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Savitzky–Golay (SG) smoothing and moving window partial least square (MWPLS) methods were applied to
the model optimization and the waveband selection for near-infrared (NIR) spectroscopy analysis of soil
organic matter. The optimal single wavelength prediction bias (OSWPB) was used to evaluate the similarity of
calibration set and prediction set, and a new division method for calibration set and prediction set was
proposed. SG smoothing modes were expanded to 540 kinds. The specific computer algorithm platforms for
optimization of SG smoothing mode combined with PLS factor and for MWPLS method with changeable
parameters were built up. The optimal waveband for soil organic matter was 1926–2032 nm, the optimal
smoothing mode was the 2nd order derivative, 6th degree polynomial, 45 smoothing points, the PLS factor,
RMSEP and RPwere 8, 0.260 (%) and 0.877 respectively. The prediction effect was obviously better than that in
the whole spectral collecting region. To get stable results, all the optimization processes were based on the
average prediction effect on 50 different divisions of calibration set and prediction set.
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1. Introduction

Soil is an important part of agro-ecological environment. Organic
matter content in agricultural soil is an important indicator tomeasure soil
fertility. Routinemeasurementmethods of soil organicmatter are usually
performed in the laboratory, requiring the chemical reaction processes,
not easy to operate. Chemical free, rapid measurement method for soil
organic matter is of great significance in precision agriculture. With the
rapid development of spectroscopy technology and chemometrics, near-
infrared (NIR) spectroscopy was widely applied in agriculture, food,
environmental, biomedical and many other fields for its simplicity,
quickness, non-destructiveness and convenient on-line analysis [1,2]. In
recent years, there have been some studies using NIR or mid-infrared
spectroscopy to analyze soil organic matter [3–6]. However, soil is a
complex system with multiple components; it varies with the farmland
environment. The NIR spectra of soil contain more physical and chemical
noises. To apply NIR spectroscopy to soil analysis of actual farmland
environment, the optimization and stability of NIR analysis model are
direction for further research. In this paper, by using Savitzky–Golay (SG)
smoothing [7–10] and moving window partial least square (MWPLS)
method [11–13], the selection and stability of spectral preprocessing
modeandanalyticalwaveband forNIRanalysis of soil organicmatterwere
developed.

Partial least square (PLS) method combining the advantages of
multiple linear regression (MLR) and principal component analysis
(PCA) could effectively overcome spectral colinearity and was widely
used for NIR spectroscopy analysis [1–6,9–13]. The PLS factor as an
important parameter corresponds to the number of spectral integrated
variables showing sample information. If the PLS factor was set too
small, the sample information in the spectra could not be fully used and
themodel accuracywould be decreased. If the PLS factorwas set too big,
noises would be led into the model and the prediction ability would be
decreased too. Therefore, it is very necessary to select reasonable PLS
factor. In addition, the goal of spectral preprocessing is also to make full
use of spectral information and to eliminate noise. Thus, combinedwith
the spectral preprocessing, the optimization of PLS factor will be more
effective.

Savitzky–Golay (SG) smoothing is an effective spectral preprocessing
method with a wide scope of application and a variety of different
smoothing modes [7–10]. The number of smoothing points is an
important parameter. If the number was set too small, it would cause
new errors to the model. If the number was set too big, the sample
information in the spectra would be polished and lost. Both of the above
situations would decrease the model accuracy. Therefore, it is very
necessary to select reasonable number of smoothing points. However
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the selection can only be based on the prediction effect of PLS model.
Thus the optimization selection of the number of smoothing points
combined with PLS factor will be more effective.

There was increasing evidence indicating, either theoretically or
experimentally, if the signal to noise ratio in the spectral waveband
used for PLSmodel was not high enough, the prediction effect was still
difficult to be improved. Waveband selection is very necessary for
improving model prediction effect, reducing model complexity and
designing special NIR spectroscopy instruments. Waveband selection
can provide the analytical waveband with higher signal to noise ratio
for PLS models, and the prediction effect in the selectedwaveband can
be better than that in the whole spectral collecting region. Soil organic
matter is a variety of carbon compounds except carbonate and carbon
dioxide. Functional group of carbon compounds mainly includes
methyl C―H bond, alkenes C―H bond, etc. The information
wavebands in the NIR region of these functional groups have been
reported in some literature. For example, the combination band
region of methyl C―H bond was 2250–2360 nm; the first overtone
region of methyl C―H bond was approximate to 1695 nm and
1705 nm; the combination band region of alkenes C―H bond was
2120–2140 nm; the first overtone region of alkenes C―H bond was
1620–1640 nm [2]. However, soil is a complex system with multiple
components; the NIR spectra of soil indicate the absorbance
information of all components. Due to the interference of other
components, the absorption band of the above functional group
cannot be simply taken as the waveband of NIR analysis model for soil
organic matter. Therefore, the waveband needs to be selected
according to themodel prediction effect by appropriate chemometrics
method. MWPLS was a famous method of waveband selection for NIR
analysis [11–13].

For external validation of NIR analysis models, it is necessary to
divide all samples into calibration sample set and prediction sample
set. Many experimental results showed that different divisions of
calibration set and prediction set would cause fluctuations of
prediction effects, and that the corresponding model parameters
(such as waveband selection, SG smoothing mode, PLS factor, etc.)
were also changed, especially the optimal wavebands. Namely, the
optimal model for each division was unstable for all divisions. That
waswhat theMWPLSmethod specially needed to improve. In order to
establish stable models, it is necessary to make many different
divisions for all samples. Calibration models were established for each
division. For each combination of model parameters, the data of model
prediction effects for different divisions were averaged. Based on the
above average data, the optimal model including the corresponding
waveband was selected, and the selected optimal model was stable in
this sense.

In this paper,firstly, a newdivisionmethod for calibration sample set
and prediction sample set was proposed based on the optimal single
wavelength prediction bias (OSWPB), all soil samples were divided into
calibration set and prediction set for many times. Secondly, MWPLS
models for NIR analysis of soil organic matter were established for each
division. Based on the averages, the stable optimal wavebands were
selected. The spectra in the selected wavebands were preprocessed by
SG smoothing, then were used to re-establish PLS models (denoted by
SG-PLSmodels). According to the prediction effect of SG-PLSmodel, the
global optimal waveband was selected finally. As the comparison, the
PLS models without SG smoothing and SG-PLS models based on the
whole spectral collecting region were also established respectively.

2. Materials and methods

2.1. Experimental materials, instrument and measurement method

Ninety-one farmland soil samples were collected. The organic matter
contents of soil were measured by the routine chemical method of
potassiumdichromate (K2Cr2O7) oxidation. Under constant temperature
heating condition, a certain amount of standard potassium dichromate
sulfuric acid solution was used to oxidize the organic carbon in soil; and
then the remaining potassium dichromate was titrated by the standard
solution of ferrous sulfate. According to the volume change of potassium
dichromate before and after oxidation of the organic carbon, the organic
carbon contentwas calculated; as the carbon content of organicmatter is
about 58%, the organic matter content was calculated by multiplying
1.724. By this chemical method, the organic matter contents of all
samplesweremeasured. Themeasured data, referred as chemical values
for the spectroscopy analysis, ranged from 0.676 to 2.830 (%). The mean
value and the standard deviation were 1.622 and 0.520 (%) respectively.
FOSS XDS Rapid Content™ grating spectrometer (Denmark Foss NIR
Systems Inc.) with the Si detector (400–1100 nm), the PbS detector
(1100–2500 nm)anddiffuse reflection accessorywereused to collect the
spectra. Each sample was measured 3 times in diffuse reflection mode,
and the average spectrum of each sample was calculated. The total 91
average spectra were used for the modeling. The whole spectral
collecting region was 400–2500 nm, including the NIR region and large
part of the visible region, and the spectral wavelength interval was 2 nm.
The spectra were measured at 25±1 °C and 46% RH.

2.2. Division of calibration set and prediction set

At a rough ratio of 2:1, all 91 soil samples were divided into
calibration set and prediction set. The numbers of samples in calibration
set and in the prediction set were 64 and 27 respectively. To get stable
prediction results, the calibration set and the prediction set were
divided for 50 times. Calibration models were established for each
division. For each combination of model parameters, model prediction
effects (e.g. RMSEP) in 50 different divisions were calculated and then
averaged. Based on the averages, the stable optimalmodelwas selected.

Division of calibration set and prediction set was very important
for model reliability and stability, especially for the complex analytical
objects like soil. As we know, there are many divisionmethods, such as
random division, division by sample chemical value, division by sample
absorbance, etc. The calibration model is considered as reliable and
stable when calibration set and prediction set have a certain similarity.
Conversely, the calibration model may be unreliable or unstable, for
example, it was obviously illogical if the samples with lower chemical
values were selected in calibration set, and the samples with higher
chemical values were selected in prediction set. Using sample chemical
values (or absorbance) to define similarity is the basic approach;
however, it was more appropriate to define similarity by combining
sample chemical values and absorbance, because calibration models
were mathematical models combining sample chemical values and
absorbance.

According to Beer's law, in the absorption band of organic matter,
the absorbance and organic matter content of the samples are linearly
related. For the sake of simplicity, we considered single wavelength
linear regression model of the absorbance and organic matter content.
And based on it, sample chemical value and absorbancewere combined
to define the similarity. The optimal single wavelength model was
selected according to the prediction effects, and the corresponding
wavelength had the highest signal to noise ratio for organic matter. The
prediction bias of each sample based on the optimal single wavelength
model was denoted as optimal single wavelength prediction bias
(OSWPB). Here, OSWPB was an indicator synthesizing the absorbance
and organic matter content of the sample, and it was used to evaluate
the similarity of the calibration set and theprediction set. On this basis, a
method for the division of calibration set and prediction set was
proposed by the authors. This method considered both the sample
chemical values and sample absorbance at thewavelengthwith highest
signal to noise ratio. Specific process was as follows below.

We considered the single wavelength linear models,

A νð Þ = k νð ÞC + ε ð1Þ
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where, A(v) was the absorbance of the sample at thewavelength v; k(v)
was the unit concentration absorption coefficient of organic matter; C
was the organic matter content of the sample; εwas noise interference.
At each wavelength vi (i=1, 2… K, where K was the number of the
wavelengths in thewhole spectral collecting region),we calculated k(vi)
using the absorbance and reference chemical values of all samples by
regression analysis. Then the prediction value C′j(vi) of sample j (j=1,
2…M, whereMwas the number of samples)was calculated by k(vi) and
Aj(vi). Further, the root mean square error (RMSE) between prediction
values and reference chemical values at vi was calculated as follows,

RMSEðνiÞ =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
M

j=1
ðCj−C′j νið ÞÞ2

M−1

vuuut
; i = 1;2…K: ð2Þ

According to the minimum value of RMSE, the optimal single
wavelength model and the corresponding wavelength vOptimal were
selected; the OSWPB of each sample was calculated as follows,

OSWPBj = Cj−C′jðνOptimalÞ
��� ���; j = 1;2…M: ð3Þ

If the mean value and the standard deviation of OSWPB in
calibration set were close to those in prediction set, the calibration
set and the prediction set were defined similar to each other. To reach
this goal, by computer programs, all samples were randomly divided
into calibration set and prediction set for sufficient times (usually 106

times is sufficient), and the following four values of each divisionwere
calculated: the mean values and the standard deviations of OSWPB in
calibration set and prediction set, denoted as OSWPBC,Ave, OSWPBC,Std,
OSWPBP,Ave, OSWPBP,Std respectively, and then we checked the
following inequality,

α =max
OSWPBC;Ave−OSWPBP;Ave

�� ��
OSWPBP;Ave

;
OSWPBC;Std−OSWPBP;Std

�� ��
OSWPBP;Std

( )
bα0;

ð4Þ

where α was the parameter to evaluate similarity degree, the similarity
was better when αwas smaller. α0 was the limitation for α, the value of
α0 could be set according to actual situation, in this paper we set
α0=0.01. The divisions satisfying the above two inequalities were
retained for modeling, while the other divisions were discarded. And a
total of 50 different divisions were selected. A specific computer
algorithms platform for the above dividing method was built up by the
authors.

2.3. SG smoothing

SG smoothing parameters include order of derivatives d (the
original spectral smoothing was named zero order derivative
smoothing), degree of polynomial p and number of smoothing points
2m+1. 2 m+1 consecutive spectral data as a window, the spectral
data in the window were fitted by using polynomial function whose
independent variable was the serial number i of the spectral data,
(i=0, ±1, ±2…±m), and the polynomial coefficients were
determined. Then the smoothing value and each order derivative
value at the center point (i=0) of the window were calculated by
using the determined polynomial coefficients. By moving the window
in the whole spectral collecting region, the SG smoothed spectra and
SG derivative spectra were obtained.

According to the abovemethod, the smoothing value and each order
derivative value at the center point of thewindow can be expressed as a
linear combination of the measured spectral data in the window. The
coefficients of the linear combination (i.e. smoothing coefficients) were
uniquely determinedbynumber of smoothingpoints (i.e. the number of
points in thewindow), degree of polynomial, and order of derivatives. In
Savitzky and Golay's paper [7], the order of derivatives was set as d=0,
1, 2, 3, 4, 5, degree of polynomial was set as p=2, 3, 4, 5, and number of
smoothing points was set odd as 5, 7… 25. Different combinations of
parameters correspond to different smoothing modes, and further
correspond to different smoothing coefficient sets. The calculation
processes of smoothing coefficient sets corresponding to different
smoothing modes were different. There were a total of 117 smoothing
modes (i.e. 117 sets of smoothing coefficients). The appropriate
smoothing mode can be selected according to different study objects.

However, for some actual systems, if the interval between spectral
points was very small and number of smoothing points was small,
then the window was narrow and the information in the window for
smoothing was not sufficient. In this case, it was difficult to get
satisfying smoothing effect. Hence, it was very necessary to expand
the number of smoothing points. In this paper, the number of
smoothing points was expanded to 5, 7… 81(odd), i.e. m=2, 3… 40.
The degree of polynomial pwas expanded to 2, 3, 4, 5, and 6. A total of
540 smoothing modes were obtained including the original 117
modes, which were a SG smoothing preprocessing group with a wider
application scope. The combination of smoothing coefficients for all
540 SG smoothing modes can be calculated following the above
method. The detailed calculating process is not exactly the same, and
the amount of calculation is very large. The specific computer
algorithms platform was built up by using MATLAB, the combination
of smoothing coefficients for every SG smoothing mode was
calculated, and the corresponding database was constructed for the
optimization of SG smoothing mode. Especially, for the smoothing
modes within 25 points, we have verified the results calculated by our
platform were the same as those in Savitzky and Golay's paper [7].

Taking the following SG smoothingmodewith 2nd order derivative,
6th degree polynomial, and 45 smoothing points as an example, the
smoothing coefficients were obtained as follows: 2.0284, −0.2814,
−1.4194, −1.7263, −1.4805, −0.9041, −0.1705, 0.5902, 1.2849,
1.8525, 2.2580, 2.4884, 2.5480, 2.4544, 2.2347, 1.9222, 1.5533, 1.1650,
0.7924, 0.4670, 0.2148, 0.0555, 0.0010, 0.0555, 0.2148, 0.4670, 0.7924,
1.1650, 1.5533, 1.9222, 2.2347, 2.4544, 2.5480, 2.4884, 2.2580, 1.8525,
1.2849, 0.5902, −0.1705, −0.9041, −1.4805, −1.7263, −1.4194,
−0.2814, and 2.0284 (×10−3).
2.4. MWPLS method

For MWPLS method, consecutive spectral data on N adjacent
wavelengths were designated as a window. PLS models of this window
were established, and the optimal PLS factor was selected according to
model prediction effect. By moving window and changing size of the
window, PLS models of all windows in the whole spectral collecting
region were established, and the optimal analytical wavebands were
selected. The parameters of MWPLSmethod included the serial number
of beginning wavelength (B), number of adopted wavelengths (N, i.e.
number of spectral points inwindow), and PLS factor (F). For different B
and N, the windows were different; the optimal F was always different
for different windows.

If B was fixed, N could be changed from 1 to K-B+1; by prediction
effect, the optimal model of the fixed B could be selected and the
corresponding N was also found. If N was fixed, B could be changed
from 1 to K-N+1; by prediction effect, the optimal model of the fixed
N could be selected and the corresponding beginning wavelength was
also found. In this way, respective optimal models corresponding to
wavebands with different positions and sizes were found. On this basis,
we could choose appropriate models according to actual situations.
Furthermore, the global optimal model could be also selected.

Using MATLAB 7.6, a specific computer algorithms platform for the
above MWPLS method with changeable parameters was built up by
authors. On this platform, allmodels of thewindows could be established
and the global optimal model could be selected. Moreover, parameter



Fig. 1. NIR diffuse reflection spectra of 91 soil samples.

Fig. 2. RMSE of the single wavelength regression model at each wavelength.
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setting range can be changed to obtain some local optimal models for
actual need.

2.5. Model evaluation indicators

The model evaluation indicators mainly include root mean
squared error of predication (RMSEP) and correlation coefficient of
predication (RP)

RMSEP =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
Mp

j=1
ðC′jp−CjpÞ2

Mp−1

vuuuut ð5Þ

RP =
∑
Mp

j=1
ðCjp−CmpÞðC′jp−C′mpÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑
Mp

j=1
ðCjp−CmpÞ2 ∑

Mp

j=1
ðC′jp−C′mpÞ2

vuut
ð6Þ

where C′jp and Cjp were predictive value and chemical value of the
sample j in the prediction set, C′mp and Cmp were the mean predicted
value and mean chemical value of all samples in the prediction set,
and Mp was the sample number in the prediction set.

According toSection2.2, all samplesweredivided into calibration set
and prediction set for 50 times, and calibrationmodelswere established
for each division. For each combination ofmodel parameters, such as for
the same parameter (B, N, and F) of MWPLS method, the RMSEP, RP of
themodelswere calculated for all 50 divisions, and then themean value
and the standard deviation of themwere further calculated anddenoted
by RMSEPAve, RMSEPStd, RP,Ave, and RP,Std respectively. In this paper,
RMSEPAvewas chosen as the evaluation indicator for the optimization of
model parameters (B, N, and F). Namely, according to the minimum
RMSEPAve, the optimal model parameter (B, N, and F) was selected, and
the correspondingRP,Avewas found. To further discuss the stability of the
models, RMSEP+ and RMSEP− were calculated as follows,

RMSEPþ = RMSEPAve + RMSEPStd ð7Þ

RMSEP− = RMSEPAve−RMSEPStd: ð8Þ

According to the statistics of RMSEPAve and RMSEPStd, for each
combination of model parameters, RMSEPs of all 50 different divisions
were approximately between RMSEP+ and RMSEP−, which meant that
thepredictioneffect of all divisionswas all generally better thanRMSEP+.
In this sense, RMSEP+was considered as the stable, accessible prediction
effect corresponding to each combination of model parameters.
Therefore, RMSEP+ would be taken as the indicator to evaluate the
model stability in this paper.

3. Results and discussion

The NIR diffuse reflection spectra of 91 farmland soil samples were
shown in Fig. 1. Using the absorbance and the reference chemical
values of samples, all single wavelength models in the whole spectral
collecting region (400–2500 nm) were established. Fig. 2 showed the
RMSE of the single wavelength regression model at each wavelength,
where the optimal wavelength was 1072 nm, its RMSE was 0.418 (%).
Based on the singlewavelengthmodel at 1072 nm, the OSWPB of each
sample was calculated. The OSWPBwas used as the evaluation criteria
for the similarity of calibration set and prediction set.

A computer experiment was carried out to observe the relationship
between the similarity of calibration set and prediction set and the
prediction effect of calibration model. At a rough ratio of 2:1, all 91 soil
samples were divided into calibration set (64 samples) and prediction
set (27 samples). Abundant divisions (106 divisions) were randomly
generated. With αb0.01 as the criteria, 50 divisions were selected and
compiledasgroup1, thenwithαN0.01, another 8 groups (i.e. group2–9,
each group contained 50divisions)were compiled, and a values of these
8 groups were successively increasing, which meant the similarity was
successively decreasing. For these 9 groups (450 divisions), PLS models
were respectively established on the whole spectral collecting region,
and themean values, standard deviations of RMSEP and RPwere shown
in Table 1, it was seen that the prediction effect became better when the
similarity increased. This meant division with high similarity can
improve the model prediction effects, thus the 50 divisions of group 1
with high similarity were used for modeling.

Alternatively, to evaluate the division similarity, the prediction
bias of PLS model can also be used, but OSWPB was a much more
concise and sufficient evaluation criteria; because it was the similarity
evaluation here, but not the final model prediction.
3.1. SG-PLS models based on the whole spectral collecting region

Firstly, as a comparison, PLS model without SG smoothing was
established for all 50 divisions based on the whole spectral collecting
region (400–2500 nm). PLS factor (F) was set from 1 to 30. According
to the minimum RMSEP, the optimal PLS factor and prediction effects
for each division were selected. The F of the optimal PLS model for
each division was smaller than 30, which meant the range of F was set
appropriately. Besides, each combination (F, RMSEP, and RP) of the
optimal PLS models was all different; each of these models was not
the stable optimal model for all the divisions. To get a stable optimal
model for all the divisions, for the same F, RMSEPAve and RP,Ave of all
the 50 divisions were calculated by the method mentioned in
Section 2.5. Based on the minimum RMSEPAve, the optimal PLS

image of Fig.�2


Table 1
The prediction effect of PLS models based on the whole spectral collecting region
corresponding to 9 groups (450 divisions) with different similarity degrees.

Group no. Similarity parameter α F RMSEPAve (%) RMSEPStd (%) RP,Ave

1 0.008 8 0.338 0.044 0.783
2 0.032 6 0.348 0.052 0.781
3 0.077 6 0.373 0.054 0.777
4 0.103 8 0.386 0.050 0.776
5 0.114 9 0.387 0.052 0.768
6 0.122 11 0.400 0.062 0.758
7 0.165 12 0.411 0.066 0.752
8 0.183 11 0.426 0.069 0.732
9 0.211 11 0.451 0.051 0.726

Table 2
The prediction effects of the optimal SG-PLS model corresponding to each order of
derivation for the whole spectral collecting region.

ODa DPb NSPc F RMSEPAve (%) RMSEPStd (%) RP,Ave

No smoothing – – 8 0.338 0.044 0.783
0 6 53 12 0.320 0.035 0.813
1 5, 6 71 8 0.340 0.032 0.781
2 2, 3 69 15 0.315 0.054 0.821
3 3, 4 69 17 0.305 0.049 0.837
4 4, 5 81 17 0.328 0.048 0.813
5 5, 6 39 12 0.350 0.035 0.780

a OD: Order of derivation.
b DP: Degree of polynomial.
c NSP: Number of smoothing points.
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model was selected. The corresponding F, RMSEPAve and RP,Ave were 8,
0.338 (%) and 0.783 respectively.

Then, a total of 540 different SG smoothing modes were used to
preprocess each spectrum. The smoothed spectra were used to re-
establish PLS models. PLS factor (F) was set from 1 to 30, and was
optimized combinedwith SG smoothingmode according to themodel
prediction effect. The optimal parameters and prediction effects for
each division were all different, especially the number of smoothing
points. Eachoptimal SG-PLSmodelwasnot stable for all divisions. Tofind
theoptimal SG-PLSmodel stable for all divisions, the RMSEPAve andRP,Ave
of all the50divisionswere calculated for the samesmoothingparameters
and the same F. RMSEPAve was taken as the indicator to optimize the
stable model, and the corresponding model parameters were also
selected. RMSEPAve of the optimal model corresponding to each number
of smoothing points, which was selected from different orders of
deviation and different degrees of polynomial, was shown in Fig. 3. From
another perspective, for the optimal model corresponding to different
orders of derivation, the corresponding degree of polynomial, number of
smoothing points, PLS factor, RMSEPAve and RP,Ave were selected (see
Table 2). As a comparison, the optimal PLSmodel without SG smoothing
was also listed in Table 2, where, the global optimal SG-PLS model was
the model with 3rd order derivative smoothing, 3rd or 4th degree
polynomial, 69 smoothing points, and the corresponding PLS factor,
RMSEPAve and RP,Ave were 17, 0.305 (%) and 0.837 respectively. The
prediction effect was obviously better than that obtained by PLS models
without SG smoothing. Thus, optimization of SG smoothing mode
combined with PLS factor could improve the prediction ability of NIR
analysis models.

Table 2 showed that the number of smoothing points and the PLS
factor corresponding to the optimal model differed according to
different orders of derivatives; so did the corresponding RMSEPAve. If
using the designated smoothing modes which were used for study
objects other than soil organic matter, it would be difficult to find the
optimal SG smoothing mode and the PLS factor without a large-scale
Fig. 3. RMSEPAve of the optimal SG-PLS model corresponding to each number of
smoothing points based on the whole spectral collecting region.
selection. In addition, Table 2 andFig. 3 showed that theoptimal number
of smoothing points was not less than 25; if using any smoothing point
within 25, the optimal prediction effect under discussion could not be
obtained (within 25 smoothing points, the best RMSEPAve was 0.338%).
Actually, it could also be seen fromFig. 3 that themodel prediction effect
could not be improved when the number of smoothing points was
within 37. These observations indicated it was very necessary to expand
the number of smoothing points.

On the other aspect, in order to observe the impact of PLS factor on
model prediction effect, it was shown in Fig. 4 that RMSEPAve of the
PLS models without SG smoothing and SG-PLS models corresponding
to PLS factors. The optimal PLS factor and RMSEPAve were 8 and 0.338
(%) for the PLS model without SG smoothing, while the optimal PLS
factor and RMSEPAve were 17 and 0.305 (%) for SG-PLS model. The
model prediction effect wasmuch improved by SG smoothing. For PLS
model without SG smoothing, the optimal F (8) was not significant,
while 6, 7, 10, 11, 15, 16, and 17 gave the close prediction effect as 8, it
was probable because of much noise when the spectra were not
preprocessed. For SG-PLS model, the optimal F (17) was much
significant, and only its neighbors (15, 16, and 18) present close result.
3.2. Waveband selection by MWPLS method and SG smoothing

In this paper, thewhole spectral collecting regionwas 400–2500 nm
and the spectral wavelength interval was 2 nm, so there were a total of
1050 points (i.e. K=1050). The serial number of beginningwavelength
(B)wasalso set from1 to1050. Thenumber of adoptedwavelengths (N)
could be set from 1 to 1050. However, in order to reduce workload,
improve computational efficiency, and maintain representativeness,
here Nwas set as follows: from 1 consecutively to 100, from 105 to 500
with a step of 5, from 510 to 1050 with a step of 10. And for any
combination of B and N, a total of 174,835windowswere identified. For
each window, PLS factor (F) was set from 1 to 30; the optimal F was
Fig. 4. RMSEPAve of the PLS models without SG smoothing and SG-PLS models
corresponding to PLS factors based on the whole spectral collecting region.
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Fig. 5. RMSEPAve of the optimal models corresponding to beginning wavelength. Fig. 7. RMSEP+ of the optimal models corresponding to beginning wavelength.
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determined by minimum RMSEPAve. Further, by comparing the model
prediction effects of all windows, the global optimal model and the
corresponding analytical waveband were selected.

By MWPLS method calibration models were established for 50
divisions of calibration set and prediction set, and the optimal model
for each division was selected. The model parameters and prediction
effects of the optimal MWPLS models were rather good for all the 50
divisions, but the parameters of the 50 optimal models, especially the
optimal wavebands, were all different to each other. Each of themwas
unstable for all divisions, and not convenient for application. That was
what theMWPLSmethod specially needed to improve. In order to find
the optimal model stable for all divisions, we employed the method
mentioned in Section 2.5 to calculate the RMSEPAve and RMSEPStd of
all 50 divisions. Taking RMSEPAve as the indicator, the model
parameters (B, N, and F) were optimized, the global optimal model
and some local optimal models were selected. For the global optimal
model, the beginning wavelength was 1692 nm, N was 95, the
corresponding waveband was 1692–1880 nm, and the PLS factor was
14. RMSEPAve and RP,Ave were 0.275 (%) and 0.870 respectively. It
could be seen that the prediction effect of the optimal PLS model in
this selected waveband was obviously better than that in the whole
spectral collecting region.

For the fixed B and changing N, the optimal model corresponding
to the fixed B was selected according to prediction effects; RMSEPAve
of the optimal model corresponding to each beginning wavelength
was shown in Fig. 5. For the fixed N and changing B, the optimalmodel
corresponding to the fixed N was selected according to prediction
effects; RMSEPAve of the optimal model corresponding to each N was
shown in Fig. 6.

Based on Figs. 5 and 6, many local optimal models could be also
selected besides the global optimal model. Two local optimal models
were given here. Onewas themodel whose prediction effect was little
Fig. 6. RMSEPAve of the optimalmodels corresponding to number of adoptedwavelengths.
different from the global optimal model, and obviously better than
other neighboring models; its beginning wavelength was 1926 nm, N
was 54, the corresponding waveband was 1926–2032 nm, and the
optimal PLS factor, RMSEPAve and RP,Ave were 9, 0.278 (%) and 0.861
respectively. The otherwas themodelwith a small number of adopted
wavelengths; its beginning wavelength was 2020 nm, N was 13, the
corresponding waveband was 2020–2044 nm, and the optimal PLS
factor, RMSEPAve and RP,Ave were 5, 0.306 (%) and 0.824 respectively;
it could provide valuable references for designing spectrophotometer
system in soil-specific NIR spectrometer.

For the selected wavebands (1692–1880 nm, 1926–2032 nm and
2020–2044 nm), we further discussed themodel stability according to
the method mentioned in Section 2.5. For all the combination of
parameters (B, N, and F), RMSEPAve and RMSEPStd were used to
calculate RMSEP+. Similar to RMSEPAve, RMSEP+ of the optimal
models corresponding to beginning wavelength was shown in Fig. 7.
RMSEP+ of the optimal models corresponding to number of adopted
wavelengths was shown in Fig. 8. Based on Figs. 7 and 8, for the
selected global optimal model corresponding to the waveband of
1692–1880 nm, the RMSEP+ was 0.308 (%) which was also the global
optimal result of RMSEP+; this indicated that the global optimal
waveband (1692–1880 nm) was stable for 50 divisions. Additionally,
the RMSEP+ in the wavebands of 1926–2032 nm and 2020–2044 nm
were 0.311 and 0.343 (%) respectively. It could be seen from Figs. 7
and 8, for RMSEP+, these two wavebands were also the local optimal
wavebands, as the similar case for RMSEPAve. Some other models for
other actual situations were also found in Figs. 7 and 8.

Similar to the whole spectral collecting region, the spectra of three
selected wavebands (1692–1880 nm, 1926–2032 nm, 2020–2044 nm)
were preprocessed by SG smoothing respectively, and then PLS models
were re-established. SG smoothing mode combined with PLS factor
were simultaneously optimized according to the model prediction
Fig. 8. RMSEP+ of the optimal models corresponding to number of adopted wavelengths.
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Table 3
The prediction effects of the optimal PLS models without SG smoothing and the optimal SG-PLS models on the selected wavebands and the whole spectral collecting region.

Waveband
(nm)

Number of adopted wavelengths No smoothing SG smoothing

F RMSEPAve (%) RMSEPStd (%) RP,Ave OD DP NSP F RMSEPAve (%) RMSEPStd (%) RP,Ave

1692–1880 95 14 0.275 0.033 0.870 0 6 71 16 0.272 0.032 0.871
1926–2032 54 9 0.278 0.033 0.861 2 6 45 8 0.260 0.026 0.877
2020–2044 13 5 0.306 0.037 0.824 0 2.3 9 6 0.297 0.041 0.833
400–2500 1050 8 0.338 0.044 0.783 3 3.4 69 17 0.305 0.049 0.837
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effects. The prediction effects of the optimal PLS models without SG
smoothing and SG-PLS models in the selected wavebands (1692–
1880 nm, 1926–2032 nmand 2020–2044 nm)were listed in Table 3. As
a comparison, prediction effects in the whole spectral collecting region
400–2500 nm were also listed. Table 3 showed that, the prediction
effects of the optimal PLS models in these three selected wavebands
were obviously better than those in thewhole spectral collecting region.
In addition, by SG smoothing preprocess, the model prediction effect
wasmore improved for eachwaveband. The optimal SG-PLSmodel was
in thewavebandof 1926–2032 nm, thenumber of adoptedwavelengths
was 54, the optimal smoothing mode were the 2nd order derivative
smoothing, 6th degree polynomial, 45 smoothing points, and the
corresponding PLS factor, RMSEPAve and RP,Ave were 8, 0.260 (%) and
0.877 respectively. In addition, Fig. 9 showed theSGderivative spectra of
all soil samples in the waveband 1926–2032 nm with the smoothing
modeof 2ndorder derivative, 6th degree polynomial, and 45 smoothing
points.

On the other aspect, in order to observe how the impact of degree
of polynomial (DP) on SG-PLS model prediction effect, we fixed DP,
and made any possible changes for order of deviation (OD) and the
number of smoothing points (NSP), in this way, we got the optimal
model for each DP. For example, in the waveband 1926–2032 nm, the
model parameters and prediction effects corresponding to each DP
were shown in Table 4. The optimal DPwas 6th, but whenDPwas 2nd,
3rd, 4th, and 5th, the prediction effects were close to that when DP
Fig. 9. SG derivative spectra of 91 soil samples in waveband 1926–2032 nm with the
smoothing mode of 2nd order derivative, 6th degree polynomial, 45 smoothing points.

Table 4
The prediction effects of optimal SG-PLS models corresponding to each degree of
polynomial in waveband 1926–2032 nm.

DP OD NSP F RMSEPAve (%) RMSEPStd (%) RP,Ave

2 0 39 9 0.270 0.030 0.868
3 0 39 9 0.270 0.030 0.868
4 0 45 8 0.265 0.028 0.872
5 0 45 8 0.265 0.028 0.872
6 2 45 8 0.260 0.026 0.876
was 6th. It meant that the optimal models corresponding to lower
DP's were also considered as possible choices.

4. Conclusion

In this paper, the model optimization and the waveband selection
of NIR spectroscopy analysis for soil organic matter have been
accomplished by SG smoothing and MWPLS method. OSWPB was
used to evaluate the similarity of calibration set and prediction set,
and a new division method for calibration set and prediction set was
proposed based on the similarity. SG smoothing modes were
expanded to 540 kinds. The results showed that the optimization of
SG smoothing mode combined with PLS factor could obviously
improve the model prediction effects; MWPLS method with change-
able parameters could be used to select the wavebands at high signal
to noise ratio for soil organic matter. An effective approach was
proposed here to obtain the global optimal waveband and some
appropriate local optimal wavebands. It could also provide valuable
references for designing spectrophotometer system in soil-specific
NIR spectrometer. To get stable results, all the optimization processes
were based on the average prediction effect on 50 different divisions
of calibration set and prediction set. Results showed that the optimal
model and the optimal waveband were stable, so they were effective
and practicable.

Thecomputer algorithmplatformsbuilt uphere (suchas fordivisionof
calibration set and prediction set, for optimization of SG smoothingmode
combined with PLS factor, and for MWPLS method with changeable
parameters) and themethodological framework here (especially the idea
about the stability based on different divisions of calibration set and
prediction set)were universal.We believe they can be used for themodel
optimization and the waveband selection of NIR analysis for other
analytical objects, especially for the complex systems.
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