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The least-squares approximation of cosine polynomials is used to construct the spectrum from the
simulated nonuniform samples of the interferogram given by a step-mirror-based static Fourier
transform spectrometer. Numerical and experimental results show the stability of the algorithm and
a spectrum-constructing error of 0.03%. © 2011 Optical Society of America
OCIS codes: 300.6190, 300.6300, 070.2025.

1. Introduction

Nowadays spectrometers are wildly used in fields
such as chemical analysis and environmental moni-
toring. Among various kinds of spectrometers, the
Fourier transform spectrometer (FTS) is usually fa-
vored due to its high luminous flux and multichannel
transmission. Today most of the industrialized FTSs
are based on the classical Michelson interferometer.
With a moving plane mirror, these FTSs sample the
interferogram of the two incident beams at different
optical path differences (OPDs), then the spectrum is
achieved via Fourier transform. However, Fourier
transform requires sampling at exactly equal inter-
vals, and the obtained spectrum is crucially sensitive
to the sampling errors. It has been presented in [1]
that the theoretical maximum signal-to-noise ratio
(SNR) relates to the sampling errors:

SNRmax ¼
4

Δx~vmax
; ð1Þ

where Δx is the RMS sampling error, ~vmax is the
maximum wavenumber of the source. This means

Δx should be less than 10nm to achieve an SNR
higher than 1000 when ~vmax ¼ 4000 cm−1. Although
this requirement can be easily met by laser referen-
cing, in recent years, to meet the growing need for
real-time and small-platform spectrum detection,
many miniaturized FTSs without the laser referen-
cing system have been studied [2–4]. For these time-
modulated FTSs, movement precision and system
stability are still big problems.

This problem can be solved by static FTSs.
Until now, many space-modulated static FTSs have
been proposed [5,6]. A step-mirror-based model was
given by Moller [7] and later studied by some in-
stitutions including us [8–11]. This kind of FTS pro-
mises a stabile and portable instrument concept
without a complex driving system. However, in prac-
tice, the manufacturing accuracy of the step heights
requires sampling the interferogramwith nonunique
intervals.

A nonuniform sampling problem of the band-
limited signals exists in many fields, such as astron-
omy, geography, and medical imaging areas. To deal
with the nonuniform samples people usually refer
to the approximation theory: use polynomials to
approximate the unknown functions at the sampled
points, thus achieving the “right” values at the

0003-6935/11/346377-07$15.00/0
© 2011 Optical Society of America

1 December 2011 / Vol. 50, No. 34 / APPLIED OPTICS 6377



desired positions. Most of the proposed approxima-
tion algorithms include two parts: the reconstruction
of the signals and the resampling process. As to the
reconstruction algorithms, there are iterative algo-
rithms [12–14] and noniterative methods [15,16].
See [17,18] for more references on approximation
theories and their applications.

In this paper, considering the interferogram is a
periodic band-limited signal, we will show that using
least-squares approximation by cosine polynomials,
the spectrum can be directly constructed from the
nonuniform sampled interferogram without the re-
construction and the resampling process.

In Section 2 we briefly introduce the principle of
the step-mirror-based static FTS. Section 3 gives the
algorithm of spectrum constructing with nonuniform
sampled values using trigonometric polynomials. In
Section 4 the numerical and experimental results are
presented to show the stability and performance of
the algorithm in our present designed FTS.

2. Principle of the Static FTS

Figure 1 shows the simplified configuration of the
static FTS. The FTS is based on Michelson’s interfe-
rometer with flat mirrors replaced by step mirrors.
The two step mirrors each consisting of n steps are
crossed to generate the interferometric samples of
different OPDs. The total height of the steps of the
lower one is equal to one step height of the higher
one. Thus, the system gives n × n samples with a uni-
form sampling interval two times the lower step
height. The spectrum can be obtained via Fourier
transform with the sampled signal values.

Configuration parameters are designed thus: the
spectra wavelength range is 3:7–5 μm (wavenumber
2000–2700 cm−1), the lower step height is 0:625 μm,
the higher step height is 20 μm. The problem is, the
high accuracy requirement of the step height indi-
cated by Eq. (1) is hard to suit. At present the stan-
dard deviation of the step heights can be controlled
around 0:1 μm for the lower step mirror, and 0:4 μm
for the higher step mirror. According to Eq. (1), a

theoretically best SNR as low as 18 is predicted if
Fourier transform is directly performed. Since the
step heights can be accurately measured, the step
height error can be partly made up by the least-
squares approximation of trigonometric polynomials.

3. Theory

A. Spectrum Constructing with Least-Squares
Approximation of Trigonometric Polynomials

Begin with considering the well-known least-squares
approximation of a function known only at discrete
data points. Assume f ðxÞ ∈ C½a; b�, given a sampled
nonuniform data series fyi ¼ f ðxiÞ; i ¼ 0; 1;…ng of
f ðxÞ, and φ0ðxÞ;φ1ðxÞ;…φmðxÞ ∈ C½a; b�, find a S�ðxÞ
in φ ¼ spanfφ0ðxÞ;φ1ðxÞ;…φmðxÞg, to minimize the
discrete least-squares error

‖→ δ‖2
2 ¼

Xn
i¼0

δ2i ¼
Xn
i¼0

½S�ðxiÞ − yi�2

¼ min
SðxÞ∈φ

Xn
i¼0

½SðxiÞ − yi�2; ð2Þ

where

SðxÞ ¼ a0φ0ðxÞ þ a1φ1ðxÞ þ…þ amφmðxÞ ðm < nÞ:

Write

A ¼ ða0;a1;…amÞT ; ð3Þ

Y ¼ ðy0; y1;…ynÞT ; ð4Þ

Φk ¼ ðφkðx0Þ;φkðx2Þ;…φkðxnÞÞT ; ð5Þ

G ¼ ðΦ0;Φ1;…ΦmÞ: ð6Þ
One can obtain the coefficients a0;a1;…am by solving
the normal equation

GHGA ¼ GHY ; ð7Þ
where the matrix GHG is a Toeplitz matrix T with
entries Tjk ¼ ΦH

j−1Φk−1.
The ideal interferometric function (AC compo-

nents) of a source spectrally band-limited to
½σmin; σmax� is

IðOPDÞ ¼
Z σmax

σmin

2IðσÞ cosð2πσOPDÞdσ; ð8Þ

where σ is the wavenumber. In practice, the interfer-
ogram is sampled within a maximum OPD, and
IðOPDÞ is treated as a periodic function with period
2OPDmax. Since IðOPDÞ is a periodic band-limited
function, in theory it can be approximated by the
finite-dimensional trigonometric polynomials.

Fig. 1. (Color online) Simplified configuration of the static FTS. 1.
lower step mirror; 2. collimator; 3. beam splitter (50% transmis-
sion, 50% reflection); 4. higher step mirror; 5. detecting system.
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Wewill show that the discrete Fourier transform is
in fact a special case of Eq. (7) when one approximate
the IðOPDÞ by trigonometric polynomials and re-
quires uniform sampling both in the time domain
and the frequency domain.

Rescale and expand IðOPDÞ across the boundaries
into a periodic function with period 2π. Sample
IðOPDÞ in ½0; 2π� for N samples at

xj ¼
2π
N

j ðj ¼ 0; 1; � � �N − 1Þ; ð9Þ

and choose

Φk ¼ ðexpðikx0Þ; expðikx1Þ;… expðikxN−1ÞÞT ;
ðk ¼ 0; 1; � � �N − 1Þ:

ð10Þ

ObviouslyΦk are orthogonal with each other and T is
a N ×N matrix with entries

Tjk ¼
�

0; j ≠ k
N; j ¼ k

: ð11Þ

In this situation Eq. (7) describes the Fourier trans-
form, which gives the least-squares solution with
regularly sampled signals. The least-squares solu-
tion is the so called “spectrum”.

However, in a nonuniform sampling situation,
xj ≠

2π
N j, and the Fourier transform loses its precondi-

tion. But, theoretically, as long as the sampling loca-
tions are exactly known, Eq. (7) works. Thus, one can
still obtain the least-squares solution by solving
Eq. (7). What should be noticed is: since for nonuni-
form samplingΦk described by Eq. (10) are no longer
orthogonal with each other, the least-squares solu-
tion does not gives the spectrum, indicating a dif-
ference from the real spectrum that we call the
“spectrum-constructing error (SCE)”. We will show
in Section 4 that this constructing error is acceptably
small when the cosine-type polynomials are used to
approximate the interferogram.

Note: Eq. (7) can also be given as a result of the
iterative algorithm (see [12,14]). The least-squares
approximation by trigonometric polynomials has
long been studied and used as a signal reconstruction
method (see [18] for reference). Reference [18] also
provides another noniterative least-squares approx-
imation by solving a Vandermonde-type system and
comparing between the two methods. The Toeplitz
type is preferred here as it has the same form of
the Fourier transform when it comes to uniform
sampling.

B. Problems in Applying the Least-Squares Approximation

The following problems are concerned most in per-
forming the spectrum constructing by solving the
normal equation:

1. Can IðOPDÞ be uniquely determined by its
nonuniform samples?

2. If IðOPDÞ can be uniquely determined, is the
Toeplitz matrix T invertible, thus the solution of
Eq. (7) exist?

3. Stability of the algorithm
4. Operational requirements of the algorithm

Problem 1. It has been proved in [19] that a band-
limited signal is uniquely determined by its nonuni-
form samples as long as the average sampling rate
exceeds the Nyquist rate. This requirement can be
well suited as our average sampling interval is
1:25 μm compared with the Nyquist interval 1:85 μm.

Problem 2. Reference [18] proves T is invertible if
and only if the number of sampling points is greater
than the dimension of the space. This can be suited
by controlling the dimension of the trigonometric
polynomials.

Problem 3. For the stability of the algorithm, we
refer to the condition number of T. The condition
number measures the sensitivity of the solution of a
system of linear equations to the errors or noises in
the data. For a linear system AX ¼ B, assume A is
accurate, B has errors (or noises) δb, bringing a cor-
responding error δx in the solution X . Then the error
estimates are

‖δx‖
‖X‖

≤ c
‖δb‖
‖B‖

; ð12Þ

where c is the condition number of the matrix A.
In practice, even if T is invertible and ensures a solu-
tion, the inversion problem usually requires large
order of the trigonometric polynomials and a large
condition number may appear, indicating a solution
very sensitive to the changing of the input signal
values.

Giving an accurate theory to describe the relation-
ship between the sampling methods and the condi-
tion numbers is a hard task. Until now, there have
only been reports on estimating the condition num-
ber of T under particular assumptions. In [12] H. G.
Feichtinger et al. give an estimate of the condition
number assuming that the maximal sampling inter-
val is no larger than the Nyquist interval. They
mention an adaptive weights method to improve
the condition number under this condition. In [20]
the condition number is estimated for a totally ran-
dom sampled data that is uniformly distributed over
the sampling span. Both of the two studies pointed
out that a higher oversampling rate improves the
condition number.

Unfortunately, none of the mentioned situations
suits our sampling process. In Section 4, we will show
that our maximum sampling interval is much larger
than the Nyquist interval. Also, our sampling points
are not truly random distributed but a uniform sam-
pling set with perturbations. A statistical result on
the condition numbers under our present sampling
method will be given in Section 4.

Problem 4. In GHGA ¼ GHY :
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1. GHG is independent of the sampled signals.
After the system is assembled, GHG need to be cal-
culated only once and stored for further use

2. GHY can be calculated with the nonuniform
fast Fourier transform (NUFFT) algorithm devel-
oped by Q. H. Liu et al. [21], which requires
OðαN log2ðaNÞÞ, where α ≥ 2 is the oversampling
factor.

3. There are already Toeplitz solvers that can
solve the normal equation with OðM log2 MÞ opera-
tions, where M is the size of the Toeplitz matrix.

4. Numerical and Experimental Result

A. Stability and the SCE of the Algorithm

The stability and the SCEwill be given by simulation
and numerical test.

Assume the step heights error obeys the normal
distribution. At present the standard deviation σ is
around 0:1 μm for the lower step mirror, and 0:4 μm
for the higher step mirror. Generating a pair of ar-
rays of 31 random numbers obeying the normal dis-
tribution with corresponding mean values of 20 μm,
0:625 μm, and standard deviations of 0:4 μm, 0:1 μm,
we can simulate a pair of step mirrors and test the
spectrum-constructing algorithm with them.

In practice, the phase correction requires a short
double-sided sampling of the interferogram from
OPD ¼ −Δ to OPD ¼ Δ. Thus, totally 1024 points
of different OPDs are sampled, in which 128 points
between ½−Δ; 0� and 897 points between ½0;OPDmax�.
For the benefit of discussion, we assume there is no
phase effect and use the large single-sided 897 points
to generate a double-sided interferogram of 1793
sampling points. By zeros-filling, the samples of the
interferogram are expanded to 2048 points with
the maximum OPD ¼ 1:25 × 1024 ¼ 1280 μm. A
source of continuous spectrum band-limited to
2000–2700 cm−1 is chosen as the testing source.

To be consistent with the discrete Fourier trans-
form in the frequency domain, considering the inter-
ferogram is band-limited to 2000–2700 cm−1,

Φk ¼
�
exp

�
ik

2π
2048

x0
1:25

�
;

exp
�
ik

2π
2048

x1
1:25

�
;… exp

�
ik

2π
2048

x2047
1:25

��
T

ðk ¼ 500; 501; � � � ; 700; 1348; � � � ; 1547; 1548Þ ð13Þ

is chosen to cover a wavenumber band 1950–
2730 cm−1.

Repeat the step-mirror-generating and spectrum-
constructing process for 2000 times, we obtain a
statistical result.

Two parameters are calculated:

1. The condition number of the matrix T. (T ≥ 1,
smaller T, better stability.) The result is given in
Fig. 2, having a maximum value of 2.57, a minimum
of 1.32, and an average of 1.64

2. The SCE

SCE ¼
P

n
k¼0 jIrealðkÞ − IidealðkÞjP

n
k¼0 IidealðkÞ

; ð14Þ

where IrealðkÞ is the constructed spectrum from non-
uniform samples via the tested constructing method,
IidealðkÞ is the constructed spectrum from uniform
samples via the traditional fast Fourier transform
(FFT) method. The result is given in Fig. 3, having
a maximum value of 41%, a minimum of 1.89%,
and an average of 9.93%.

Judging from the condition number, the algorithm
is stable enough (insensitive to the errors and noises
of the samples). However, when it comes to the SCE,
the average 9.93% indicates a 9.93% constructing er-
ror. The standard deviations of 0.4 and 0:1 μm of the
higher step heights and the lower step heights give
statically 1% of the sampling intervals larger than
the Nyquist interval and 0.1% percent two times lar-
ger than the Nyquist interval. It seems under this
sampling situation the algorithm failed to offer an
acceptable SCE. Since the approximation quality
by polynomials is closely related to the form of the
polynomials chosen, we decide to add more restric-
tions on the approximation polynomials to provide

Fig. 2. Distribution of the 2000 condition numbers. Fig. 3. Distribution of the 2000 SCEs.
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the normal equation Eq. (7) with more information
about the spectrum. Considering Eq. (8),

Φk ¼
�
cos

�
k

2π
2048

x0
1:25

�
;

cos
�
k

2π
2048

x1
1:25

�
;… cos

�
ik

2π
2048

x2047
1:25

��
T

ðk ¼ 500; 501; � � � ; 700Þ ð15Þ

is chosen. That is, using the cosine polynomials to
approximate the interferogram.

However, a practical interferogram always con-
tains phase errors. This problem should be consid-
ered when using cosine polynomials. An obvious
advantage of the algorithm above is that it allows
adding phase information into the polynomials,
such as

Φk ¼
�
cos

�
k

2π
2048

x0
1:25

þ φðkÞ
�
;

cos
�
k

2π
2048

x1
1:25

þ φðkÞ
�
;…

�
T
; ð16Þ

when considering a wavenumber-related phase error
φðkÞ. This allows us to correct the phase directly in
the spectrum constructing process. Thus, it is possi-
ble to use the cosine polynomials to approximate a
practical interferogram with phase error as long as
the error is known.

For the step-mirror-based spectrometer, once the
system is assembled, the phase error is fixed. Thus,
the phase error measuring process needs to be done
only once. For this we refer to the signal reconstruc-
tion method mentioned in [16]. This method allows
obtaining the uniform sampled signals if the average
sampling interval is smaller than the Nyquist inter-
val, which is proved to be available by numerical re-
sults. Thus, one can measure the phase error using
the traditional phase correction method.

Results when cosine polynomials are used are as
follows: The condition number of the matrix T is
given in Fig. 4, having a maximum value of 2.68, a

minimum of 1.39, and an average of 1.78. The
SCE is given in Fig. 5, having a maximum value of
0.023%, a minimum of 0.0028%, and an average
of 0.01%

Although the condition number is not improved,
the SCE is much smaller than pervious, giving an
acceptable average error 0.01%.

B. Experimental Result

Figures 6 and 7 shows the steps of a higher and a
lower step mirror manufactured. Heights testing
details are given in Table 1.

The heights test gives a maximum sampling inter-
val of 5:002 μm, a minimum of 0:584 μm, and an aver-
age of 1:291 μm. Twenty-seven intervals are larger
than the Nyquist interval, in which eight are two
times larger than the Nyquist interval.

Fig. 4. Distribution of the 2000 condition numbers when cosine
polynomials are used.

Fig. 5. Distribution of the 2000 SCEs when cosine polynomials
are used.

Fig. 6. (Color online) Steps of a higher step mirror.

Fig. 7. (Color online) Steps of a lower step mirror.
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We have simulated the same source of continuous
spectrum (SC source) used above and a source of dis-
crete wavenumbers 2100 2300 2500 cm−1 (SD source)
to test the algorithm’s performance. We compared
the performance of the FFT, the least-squares ap-
proximation by trigonometric polynomials (LST),
and the least-squares approximation by cosine poly-
nomials (LSC). Results are given in Figs. 8 and 9, and
in Table 2.

The LSC method gives a fairly good SCE ¼ 0:03%
for a continuous source. Although the corresponding
SCE for the discrete source 5.28% is a bit larger, see
Fig. 9, it successfully distinguishes the three spec-
tral lines.

5. Discussion

It is impossible for FTS to sample the interforgram at
exactly uniform points. See [22–25] for discussions on
the sampling errors and their effects. Although now
one can precisely control the sampling interval by
laser referencing, there are other factors that pre-
vent us from uniform sampling. For instance, E.
Sarkissian et al. point out in [26] that a frequency-
dependent Doppler shift caused by the off-axis of
the detectors can be treated as a nonuniform sam-
pling problem. Or, the phase error can be also treated
as a nonuniform sampling problem. So, it seems even
for the time-modulated FTS, spectrum constructing
with trigonometric polynomials is a better choice
than the FFT method, considering

1. it allows nonuniform sampling both in the time
domain and the frequency domain as one wish, and
can give the same result of the FFT method when re-
quired. Thus, it can handle the nonuniform-related
problems, such as the Doppler shift and the phase
effect all in one by adding information in the approx-
imation polynomials;

2. since the spectrometers deal with 1D data,
FFT shows no significant advantage in computa-
tional requirements. The computational require-
ments of the approximation by trigonometric
polynomials can be easily met by today’s computa-
tional processor.
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Science Foundation of China (NSFC) under grants
60977062, 61027010, and the National High Tech-
nology Research and Development Program (863) of
China (grant 2009AA04Z315).

Table 1. Testing Results of the Step Heights of the Step Mirrors

Steps
Aver.
Height

Max.
Height

Min.
Height σ

Higher steps 20:643 μm 21:520 μm 19:780 μm 0:422 μm
Lower steps 0:614 μm 0:878 μm 0:292 μm 0:113 μm

Table 2. Testing Results for SC and SD Sources with Different Constructing Methods

FFT(SC) LST(SC) LSC(SC) FFT(SD) LST(SD) LSC(SD)

Con. num. 2.14 2.35 2.14 2.35
SCE 24.24% 14.40% 0.03% 359.9% 54.43% 5.28%

Fig. 9. (Color online) Constructed spectrum with different con-
structing methods (SD source).

Fig. 8. (Color online) Constructed spectrum with different con-
structing methods (SC source).
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