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The diffraction at mirror facets restricts the size of step mirrors for static step-mirror-based Fourier transform
spectrometers. This paper discusses the miniaturization of these step mirrors and proposes a quasiperiodic ap-
proximation of Fresnel diffraction to analyze the diffraction effect. Noise caused by diffraction is classified into
approximation noise and edge noise. The edge-enlarge method is developed to reduce edge noise. This method
can reduce mirror facet width to less than 30 times the longest wavelength to be studied. Simulation results are
given. © 2010 Optical Society of America
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1. INTRODUCTION
In recent years, with a growing need for real-time and small-
platform spectrum detection, microspectrometers with lower
resolving powers have been studied for such applications as
environmental monitoring and process control. It is well
known that a Fourier transform spectrometer (FTS) has broad
applications in electromagnetic spectra due to high luminous
flux and multichannel transmission capacity. Until now, many
kinds of micro-optical electromechanical system (MOEMS)
technology-based micro FTSs have been reported [1–7]. How-
ever, as most of the reported works are time modulated,
movement precision and system stability are still big problems
that limit MOEMS technology-based micro FTSs.

An interferometer without moving parts for Fourier trans-
form spectroscopy was proposed by Linkemann et al. [8].
However, energy loss results from the sampling process. Mol-
ler discussed this problem and proposed a wavefront dividing
interferometer based on Michelson’s interferometer with flat
mirrors replaced by step mirrors, which allows the obtaining
of interferograms without a translation mechanism [9,10]. In-
stitutions such as the Centre National d’Etudes Spatiales
(CNES) in France [11–15] and EVI Research in Canada [16]
have developed this kind of interferometer. Using MOEMS
technology, a model of micro FTS [17] working in the visible
and near-infrared band is also proposed. Compared with other
micro FTS, it is spatially modulated and has the advantages of
stability and simplified configuration. It also promises optical
path differences (OPDs) with high precision, as MOEMS tech-
nology is used in manufacturing step mirrors [18]. In addition,
because step heights can be accurately measured, the interpo-
lation method can give regularly sampled signal values.

Molecular adherence technology allows 1000 mirror facets
in a 100 × 100mm surface [14], whereas MOEMS technology
allows a mirror facet that is several hundred micrometers [18].
However, a disadvantage of this type of FTS is that diffraction
exists at mirror facets. It becomes more and more serious as

wavelength increases and thus restricts the size of the step
mirrors. According to Moller, the width of a facet should
be more than 100 times the longest wavelength to be studied
so that the diffraction effect would be negligible [9]. As wave-
length gets to middle- or far-infrared, larger step mirrors are
necessary; this brings disadvantages such as increased mass
and volume. An imaging system is also needed before the de-
tector to make an interferogram’s size suitable for detection
(for instance, the step mirror reflection surface in [15] is
80 × 100mm, whereas the detector surface is 8 × 10mm).
So, for extending the working range to middle- or far-infrared
without these disadvantages, it is necessary to explore how
the step mirrors may be made as small as possible.

Here, the possibility of step mirror miniaturization is dis-
cussed. An approximation of Fresnel diffraction to analyze
mirror facet diffraction is proposed along with modifying
the spectrum to achieve real spectrum intensity. Noise is clas-
sified into approximation noise and edge noise. A method is
developed to reduce the edge noise. This method can over-
come diffraction restriction to the size of step mirrors in
middle- and far-infrared. Simulation results are given.

2. PRINCIPLE OF THE STATIC FTS
Figure 1 shows the simplified configuration of the micro static
FTS. The two step mirrors are core parts. Each stepmirror has
n steps. The total height of steps of the lower one is equal to
one step height of the higher one. They are crossed to gener-
ate n × n beams with different OPDs. Each beam image in a
corresponding section on the two-dimensional detector and
interferometric intensity is recorded. n × n signal values are
obtained and arranged after OPDs, then the average of these
values (dc component) is subtracted to produce a “useful” val-
ue sequence (ac component). The spectrum is then reverted
through Fourier transform.

If the width of the mirror facets is large enough to neglect
diffraction, the interferometric intensity in a section is
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constant. Signal value should be integral of the intensity in this
section:

V ¼ IS ¼ AðσÞ þ AðσÞ cos½4πσðz1 − z2Þ�; ð1Þ

where I is light intensity in this section, S is the area of the
section, σ is the wavenumber, z1 is the distance from the
higher-step facets to the detector plane, and z2 is from the low-
er one. AðσÞ is spectrum intensity, which can be obtained
through Fourier transform.

3. THEORY DEVELOPMENT

A. Quasiperiodic Approximation
To analyze diffraction at facets, an approximation of Fresnel
diffraction is necessary.

For Fresnel diffraction, the complex amplitude distribution
function in sample plane is

Uðx; y; zÞ ¼ expðikzÞ
iλz exp
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where λ is wavelength, x, y are coordinates in the sample
plane, x1, y1 are coordinates in the diffraction screen, and
z is the distance between the sample plane and the diffraction
screen, k ¼ 2πσ.

If the width of the diffraction screen is much smaller than z,
when z shift a little around a reference distance z0, only the
factor expðikzÞ in Eq. (2) will change apparently. Equation (2)
can be rewritten as

Uðx; y; zÞ ¼ Aðx; y; z0Þ exp½iϕðx; y; z0Þ� exp½ikðz − z0Þ�; ð3Þ

where ϕðx; y; z0Þ is a phase function, and Aðx; y; z0Þ is
amplitude. It shows a kðz − z0Þ phase shift in Uðx; y; zÞ com-
pared with Uðx; y; z0Þ, which is called the quasiperiodic
approximation.

The precision of this approximation depends on practical
conditions, such as the transfer function of the diffraction
screen, the intensity distribution of the light source, and the
shape of the diffraction screen. Errors should be calculated
before using this formula.

B. Analysis of Diffraction at Mirror Facets
Consider a single wavelength light source, and focus on a
section that is not on the edge of the interferograms, which
should leave the four nearest orthogonal sections around the
chosen section.

The concern is for the beams’ behaviors after diffraction.
Each facet can be treated as a single rectangular hole through
which parallel beams with different initial phases (caused by
different facet depths) travel through, and sampled interfero-
grams can be treated as a superposition of individual rectan-
gular aperture diffractions. For a rectangular hole, the length
is much larger than width; focusing on a section not on the
edge, the complex amplitude distribution along the length
can be neglected, and the rectangular aperture diffraction
can be treated as a single slit diffraction. In this rectangular
aperture diffraction model, z0 is set to suit the requirement of
the quasiperiodic approximation.

Now consider the complex amplitude distribution in this
section (the middle one in Fig. 2). First, assume diffraction
is not very strong, so that only the influence of these four
sections should be considered.

Complex amplitude distribution function in this section can
be written as

U 0ðx;y; z1; z2Þ ¼ ½Uðy;z1Þ þ expðiknsÞUðy − d;z1 þnsÞ
þ expð−iknsÞUðyþ d;z1 −nsÞ�expðikz1Þ
× expð−ikz0Þ þ ½Uðx;z2Þ þ expðiksÞ
×Uðx − d;z2 þ sÞ þ expð−iksÞUðxþ d;z2 − sÞ�
× expðikz2Þexpð−ikz0Þ; ð4Þ

where n is the number of steps, d is the width of a facet, z1 is
the diffraction distance of the higher facet, z2 is the diffraction
distance of the lower one, and s is the step height of the lower
step. k ¼ 2πσ. expðikz1Þ, expðikz2Þ, expðiknsÞ, expð−iknsÞ,
expðiksÞ, and expð−iksÞ describe initial phases of beams from

Fig. 1. (Color online) Simplified configuration of the micro static
FTS. 1. Collimator. 2. Beam splitter (50% transmission, 50% reflection).
3. Higher step mirror. 4. Lower step mirror. 5. Two-dimensional detec-
tor. The coordinate system in the detector plane will be used in
following discussion.

Fig. 2. Diffraction distances of different facets. Coordinate system is
the same one shown in Fig. 1. Distances along y correspond to higher
facets, and those along x correspond to lower ones.
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different facets. expð−ikz0Þ is a constant introduced for the
benefit of discussion. Uðx; zÞ or Uðy; zÞ stands for the com-
plex amplitude distribution of a single slit diffraction with dif-
fraction distance z. Equation (4) can be rewritten as Eq. (5)
when quasiperiodic approximation is brought in:

U 0ðx; y; z1; z2Þ ¼ ½Uðy; z0Þ þ expði2knsÞUðy − d; z0Þ
þ expð−i2knsÞUðyþ d; z0Þ� exp½i2kðz1 − z0Þ�
þ ½Uðx; z0Þ þ expði2ksÞUðx − d; z0Þ
þ expð−i2ksÞUðxþ d; z0Þ� exp½i2kðz2 − z0Þ�
¼ B1ðy; z0Þ exp½iϕ1ðy; z0Þ� expði2kz1Þ
þ B2ðx; z0Þ exp½iϕ2ðx; z0Þ� expði2kz2Þ; ð5Þ

where B1, B2, ϕ1, and ϕ2 are constants determined by z0, x,
and y. The corresponding signal value is integral of intensity

Vðz1; z2; z0Þ ¼
Z
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It can be written as

Vðz1; z2; z0Þ ¼ Bþ C cos½2kðz1 − z2Þ þ θ�; ð7Þ

in which
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C expðiθÞ ¼ 2
Z

d=2

−d=2

Z
d=2

−d=2
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× exp½iðϕ1 − ϕ2Þ�dxdy: ð9Þ

Comparing Eq. (8) with Eq. (9) gives

B ≥ jCj; ð10Þ

which indicates a reduced fringe visibility. Then, CðσÞ is
achieved through Fourier transform [CðσÞ ¼ C]. However,
CðσÞ is not spectrum intensity, AðσÞ is. However, for fixed z0,
d, s, the A=C values, which only vary with σ, can be calculated.
So, A can be achieved by multiplying C by A=C.

If diffraction is negligible, A=C ≈ 1. Modification to spec-
trum is not necessary; Eq. (7) returns to Eq. (1).

Equation (7) shows that the “OPD” of this section is no
longer 2ðz1 − z2Þ, but, it seems to be, 2ðz1 − z2Þ þ θ=k. Actu-
ally, “OPD” is not logical here, as diffraction is playing an im-
portant part, and phase difference is not constant in the
section. For the benefit of discussion, an “index optical path
difference” (IOPD) is suggested, which is equal to the tradi-
tional concept of “OPD” here. For instance, the IOPD of this
section is 2ðz1 − z2Þ.

If diffraction is very strong that more sections’ influences
should be considered, the same formula can be obtained using
the same method. For a continuous light source, as the inter-
ferogram is only the overlap of interferograms of different
wavelengths, the discussion above is still valid.

C. Edge-Enlarge Method
The discussion in Subsection 3.C is based on two
assumptions:

1. quasiperiodic approximation,
2. the section is not on the edge so there are enough

neighboring sections that surround it.

For sections on the edge, assumption 2, evidently, does not
apply. Edge condition interrupts the applicability of the the-
ory, and noise appears in the reverted spectrum. This is
the edge noise, but noise is also caused by the precision
of the quasiperiodic estimate of the approximation noise,
the latter of which is usually negligible.

An edge-enlarge method is developed to eliminate the edge
noise. Assume that diffraction is not very strong so that the
influence of only the nearest sections needs to be considered.
Let n ¼ 3, which means three steps in each step mirror; this
corresponds to 3 × 3 sections [Fig. 3(a)]. L1 are the optical
paths of beams from the lower step mirror with step height
1. L2 are those from the higher step mirror with step height
3. The 3 × 3 sections in the rectangle with circular corners
are sampled. The central section with IOPD 4 complies with
the two assumptions above, but the others do not.

Adding one step to both sides of the step mirrors and
lengthening each step to make 5 × 5 sections [Fig. 3(b)], the
3 × 3 sections in the rectangle with circular corners are still
detected. As none of them are located on the edge, edge noise
is eliminated.

Fig. 3. (a) 3 × 3 sections, (b) 5 × 5 sections.

Fig. 4. (Color online) (a) Amplitude curves with 0, 5, 10 μm and
640 μm shift around z0, (b) corresponding phase curves.
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4. SIMULATION RESULT
The diffraction simulation code derived from the method
discussed in the literature [19] was proved to be reliable by
experimental results; the code herein obtained the same
results as predicted.

The complex amplitude distribution on the detector plane
for beams from each facet are calculated and summed to get
the interferogram of one wavelength. Configuration param-
eters are set thus: the spectra wavelength range is 2:5–10 μm
(wavenumber, 0:1–0:4=μm); according to the Nyquist sam-
pling theorem, the lower step height is 0:625 μm; the width
of a facet is 260 μm (26 times the longest wavelength); the dis-
tance between the facet with OPD ¼ 0 and the detector plane
is 2 cm. A 32 × 32 interferogram is sampled, giving the largest
OPD, 1278:75 μm and 1024 signal values..

First, the precision of the quasiperiodic approximation,
which is important for availability of the theory, is demon-
strated. According to the discussion in Subsection 3.C, a single
slit diffraction should be modeled: the width of the slit is
260 μm, and the wavelength is 10 μm. z0 is 2 cm. Simulations
with a 0, 5, and 10 μm shift around z0 are carried out. In
Fig. 4(a), three amplitude curves cannot be distinguished, in-
dicating the accuracy of amplitude approximation. Figure 4(b)
shows the corresponding phase curves. Only two curves can
be seen because the curves of z0 and z0 þ 10 μm are superim-
posed on each other, indicating the accuracy of the phase shift

approximation. Calculate errors after a shift of 640 μm, which
is a little longer than the longest shift of the facets. Results are
also shown in Figs. 4(a) and 4(b). Compared with the diffrac-
tion at z0, the diffraction at z0 þ 640 μm shows an average
error of 3.41% in amplitude and 2.42% in phase (calculating
range, −1300–1300 μm).

A. Result of the Edge-Enlarge Method for Continuous
Light Source
The interferograms of an ideal blackbody radiation light
source at a temperature of 1200K are simulated.

Figure 5 shows an interferogram of 32 × 32 steps. The side
effects at the interface of two sections caused by edges of
facets as mentioned in [15] are also visible; however, pixels
affected by this effect are still available as a result of the
edge-enlarge method. Figure 6 shows the spectrum reverted
from Fig. 5. Two other spectra in Fig. 6 are also plotted: the
spectrum is reverted from 44 × 44 steps (12 steps added, six
on both sides), and the ideal spectrum is reverted from the
interferogram with diffraction totally neglected. The spectrum
with 32 × 32 steps looks poor because of intense noise. As
extra steps are added, the reverted spectrum slowly changes.
After more than 44 steps, there will be no identifiable changes

Fig. 5. (Color online) Interferogram of 32 × 32 steps for ideal
blackbody radiation light source.

Fig. 6. (Color online) Spectrum reverted from 32 × 32 steps, 44 × 44
steps, and the ideal spectrum.

Fig. 7. (Color online) Theoretic and practical A=C values.

Fig. 8. (Color online) Diffraction-limited spectrum with facet widths
260, 1300, 3900 μm, and the ideal spectrum.
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in the spectrum, which is called the diffraction-limited
spectrum.

Then, the A=C values are calculated using two different
methods: the theoretic one is calculated following Eq. (9),
and the practical one is calculated by dividing the ideal
spectrum by the diffraction-limited one (see Fig. 7).

All theoretic A=C values are larger than 1. As wavenumbers
increase, the A=C curve shows a slow downward trend to 1,
which is logical as a result of the weaker diffraction effect.
However, the practical A=C curve shows a significant differ-
ence. It also shows a faster downward trend to 1, but there is a
stronger oscillation in this A=C curve. Further, there are
values less than 1 near the wavenumber 0.4, indicating an im-
possible fringe visibility larger than 1 at corresponding wave-
numbers. This is caused by the limited sample length and the
rectangle apodizing function.

The reverted spectrum with the facets’ widths of 1300 μm
and 3900 μm are shown to clearly show diffraction’s effect
on the continuous spectrum (see Fig. 8). All spectra are re-
verted from 46 × 46 steps to ensure the diffraction-limited
spectrum is obtained. As facet width increases, the reverted
spectrum gets closer to the ideal one. Note that, even at
1300 μm (130 times the longest wavelength), the diffraction-
limited spectrum still shows a significant difference from
the ideal one. As the width increases to 3900 μm, which is 390

times the longest wavelength, the reverted spectrum appears
to be very close to the ideal one.

The fringe visibility of an interferogram of 44 × 44 sections
is 0.68. This is in accordance with Eq. (10). The entire reflec-
tion surface is 11:96 × 11:96mm (8:32 × 8:32mm detected).

B. Result of the Edge-Enlarge Method for Discrete Light
Source
In most practical cases, spectrometers are used to identify ab-
sorption or emission lines. Therefore, it is more important to
identify absorption or emission lines in a reverted spectrum.
For this reason, the system performance is simulated to a dis-
crete light source.

A mix of three monochromatic light sources (wavelength of
4, 6, 8 μm) is chosen as the incident beam. Figure 9 shows an
interferogram of 32 × 32 steps. Figure 10 shows the corre-
sponding reverted spectrum. Then, four steps are added to
make a 36 × 36 interferogram. The reverted spectrum shown
in Fig. 11 is much better than that in Fig. 10 as the noise here is
depressed. It will be better if more steps are added.

For the purpose of identifying absorption or emission lines,
four extra steps is enough. The fringe visibility of an interfer-
ogram of 36 × 36 steps is 0.625. This is also in accordance with
Eq. (10). The entire reflection surface is 9:36 × 9:36mm
(8:32 × 8:32mm detected).

More steps should be added if narrower mirror facets are
desired. However, the contrast decline should be considered.

At last, the signal-to-noise ratio (SNR) of the system is
defined as

SNR ¼
R
0:4
0:1 SDLðσÞdσR

0:4
0:1 jSDLðσÞ − SðσÞjdσ ; ð11Þ

where SDLðσÞ is the diffraction-limited spectrum intensity, and
SðσÞ is the spectrum intensity when different numbers of extra
steps are added.

Fig. 9. (Color online) Interferograms of 32 × 32 steps for monochro-
matic light source.

Fig. 10. (Color online) Spectrum reverted from 32 × 32 steps.

Fig. 11. (Color online) Spectrum reverted from 36 × 36 steps.

Table 1. SNR of the System with Different
Numbers of Added Steps

Number of extra steps 0 2 4 6 8
Continuous light source 1.5 17.1 40.4 72.7 121.8
Discrete light source 1.5 5.2 19.0 29.6 31.7
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Calculate the SNR with different numbers of added steps
(see Table 1).

5. CONCLUSIONS AND DISCUSSION
In the proposed model, the precision of the quasiperiodic ap-
proximation depends on z0, d, s, which are decided by the
shortest wavelength to be studied. It gets closer to periodicity
with a larger z0 and a smaller d, but this contributes little to
the decrease of noise, as the edge noise will apparently
increase.

When diffraction is considered, theory and simulation show
that the fringe visibility of the interferogramwill decrease. Two
different criteria of fringe visibility were discussed in [16]; one
is that the minimum fringe visibility over the entire detector
area has to be more than a certain minimum value, such as
0.5. Simulation results show that this criterion can be well
filled. As fringe visibility varies as a function of wavenumbers,
it is necessary tomodify the reverted spectrumwithA=C values
if onewants to obtain the real spectrum intensity. Twomethods
are discussed, and respective results are very different from
each other. It is suggested that the practical A=C values are
more suitable for a continuous spectrum modification.

Diffraction brings noise to the reverted spectrum. One may
notice that an extremely large amount of noise appears at the
wavenumbers of ð0:1þ n × 0:025Þ=μm n ¼ 1; 2; 3;… in both
Figs. 6 and 10. This is because for step mirrors with 32 steps,
corresponding signal values are affected by the edge effect
every 32 steps, which gives a typical wavelength of 2 × 32 ×
0:625 ¼ 40 μm (wavenumber 0:025=μm). The simulation result
shows that facets with a width more than 390 times the longest
wavelength are more appropriate to render the diffraction ef-
fect negligible. When the diffraction effect is to be considered,
noise caused by diffraction can be classified into approxima-
tion noise and edge noise. Approximation noise is usually neg-
ligible; as for edge noise, the edge-enlarge method is effective
in decreasing it. This method can reduce mirror facet width to
less than 30 times the longest wavelength to be studied, which
brings many benefits, especially in the thermal infrared range.
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