φ0
total ¼ Φtotal: ð4Þ

From the above analysis, we conclude that uniform
illumination means that the luminous flux of the
assigned plane is proportional to the correspond-
ing area.

2. Theory of Numerical Computing Method

We assume the total luminous flux of the LED in re-
fraction and TIR part asΦ1 andΦ2, respectively, the
critical angle between the two parts is θc, and the cor-
responding incident angle is assumed as θi. The in-
itial parameter of θc is important for the system,
and the corresponding energy distribution will vary
as θc. But the theory of numerical computing MF is
consistent.

1. Consideration of the refraction part where θi is
at 0 ∼ θc.

First, we divide the luminous flux of the LED
source in the refraction part into n equal parts. Then,
each portion of the energy can be expressed as
Eq. (5):

ϕi ¼
1
n
Φ1 ¼ 1

n
πI0 sin2 θc; i ¼ 1; 2; 3…n: ð5Þ

Otherwise,

ϕi ¼
Z

2π

0

Z θi

θi−1
I0 cos θ sin θdθdφ

¼ πI0ðsin2 θi − sin2 θi−1Þ;
θ0 ¼ 0; i ¼ 1; 2; 3…n:

ð6Þ

From Eqs. (5) and (6), the incident angle per part can
be written asFig. 1. Framework of the optical module.
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θi ¼ sin−1

��
i
n

�
1=2

⋅ sin θc
�
; i ¼ 1; 2; 3…n: ð7Þ

Second, we analyze concretely the ray’s behavior in
this part, where the light rays emitted from the LED
enter the lens directly. On one hand, the fractional
area within a circle of radius yi is simply ðy2i =R2Þ.
Here, R is the radius of the target plane, as shown
in Fig. 2.

On the other hand, the light ray coming out from
the source into a cone-shaped solid angle with a di-
vergence half-angle of θi has a fractional flux [11] of

(sin2 θi= sin2 θc); hence, we have y2i
R2 ¼ sin2 θi

sin2 θc
. That is,

yi ¼ R ·
sin θi
sin θc

; i ¼ 1; 2; 3…n; ð8Þ

where θi is determined by Eq. (7).
2. Consideration of the TIR part where θi is

at θc ∼ θmax.
Similarly, we divide the luminous flux of the LED

source in the TIR part into n equal parts. Each por-
tion of the energy is

ϕi ¼
1
n
Φ2 ¼ 1

n
πI0ðsin2 θmax − sin2 θcÞ;

i ¼ 1; 2; 3…n:
ð9Þ

Otherwise,

ϕi ¼ πI0ðsin2 θi − sin2 θi−1Þ; θ0 ¼ θc;
i ¼ 1; 2; 3…n:

ð10Þ

According to Eqs. (9) and (10), the incident angle per
portion in the TIR part can be expressed as

θi ¼ sin−1

��
i
n
· sin2 θmax þ

n − i
n

· sin2 θc
�

1=2
�
;

i ¼ 1; 2; 3…n:

ð11Þ

In the TIR part, we assume that the rays with a
divergence half-angle of θmax will experience a TIR,
refract at the refraction surfaces, and reach the cen-
ter of the target plane. In contrast, the rays with the
divergence half-angle of θc will finally reach the
boundary of the target plane. The fractional area
within a circle of radius yi is also as (y2i =R

2), as shown
in Fig. 3.

The corresponding rays emitted from the LED,
with the divergence half-angle range from θi to
θmax, have a fractional flux of [ðsin2 θmax − sin2 θiÞ=
ðsin2 θmax − sin2 θcÞ].

Accordingly, we have y2i
R2 ¼ sin2 θmax−sin2 θi

sin2 θmax−sin2 θc
.

The relation between the target radius yi and the
incident angle θi is expressed as

yi ¼ R ·
�
sin2 θmax − sin2 θi
sin2 θmax − sin2 θc

�
1=2

; i ¼ 1; 2; 3…n;

ð12Þ

where θi is determined by Eq. (11)
3. Evaluation of the efficiency and uniformity.
In fact, not only the efficiency, but also the unifor-

mity, can be evaluated through the target radius.
With Eqs. (7), (8), (11), and (12), we can deduce the
relationships between each portion of the energy and
the corresponding coordinates of the target plane:

8<
:ϕi ¼ Φ1

R2 ·
y2i
i ðθi ≤ θcÞ

ϕi ¼ Φ2

R2 ·
y2i
n−i ðθi > θcÞ

: ð13Þ

The efficiency of each part of the system can be
expressed as follows:

8>>><
>>>:

η1 ¼ Φ1image
Φ1

¼ 1
Φ1

·
P
i
ϕi ¼ 1

R2

P
i

y2i
i ðθi ≤ θcÞ

η2 ¼ Φ2image
Φ2

¼ 1
Φ2

·
P
i
ϕi ¼ 1

R2

P
i

y2i
n−i ðθi > θcÞ

; ð14Þ

Fig. 2. Simple model of the refraction part. Fig. 3. Simple model of the TIR part.
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so, the total efficiency of the system is

η ¼ η1 ·Φ1 þ η2 ·Φ2

Φ1 þΦ2
: ð15Þ

Spatial uniformity [13] is defined as the relative
standard deviation (RSD) of illuminance at the tar-
get plane. For a discrete set of n, illuminance values
Ei is given by

RSD ¼ σ
�E
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n
·
Xn
i¼1

�
Ei
�E
− 1

�
2

s
: ð16Þ

According to the equal divided energy and area of the
target plane, we have

8>>><
>>>:

RSD1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n ·

P
n
i¼1

�
i·R2

n·y2i
− 1

�
2

r
ðθi ≤ θcÞ

RSD2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n ·

P
n
i¼1

�
ðnþiÞ·R2

n·y2i
− 1

�
2

r
ðθi > θcÞ

: ð17Þ

The uniformity of the system can be expressed as

RSD ¼ RSD1 þ RSD2

2
: ð18Þ

3. Ray Tracing and Defining the MF

In ZEMAX, there are two forms of ray tracing, which
are sequential and nonsequential ray tracing. Nonse-
quential ray tracing implies that there is no prede-
fined sequence of surfaces which rays that are
being traced must hit. Rays may hit any part of
any nonsequential object, and may hit the same ob-
ject multiple times, or not at all. This can be con-
trasted with sequential ray tracing, where all of
the rays traced must propagate through the same
set of surfaces in the same order. In sequential mode
in ZEMAX, all ray propagation occurs through sur-
faces which are located using a local coordinate sys-
tem. As for sequential ray-tracing routines, we must
specify the normalized field coordinates hx, hy and
the normalized pupil coordinates px, py to trace a par-
ticular ray through the lens system in ZEMAX. Con-
sidering the case of a point source, as shown in Fig. 4,

the coordinates of the ith ray can be expressed as
Eq. (19).

�
hx ¼ 0; hy ¼ 0
px ¼ 0; pyðiÞ ¼ θi

θmax

; ð19Þ

where θi is expressed as Eq. (20):

8<
:

θi ¼ sin−1
h�

i
n

�
1=2

· sinθc
i
; ðθi ≤ θcÞ

θi ¼ sin−1
h�

i
n · sin

2 θmax þ n−i
n · sin2 θc

�
1=2

i
; ðθi > θcÞ

;

i¼ 1;2;3…n:

ð20Þ

According to Eqs. (8), (12), and (19), we have

MF ¼
Xn
i¼1

ðyi − y0iÞ2; ð21Þ

where y0i is the actual position of the ray on the target
plane through ray tracing of the ith ray, and yi is de-
termined by Eq. (8) and (12) for different parts, re-
spectively. With the MF defined by Eq. (21), we will
set certain variables of lens parameters, adopt the
damped least squares algorithm, which is a powerful
search method, and run optimization in ZEMAX. A
small MF can correspond to higher light efficiency
and higher irradiance uniformity, and the optimiza-
tion method does help us to drive the lens profile to
fit the optimal design target more closely.

4. Feedback for Extended Source

Uniform illumination can be obtained with a theore-
tical point source. However, in the illuminance
distribution appears obvious peaks and dips with ex-
tended source. One way to solve this problem is to
redistribute the projected solid angle of the illumi-
nating beam at those points to ensure the uniformity
on the basis of the illuminance distribution. To be
more distinct for extended source, the subscript i
is replaced by j, which is just a different indication
of the expression method. That is the energy men-
tioned previously in a given ray expressed as ϕj. The
energy acquired with extended source is expressed as
ϕ0
j. According to Eqs. (5) and (6), we obtain

ϕj ¼ πI0 ·
sin2 θj

j
; j ¼ 1; 2; 3…n: ðθj ≤ θcÞ;

ð22Þ

where n is the same as the previous mentioned.
Similarly, from Eqs. (9) and (10), we have

ϕj ¼ πI0 ·
sin2 θj − sin2 θc

j
;

j ¼ 1; 2; 3…n: ðθj > θcÞ: ð23ÞFig. 4. Sketch of the incident angle, (a) θi > θc and (b) θi ≤ θc.
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By employing the feedback modification method
[14], the given illuminance distribution is modified
through the feedback function of ρj ¼ ϕ0

j=ϕj, where
ρj defines the fraction of each portion of energy from
which the data is adjusted. To obtain the uniform il-
lumination, ϕ0

j should satisfy

ϕ0
j ¼

1
ρj
· ϕj: ð24Þ

After substituting Eqs (22) and (23) into Eq. (24),
respectively, Eq. (20) can be changed to

8<
:

θ0j ¼ sin−1
h�

1
ρj

�
1=2

· sin θj
i
; ðθj ≤ θcÞ

θ0j ¼ sin−1
h�

1
ρj · sin

2 θj þ ρj−1
ρj · sin2 θc

�
1=2

i
; ðθj > θcÞ

;

j ¼ 1; 2; 3…n:

ð25Þ

For now, the key is to figure out which parts of the
solid angle that illuminate the point. The energy is
reapportioned within an adjacent solid angle accord-
ing to the illuminance distribution. The solid angle
adjusted affects only the normalized pupil coordi-
nates of ray tracing in ZEMAX in uniform illumi-
nation.

As for extended source, the normalized pupil
coordinate of py is transformed into

pyðjÞ ¼
θ0j

θmax
; j ¼ 1; 2; 3…n; ð26Þ

where θ0j is determined by Eq. (25).
This optimization process is detailed in Fig. 5.

3. Optical Simulation Results

As an example, an aspheric lens is optimized for uni-
form illuminance of an LED in just a few minutes of
optimization. A Lambertian source with the maxi-
mum divergence half-angle of 90° is used, and the cri-
tical angle is 45°. The illuminated target surface is a
circle plane with a radius of 20mm at the distance of
60mm, and the material of the lens is PMMA. The

Fig. 5. Flow chart to clarify the free-form surface lens design with extended source.

Fig. 6. Layout of the model used for free-form lens design.
Fig. 7. Views of the optimized free-form lens design. (a) Back
view and (b) front view.
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lens parameters, such as the radius of curvature,
conic coefficients, and aspheric coefficients, are de-
fined as variables, and cycles of optimization are set
as automatic. A value of zero is ideal for the MF so
that the optimization algorithmwill attempt to make
the value of the function as small as possible. Macros,
which are user defined MFs, are written in ZEMAX’s
Merit Function Editor.

Optimization takes 47 min on a dual-processor
computer and requires approximately 1500 cycles
of the MF, whereas nonsequential optimization re-
quires several hours or even several days. Optimiza-
tion in the sequential mode for illumination optics is
an approximation method, which is more simple and

fast in the design of nonimaging optics compared
with numerical solutions. The lens achieves better
performance within the permitted scope of precision.
The layout of the designed lens in ZEMAX’s multiple
configurations is shown in Fig. 6. Stray light and a
black hole may occur between the TIR and refractive
parts in the multiconfiguration of the system. How-
ever, it has very little effect on the illumination of the
lens through analysis in the nonsequential mode of
ZEMAX where the lens obtained in the sequential
mode is imported.

The TracePro software package is used to simulate
and verify the optical performance of this aspheric
lens. The profile of the optimized aspheric lens is

Fig. 8. (Color online) Illuminance pattern generated with the initial lens.

Fig. 9. (Color online) Illuminance pattern generated with the optimized lens.
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depicted in Fig. 7. In the simulation, an extended
Lambertian emitting surface with an emitting area
of 1mm × 1mm is used as extended source, and 1
million light rays are traced to verify the feasibility
of this method. Both Fresnel losses and absorption
losses are considered. Figures 8 and 9 show the simu-
lation results of the illumination systems with the
original and the optimized lens profile, respectively.

It can be seen in Fig. 8 that the illuminance distri-
bution is bad, with the light transfer efficiency about
81% and the uniformity of only 60%. Here, unifor-
mity is defined as the ratio of the minimum to the
maximum illuminance on the target plane. It is
shown in Fig. 9 that the light transfer efficiency is
83%, and the uniformity across the center is near
90% which is quite good. The illumination on the out-
er of the circle is a little lower compared with the
center, according to Fig. 9. This is caused by the ab-
sorptions of the black hole between the TIR and re-
fractive parts of the aspheric lens. By comparing
Figs. 8 and 9, it can be found that the illumination
uniformity increases by 30% after optimization.
The simulation results demonstrate the feasibility
of this method for extended the LED source.

4. Conclusions

In this study, in order to achieve uniform illumina-
tion of LEDs, the method of automated optimization
for designing an aspheric lens is proposed. The the-
ory of edit of user-defined MF has been discussed in
detail. A feedback modification is introduced in the
design for an LED extended source. Optimum lens
parameters, which are variables in the optimization,
are obtained with this method. The simulation re-
sults indicate that it is an effective method to gener-
ate uniform illumination for an LED extended
source. A uniformity of 90% and an optical efficiency
of 83% with an LED chip of size 1 × mm × 1mm is
achieved. This design method is also applicable to
other sources by taking the actual distribution of
the source intensity into account. Although the illu-
mination on the target plane still needs to be im-
proved to meet the illumination requirement in a
real projection system, this design approach really

reduces the difficulty of lens design and attains
better performances.

The work described in this paper is supported by
the National Basic Research Program of China with
grant 2010CB227101 and by the Innovation Pro-
gram of the Chinese Academy of Sciences.
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