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Instability of a Biaxial Nematic Liquid Crystal Formed by Homeotropic
Anchoring on Surface Grooves *
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A method used to treat the elastic distortion of a uniaxial nematic liquid crystal induced by homogeneous
anchoring on the surface grooves is generalized to biaxial nematic liquid crystals under the homeotropic anchoring
condition. Employing some approximations for the elastic constants, we obtain an additional term in the elastic
energy per unit area which depends on the angle between the minor director at infinity and the direction of the
grooves, with a period of 𝜋/2. This leads to instability on the surface grooves so that two states with crossed
minor directors are energetically indistinguishable. Our theoretical study explains why the homeotropic alignment
method developed for uniaxial liquid crystals loses efficacy for biaxial nematics.
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In most liquid crystal devices, the liquid crys-
tals are sandwiched between two substrates coated
with alignment layers. In the absence of externally
applied fields, the orientation of the liquid crystal
in the cell is determined by the anchoring condition
of the alignment layer.[1−3] One usually distinguishes
three main types of liquid crystalline director align-
ment near solid walls: homeotropic, homogeneous (or
planar) and tilted orientations. Here we study the
first of these and consider the biaxial nematic phase,
which was observed in lyotropic systems as early as
1980[4] and has been confirmed by deuterium NMR
spectroscopy. By 2004, firm evidence for this phase in
thermotropics had been reported.[5−8] For practical
applications, new types of electro-optic devices with
fast response are expected from this phase, due to the
fact that the switching of the minor director 𝑚 might
be much faster than that of the main director 𝑛. Such
devices require homeotropic alignment with in-plane
switching.[5,9]

In order to realize homeotropic alignment of bi-
axial nematic liquid crystals, different methods have
been developed and used successfully for the uniax-
ial nematic phase. One is a special polymer coated
on the substrate.[9−13] A process of weak rubbing can
be used to produce surface grooves which provide a
preferred direction, so that a monodomain state with
a uniformly tilted director field can be built up above
the bend Freedricksz transition in a material with neg-
ative dielectric anisotropy. Recently, experimental re-
alization of a submicron-scale surface grooved with
sufficient geometrical precision has again aroused in-

terest in the notion of surface anchoring attributable
to the geometry of the surface.[14−17] In particular,
Fukuda et al.[14] re-examined the theory of homoge-
neous anchoring due to Berreman[18] to discuss the
possible effect of azimuthal distortions of a uniaxial
nematic liquid crystal in contact with a sinusoidal
wavy surface, and we have generalized this method
biaxial nematic liquid crystals.[19] In the Berreman
approximation,[14,18,19] a surface groove was described
by a sinusoidal wave with wave vector 𝑞 = 2𝜋/𝜆 and
amplitude 𝐴, where 𝜆 is the spatial periodicity of the
surface, and the condition that 𝑞𝐴 ≪ 1 should be
satisfied. In this Letter, we deal with homeotropic an-
choring of biaxial nematic liquid crystals on surface
grooves in the Berreman approximation.

It is well known that the molecular shape of a liq-
uid crystal is a key factor in determining its properties.
In particular, thermotropic biaxial nematics have been
found mainly in bent core liquid crystals.[6,7] How-
ever, even for a submicron-scale surface groove, the
distances 𝑙 (𝑙 ∼ 𝜆) over which significant variations of
the tensor order parameter occur are much larger than
the molecular dimensions (typically ∼2 nm). Thus the
deformations may be described by a continuum theory
disregarding the details of the structure on the molec-
ular scale.[20] The molecular shape influences elastic
properties according to the bulk elastic constants. For
the present theoretical study, we assume that the par-
ticular shape of a liquid crystal molecule is not rel-
evant, and that the mathematical description works
for any biaxial nematic liquid crystal with the appro-
priate elastic constants. The elasticity of a biaxial ne-
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matic is described by 15 elastic constants, 12 of which
correspond to director distortions in the bulk, and 3
amount to surface-like elasticity.[21] The elastic free
energy density, as given in Ref. [21], is

𝐹 =
∑︁
𝑎,𝑏,𝑐

1

2
[𝐾𝑎𝑎(𝑎 · ∇𝑏 · 𝑐)2

+𝐾𝑎𝑏(𝑎 · ∇𝑎 · 𝑏)2 + 𝐾𝑎𝑐(𝑎 · ∇𝑎 · 𝑐)2]

+𝐶𝑎𝑏(𝑎 · ∇𝑎) · (𝑏 · ∇𝑏)+𝑘0,𝑎∇ · (𝑎 · ∇𝑎−𝑎∇ · 𝑎),
(1)

where the summation is over a cyclic permutation of
the three directors and indices. Hereafter, the direc-
tor fields are denoted by 𝑙, 𝑚 and 𝑛 for convenience.
Let the orientation of the director triad in the uniform
state be

𝑙 = (1, 0, 0); 𝑚 = (0, 1, 0); 𝑛 = (0, 0, 1). (2)

When the distortion of the biaxial nematics from the
uniform state is small enough, we can write the direc-
tor triad as

𝑙 = (1, 𝑙𝑦, 𝑙𝑧); 𝑚 = (𝑚𝑥, 1,𝑚𝑧); 𝑛 = (𝑛𝑥, 𝑛𝑦, 1). (3)

As 𝑙, 𝑚, 𝑛 are orthonormal, one has

𝑚𝑥 = −𝑙𝑦; 𝑛𝑦 = −𝑚𝑧; 𝑙𝑧 = −𝑛𝑥. (4)

Thus, only three of the six perturbations in Eq. (3) are
independent. Under the conditions given by Eqs. (3)
and (4), the elastic free energy density is written as[22]

𝑔𝑏 =
1

2
𝐾𝐿𝐿(𝑚𝑧,𝑥)2 +

1

2
𝐾𝑀𝑀 (𝑛𝑥,𝑦)2 +

1

2
𝐾𝑁𝑁 (𝑙𝑦,𝑧)2

+
1

2
𝐾𝐿𝑀 (𝑙𝑦,𝑥)2 +

1

2
𝐾𝑀𝑁 (𝑚𝑧,𝑦)2

+
1

2
𝐾𝑁𝐿(𝑛𝑥,𝑧)2 +

1

2
𝐾𝑀𝐿(𝑙𝑦,𝑦)2 +

1

2
𝐾𝑁𝑀 (𝑚𝑧,𝑧)2

+
1

2
𝐾𝐿𝑁 (𝑛𝑥,𝑥)2 − 𝐶𝐿𝑀𝑛𝑥,𝑥𝑚𝑧,𝑦 − 𝐶𝑀𝑁 𝑙𝑦,𝑦𝑛𝑥,𝑧

− 𝐶𝑁𝐿𝑚𝑧,𝑧𝑙𝑦,𝑥 − 2𝑘0,𝐿(𝑙𝑦,𝑧𝑛𝑥,𝑦 − 𝑙𝑦,𝑦𝑛𝑥,𝑧)

− 2𝑘0,𝑀 (𝑙𝑦,𝑧𝑚𝑧,𝑥 − 𝑙𝑦,𝑥𝑚𝑧,𝑧)

− 2𝑘0,𝑁 (𝑛𝑥,𝑦𝑚𝑧,𝑥 − 𝑛𝑥,𝑥𝑚𝑧,𝑦), (5)

where the indices 𝐿, 𝑀 and 𝑁 are used instead of 𝑎,
𝑏 and 𝑐. The equations of equilibrium are

−𝐾𝐿𝐿𝑚𝑧,𝑥𝑥 −𝐾𝑀𝑁𝑚𝑧,𝑦𝑦 −𝐾𝑁𝑀𝑚𝑧,𝑧𝑧

+ 𝐶𝐿𝑀𝑛𝑥,𝑥𝑦 + 𝐶𝑁𝐿𝑙𝑦,𝑥𝑧 = 0, (6a)
−𝐾𝑀𝑀𝑛𝑥,𝑦𝑦 −𝐾𝑁𝐿𝑛𝑥,𝑧𝑧 −𝐾𝐿𝑁𝑛𝑥,𝑥𝑥

+ 𝐶𝐿𝑀𝑚𝑧,𝑥𝑦 + 𝐶𝑀𝑁 𝑙𝑦,𝑦𝑧 = 0, (6b)
−𝐾𝑁𝑁 𝑙𝑦,𝑧𝑧 −𝐾𝐿𝑀 𝑙𝑦,𝑥𝑥 −𝐾𝑀𝐿𝑙𝑦,𝑦𝑦

+ 𝐶𝑀𝑁𝑛𝑥,𝑦𝑧 + 𝐶𝑁𝐿𝑚𝑧,𝑥𝑧 = 0, (6c)

Saupe pointed out that in the uniaxial phase, there

are[21]

𝐾𝐿𝑁 = 𝐾𝑀𝑁 = 𝐾1, (7a)
𝐾𝑀𝑀 = 𝐾𝐿𝐿 = 𝐾2, (7b)
𝐾𝑁𝐿 = 𝐾𝑁𝑀 = 𝐾3, (7c)
𝐶𝐿𝑀 = 𝐾1 −𝐾2, (7d)
𝐶𝑀𝑁 = 𝐶𝑁𝐿 = 0, (7e)
2𝑘0,𝑁 = 𝐾24 −𝐾2, (7f)

𝐾𝑁𝑁 = 𝐾𝐿𝑀 = 𝐾𝑀𝐿 = 0. (8)

Taking Eqs. (4) and (7) into account, Eqs. (6b) and
(6a) lead to

𝐾1𝑛𝑥,𝑥𝑥 + 𝐾2𝑛𝑥,𝑦𝑦 + 𝐾3𝑛𝑥,𝑧𝑧 + (𝐾1 −𝐾2)𝑛𝑦,𝑥𝑦 = 0,
(9a)

𝐾2𝑛𝑦,𝑥𝑥 + 𝐾1𝑛𝑦,𝑦𝑦 + 𝐾3𝑛𝑦,𝑧𝑧 + (𝐾1 −𝐾2)𝑛𝑥,𝑥𝑦 = 0.
(9b)

Equations (9a) and (9b) completely correspond to
Eqs. (7) and (8) in Ref. [14] (we assume that 𝑛 =
(𝑛𝑥, 𝑛𝑦, 1) instead of 𝑛 = (1, 𝑛𝑦, 𝑛𝑧) as in Ref. [14]).

φ
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Fig. 1. Schematic representation of a sinusoidally shaped
groove surface with amplitude 𝐴 and spatial periodicity
𝜆. At 𝑧 → ∞, there are 𝑙 = (1, 0, 0), 𝑚 = (0, 1, 0) and
𝑛 = (0, 0, 1). Here 𝜑 is the angle between the 𝑥 axis and
the direction of the grooves, i.e. the angle between the mi-
nor director 𝑙 at infinity and the direction of the surface
grooves.

Singh et al.[22] predicted that in molecular the-
ory, the seven elastic constants, namely, 𝐾𝐿𝑁 , 𝐾𝑀𝑁 ,
𝐾𝑀𝑀 , 𝐾𝐿𝐿, 𝐾𝑁𝐿, 𝐾𝑁𝑀 and 𝐶𝐿𝑀 are of the order
of the values found in the unaxial nematic phase, and
among the three 𝐶 constants associated with mixed
models of deformation, 𝐶𝐿𝑀 is about ten times larger
than the other two. Similar results were obtained by
Liu.[23] Thus in the present preliminary work on biax-
ial nematics, we assume that Eqs. (9a) and (9b) can
still be used approximately, and 𝐶𝑀𝑁 = 𝐶𝑁𝐿 = 0,
i.e. the mixed elastic constants can be neglected ex-
cept 𝐶𝐿𝑀 . This approximation means that the dif-
ferences between splay and twist elastic constant are
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neglected for both the 𝑙 director and the 𝑚 director.
Consequently, Eq. (6c) becomes

𝐾𝐿𝑀 𝑙𝑦,𝑥𝑥 + 𝐾𝑀𝐿𝑙𝑦,𝑦𝑦 + 𝐾𝑁𝑁 𝑙𝑦,𝑧𝑧 = 0. (10)

Following Fukuda et al.,[14] we consider a surface
groove whose shape can be described by

𝑧 = 𝜁(𝑥, 𝑦) = 𝐴 sin[𝑞(𝑥 sin𝜑 + 𝑦 cos𝜑)], (11)

where 𝜑 is the angle between the 𝑥 axis (this axis co-
incides with the minor director 𝑙 at infinity) and the
direction of the grooves, see Fig. 1. A biaxial nematic
is filled in the infinite region 𝑧 > 𝜁(𝑥, 𝑦). We further
assume that the 𝑛 director at the surface is perpen-
dicular to it, so that one has

𝑛𝑥 = −𝐴𝑞 sin𝜑 cos[𝑞(𝑥 sin𝜑 + 𝑦 cos𝜑)],
(12a)

𝑛𝑦 = −𝐴𝑞 cos𝜑 cos[𝑞(𝑥 sin𝜑 + 𝑦 cos𝜑)].
(12b)

Thus, Eqs. (9a) and (9b) can be solved under the
boundary condition at the surface and under the
boundary condition 𝑛𝑥 = 𝑛𝑦 = 0 at 𝑧 → ∞ (see
Fig. 1). One easily obtains

𝑛𝑥(𝑥, 𝑦, 𝑧) = −𝐴𝑞 sin𝜑 cos[𝑞(𝑥 sin𝜑 + 𝑦 cos𝜑)]

· exp[−𝑞𝑧
√︀

𝐾1/𝐾3], (13a)
𝑛𝑦(𝑥, 𝑦, 𝑧) = −𝐴𝑞 cos𝜑 cos[𝑞(𝑥 sin𝜑 + 𝑦 cos𝜑)]

· exp[−𝑞𝑧
√︀

𝐾1/𝐾3]. (13b)

There should be an additional boundary condition at
the surface 𝑧 ∼ 0,[14]

𝜕𝑔𝑏
𝜕𝑛𝑥,𝑧

𝛿𝑛𝑥 +
𝜕𝑔𝑏
𝜕𝑛𝑦,𝑧

𝛿𝑛𝑦 +
𝜕𝑔𝑏
𝜕𝑙𝑦,𝑧

𝛿𝑙𝑦 = 0. (14)

Because 𝑛𝑥 and 𝑛𝑦 are fixed at the surface and no
condition is imposed on 𝛿𝑙𝑦, Eq. (14) gives

𝜕𝑔𝑏
𝜕𝑙𝑦,𝑧

= 0, (15)

so that one has

𝐾𝑁𝑁 𝑙𝑦,𝑧 + 2𝑘0,𝑀𝑛𝑦,𝑥 − 2𝑘0,𝐿𝑛𝑥,𝑦 = 0. (16)

Now, one can find the analytical solution of Eq. (10)
with the boundary conditions given by Eq. (16) at
𝑧 ∼ 0, and 𝑙𝑦 = 0 at 𝑧 → ∞,

𝑙𝑦 =
2𝐴𝑞(𝑘0,𝐿 − 𝑘0,𝑀 ) sin𝜑 cos𝜑

𝐾𝑁𝑁 ℎ̃(𝜑)

· sin[𝑞(𝑥 sin𝜑 + 𝑦 cos𝜑)] exp[−𝑞𝑧ℎ̃(𝜑)],
(17)

with ℎ̃(𝜑) =
√︁

(𝐾𝐿𝑀 sin2 𝜑 + 𝐾𝑀𝐿 cos2 𝜑)/𝐾𝑁𝑁 .

From Eq. (6), distortion energy per unit area is
written as

𝑓𝑏(𝜑) = 𝑓𝑎 + ∆𝑓𝑏(𝜑), (18a)

𝑓𝑎 =
1

4
𝐴2𝑞3

√︀
𝐾1𝐾3, (18b)

∆𝑓𝑏(𝜑) = −1

4

𝐴2𝑞3(𝑘0,𝑀 − 𝑘0,𝐿)2 sin2 2𝜑

𝐾𝑁𝑁 ℎ̃(𝜑)
.

(18c)

Firstly, for the uniaxial nematic phase, 𝑓𝑏(𝜑) reduces
to 𝑓𝑎. Thus, homeotropic alignment on the surface is
not destroyed by the surface grooves, at least in Berre-
man’s approximation. Secondly, setting the approxi-
mation 𝐾𝐿𝑀 ≈ 𝐾𝑀𝐿, one has ℎ̃(𝜑) ≈

√︀
𝐾𝐿𝑀/𝐾𝑁𝑁

and Eq. (18c) gives the minimum at 𝜑 = 𝜋/4 and
𝜑 = 3𝜋/4, respectively. In other words, it leads to
instability on the surface grooves such that two states
with crossed minor directors are energetically indis-
tinguishable, i.e. 𝑓𝑏(𝜑+ 𝜋/2) = 𝑓𝑏(𝜑). However, in or-
der to obtain a monodomain vertical alignment state,
there should be 𝑓𝑏(𝜑 + 𝜋) = 𝑓𝑏(𝜑).

Lee et al.[9] used a polyimide RN-1720 (Nissan
for uniaxial liquid crystals, the pretilt angle 1∘–2∘)
to achieve homogenous alignment for a biaxial ne-
matic liquid crystal (ODBP-Ph-C7), but they used
another polyimide AL-6010(JSR for uniaxial liquid
crystals, with pretilt angle 89∘) to achieve only a
midtilted alignment for the same biaxial nematic liq-
uid crystal. Thus our theoretical study explains why
the homeotropic alignment method developed for uni-
axial liquid crystals loses efficacy for biaxial nematics.

In the case of homogeneous alignment, we have[19]

∆𝑓𝑏(𝜑) =
1

4
𝐴2𝑞3𝐾𝐿𝑀ℎ(𝜑) cos2 𝜑, (19)

with ℎ(𝜑) =
√︁

(𝐾𝑀𝐿 cos2 𝜑 + 𝐾𝑁𝑁 sin2 𝜑)/𝐾𝐿𝑀 . We
should emphasize that Eq. (19) gives an additional dis-
tortion energy based upon the azimuthal anchoring
energy,

𝐹 (𝜑) =
1

2
𝑊 sin2 𝜑, (20)

where

𝑊 =
1

2
𝐴2𝑞𝐾24

(︁
2 − 1

2
𝐾24

𝐾1 + 𝐾2

𝐾1𝐾2

)︁
. (21)

As a result, in the one-constant model for each direc-
tor the stability condition is that the elastic constant
of the main director is maximum.[19] In fact, homoge-
nous alignment for biaxial nematics has been obtained
over a wide range.[9−13,24]

In summary, a method that treats the elastic dis-
tortion of uniaxial nematic liquid crystals induced by
homogeneous anchoring on the surface grooves has
been generalized to biaxial nematic liquid crystals un-
der the homeotropic anchoring condition. With some
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approximations for the elastic constants, we have ob-
tained an additional term in the elastic energy per
unit area which depends on the angle between the
minor director at infinity and the direction of the
grooves, with a period of 𝜋/2. This leads to insta-
bility on the surface grooves such that two states with
crossed minor directors are energetically indistinguish-
able. We must point out that other reasons may give
rise to the homeotropic alignment loss of efficacy for
biaxial nematics. Taking the molecular shape into ac-
count, the alignment layers may only align one of the
arms of bent core molecules, while the other arm has
free orientation.[25] Although a quantitative study in
which much attention is paid to the molecular shape
is beyond the scope of this Letter, we mention that
an anchoring theory taking the molecular shape into
account leads to the elastic constants being depen-
dent on position in the liquid crystal-alignment layer
interface.[3]
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