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An evaluating method is proposed for aligning fiber-optic image bundles finely to detector arrays with
coupled contrast transfer function (CTF). The mathematical expression of coupled CTF is deduced based
on the definition of the CTF. The paper discusses the characteristics and variation law of coupled CTF at
the Nyquist frequency domain. The results show that the value of coupled CTF is closely related with
aligning accuracy. According to the value of coupled CTF, it can accurately determine the situation of
aligning between fiber-optic image bundles and detector pixels. Accordingly, this paper proposes a
new method to evaluate the aligning accuracy between fiber-optic image bundles and detector pixels
using the coupled CTF. © 2011 Optical Society of America
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1. Introduction

The use of fiber-optic image bundles in optical sys-
tems can obviously improve their abilities [1,2].
Based on the sampling principle [3,4], the aligning
accuracy of pixels between fiber-optic image bundles
and detector arrays impacts the imaging quality of
the photoelectric imaging system straightly. The way
to accurately evaluate the aligning accuracy is basi-
cally to precondition the fiber-optic image bundles
applied in photoelectric imaging system.

A black and white striped pattern has the advan-
tages of easy preparation and use [5,6]. Currently,
many laboratories use the black and white striped
pattern to do quality evaluation and assemblage of
photoelectric imaging systems [7-9]. Consequently,
the paper studied the feasibility of using a black
and white striped pattern during the process of align-
ing a fiber array and detector pixels. The paper es-
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tablished a mathematical model of coupled
contrast transfer function (CTF) when fiber image
bundles aligned with detector pixels, which was
based on the definition of the contrast. Based on
the mathematic-physical model, the paper studies
the relationship between aligning accuracy of opti-
cal-fiber array with the detector pixels and the
coupled CTF. We concluded the coupled CTF can
evaluate the aligning accuracy between fiber-optic
image bundles and detector pixels.

2. Principle and Calculation

Each fiber in fiber-optic image bundles should be one
by one aligned to corresponding detector pixels, in a
photoelectric imaging system [10,11]. The principle
is shown in Fig. 1(a). Actually, the pixels between
the fibers and detector array are not fully aligned
when there is an absence of an appropriate measure-
ment to determine the real circumstances. This con-
dition is shown in Fig. 1(b).

In Fig. 1, 2r and 2R refer to the inner and outer
diameter of the fiber and 2R x 2R refers to the
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Fig. 1. (Color online) Coupled situation between fiber-optic image
bundles and the detector pixels. (a) The R is outer radius of fiber in
fiber-optic image bundles. (b) The dimension of pixel is 2R x 2R,
and the alignment error of pixels between fiber-optic image bun-
dles is expressed as a.

size of the detector pixel, where a is the coupling
deviation between the pixel and the fiber. The black
and white striped pattern (hereinafter referred to as
the square wave signal) at f spatial frequency is im-
aged in the surface of the fiber-optic image bundles.
Figure 2 shows the signal transformation processes
in this coupled system.

The intensity of the square wave signal sampled by
the j-fiber is expressed as follows:

(22 = 8))
=1, (1)
where
2fZJR+r (r? - (x - 2JR)? )l/zdx
2/R-r+A A { S
= r2 arccos )—A\/r - ’ a

The A in Eq. (2) express initial positions between
the input square wave signal and the fiber-optic im-
age bundles, and the SJ’- expresses the shadow area in
Fig. 2(a), correspondingly. Moreover, the A express
alignment error of pixels between fiber-optic image
bundles and detector, which result in a secondary
modulate with an area of S’ in Fig. 2(b).

When the transfer loss of single optical-fiber and
optical systems is ignored, the signal intensity
sampled by the j-pixel of detector can be expressed as

(ar2 - 8) S,
ar?

L(f,a) = L) + Jz LA (F). (3)
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Fig. 2. (Color online) Sketch of square wave signal transfor-
mation. (a) The square wave signal sampled by input side of
the fiber-optic image bundles. (b) Signal export from output side
of the bundles. (¢) Detector pixels sampled the output signal from
fiber-optic image bundles.

The square wave signal was output from the detec-
tor through the process that sampled by fiber-optic
image bundles, transferred by imaging system, and
secondarily sampled by detector pixels. Based on this
process, the contrast of the output signal can be ex-
pressed as follows:

Liax (@) = Iy (@)
Liax(f, 0) + I (F @)

Cf,a) = (4)

In Eq. (4) I and I’ are an average value of max-
imum and minimum of the sampling output from de-

tector pixels, respectively:

{ ; %ilax((f ))

min

N 2ont Lmaxn (f @),
MZM llgunm(f (X). (5)

According to the definition of CTF, the complex
photoelectric imaging system consisted of fiber-optic
image bundles, optical imaging system, and detector,
which coupled CTF expressed as

CTF(f,a) =

(6)
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(Color online) Simulation of the relationship of coupled contrast transfer function with coupling deviation based on Eq. (7):
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If the contrast of the input square wave signal is
C(f) =1 and the CTF of the imaging system is
Co(f) = 1, then Eq. (7) expresses the coupled CTF
in the condition that the aligning error between
the pixels and the fibers is in existence. The coupled
CTF is derived from Eq. (6) as

— Jl\f Zztyzl Iélnaxn(fv a) - % Z%:l Iﬁlinm (f7 a)
N 2ot Dinasm (Fy0) + 57 S I (F )
(7)

CTF(f,a)

3. Simulation and Discussion

From Eq. (7), if the condition that frequency of input
square wave signal is equal to f (Nyquist fre-
quency), 0.999fy, 0.997fx, 0.995fy, 0.993fy, and
coupling deviation « is equal to 0, 25%R, 50%R,
75%R, we calculate and simulate the coupled CTF
changed in the situation with a coupling deviation.
Moreover, the radius R is equal to 9um, and the ra-
dius of the core is equal to 8m in the simulation,
which are the actual dimensions of the fiber in the
bundles related to the practice applications. The si-
mulation result is shown in Fig. 3. In this figure, the
x-axis is the number of fibers in the bundles and the
y-axis is the value of the coupled CTF.

From the simulation curve in Fig. 3, we obtain
some conclusions as follows. When the aligning error
between the fiber-optic image bundles and the detec-
tor pixel is in existence and the coupling deviation (a)
and frequency of the input square wave signal is
fixed, the value of the coupled CTF is a convergent
vibration to a fixed value with the increasing of
number of fibers. Moreover, the convergent value
of the coupled CTF fall with the increasing of aligned
deviation.

4. Conclusion

The article starts from the physical process of a
square wave signal transfer. Based on the definition
of the contrast, we establish the way to evaluate
aligning accuracy of pixels between fiber-optic image
bundles and a detector array by a physical model of a
coupled CTF. In particular, the mathematical expres-
sion is deduced.

Based on the mathematical expression, we do the
simulation for studying the character of a physical
model. From the simulation results, we can get the
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conclusions as follows. At Nyquist frequency domain,
when an aligning error between fiber-optic image
bundles exists, coupled CTF changes with coupling
deviation periodically. If the fiber-optic image bun-
dles are finely aligned with detector pixels, coupled
CTF has its maximum value, otherwise in its mini-
mum value. Moreover, the closer the frequency of the
input square wave signal to the Nyquist frequency,
the easier it is to achieve high precise aligning.
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