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Influence of Surface Geometry of Grating Substrate on Director in Nematic Liquid

Crystal Cell∗
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Abstract The director in nematic liquid crystal cell with a weak anchoring grating substrate and a strong anchoring

planar substrate is relative to the coordinates x and z. The influence of the surface geometry of the grating substrate

in the cell on the director profile is numerically simulated using the two-dimensional finite-difference iterative method

under the condition of one elastic constant approximation and zero driven voltage. The deepness of groove and the cell

gap affect the distribution of director. For the relatively shallow groove and the relatively thick cell gap, the director is

only dependent on the coordinate z. For the relatively deep groove and the relatively thin cell gap, the director must be

dependent on the two coordinates x and z because of the increased elastic strain energy induced by the grating surface.
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Display characteristics of a liquid crystal displays

(LCDs) are mainly decided by the director profile of liquid

crystal (LC) in this cell. Surface anchoring plays an es-

sential role in the director’s distribution.[1−2] The rubbing

technique is a common method to align the LC molecules

on the surface of substrate in the manufacture of LCDs.[3]

However, to achieve some desirable anchoring properties,

the surface of substrate is treated as a grating surface.

Theoretical and experimental studies on the grating sur-

face are always important subjects.[4−13]

In 1972, Berreman[14] studied the interaction between

a nematic liquid crystal (NLC) and a grating surface using

the continuum theory. The shape of the cross section per-

pendicular to the groove direction is taken as a sinusoidal

curve. Based on the simple model of a grating surface

proposed by Berreman, some investigators reexamined the

theory and analyzed the distribution of director.[15−17] In

our previous works,[18−19] we considered that the shape of

cross section is taken as cosinusoidal curve

z = δ cos(qx) , (1)

where x is the direction perpendicular to the groove of the

grating substrate, q = 2π/λ is the wave vector of the sur-

face structure, λ is the pitch of grating surface, and δ is its

amplitude. The anchoring properties of grating substrate

can be expressed by the equivalent anchoring energy for-

mula per unit area of the projected plane of the grating

surface

gs =
1

2
W1(n · j)2 +

1

2
W2(n · i)2 , (2)

where i, j are the basic vectors along ox, oy axis, re-

spectively, W1 = A1 − 4π3k̄δ2/λ3 and W2 = A2 are the

equivalent anchoring strength coefficients, A1 and A2 are

anchoring strengths of the grating substrate and k̄ is the

geometric mean value of the splay elastic constant k11 and

the twist elastic constant k22, i.e. k̄ =
√

k11 · k22. In the

following theoretical analysis, this formula is used to cal-

culate the anchoring energy of the grating substrate.

Our selected LC cell structure and the Cartesian co-

ordinate system are shown in Fig. 1. A NLC is confined

between a weak anchoring grating substrate and a strong

anchoring planar substrate. The original point of Carte-

sian coordinate system is laid in the center of the projected

plane of grating substrate. The LC molecules orient along

the normal direction of the grating surface and the an-

choring energies corresponding to different directions are

A1 and A2, respectively. The LC molecules on the pla-

nar substrate are homogeneous alignment. The deforma-
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tion of director in the LC layer without an applied electric

field can be described as n = (cos θ cosφ, cos θ sinφ, sin θ).

Here, θ and φ are the tilt and the twist angle of director,

respectively, and they are dependent on x and z, rewritten

as θ = θ(x, z), φ = φ(x, z).

Fig. 1 Structure of liquid ccrystal cell and coordinate
system.

The Gibbs free energy of the NLC cell consists of two

parts: elastic free energy and surface free energy. The

elastic free energy is

Gelastic =

∫

V

gelasticdV

=

∫ Ly

−Ly

dy

∫ Lx

−Lx

dx

∫ l

δ cos(qx)

gelasticdz , (3)

where Lx and Ly are two half widths of the grating sub-

strate, gelastic is the density of the elastic free energy in

per unit bulk and can be expressed as

gelastic =
1

2
k11(~∇ · ~n)2 +

1

2
k22(~n · ~∇× ~n)2

+
1

2
k33(~n × ~∇× ~n)2 , (4)

where k11, k22, and k33 denote splay, twist, and bend elas-

tic constants respectively. Introducing some new signs

Sθ = sin θ, Cθ = cos θ, Sφ = sinφ, Cφ = cosφ, θ′x =

∂θ/∂x, θ′z = ∂θ/∂z, φ′
x = ∂φ/∂x, φ′

z = ∂φ/∂z, we can

simplify the expression of the density of the elastic free

energy as

gelastic =
1

2
k11

{

(SθCφθ′x − Cθθ
′
z)

2 + C2
θS2

φφ′2
x + 2CθSφφ′

x(SθCφθ′x − Cθθ
′
z)

}

+
1

2
k22

{

S2
φθ′2x + C2

θ (SθCφφ′
x − Cθφ

′
z)

2 − 2CθSφθ′x(SθCφφ′
x − Cθφ

′
z)

}

+
1

2
k33

{

(CθCφθ′x + Sθθ
′
z)

2 + C2
θ (CθCφφ′

x + Sθφ
′
z)

2
}

. (5)

Because the integral interval in Eq. (3) along the oz axis

is [δ cos(qx), l], this will bring some troubles in the theo-

retical calculation. To overcome this problem, a variable

transformation (x, y, z) → (x′, y′, z′) is introduced as the

following

x′ = x , y′ = y , z′ =
z − δ cos(qx)

l − δ cos(qx)
l . (6)

Substituting Eq. (6) into Eq. (3), one can write the follow-

ing expression of the elastic free energy in the new variable

Gelastic =

∫ Ly

−Ly

dy

∫ Lx

−Lx

dx′

∫ l

0

g̃elastic · Ddz′ , (7)

where g̃elastic is the density of the elastic free energy in the

new variable, D is a required factor for transforming the

integral variable and can be written by

D =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∂x

∂x′

∂x

∂y′

∂x
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∂y

∂x′

∂y

∂y′
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∂z′
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∂z
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∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 1 − 1

l
δ cos(qx′) . (8)

To simply analysis, one elastic constant approximation

(k11 = k22 = k33 = k) is assumed. In this case, Eq. (5)

can be re-expressed as

gelastic =
k

2
[θ′2x + θ′2z + C2

θ (φ′2
x + φ′2

z )

+ 2C2
θSφ(θ′xφ′

z − θ′zφ
′
x)] . (9)

The expression of g̃elastic is given by

g̃elastic =
k

2

{

(θ′x′ + Bθ′z′)2 + E2θ′2z′

+ C2
θ [(φ′

x′ + Bφ′
z′ )2 + E2φ′2

z′ ]

+ 2C2
θSφE(θ′x′φ′

z′ − θ′z′φ′
x′)

}

, (10)

where

E =
l

l − δ cos(qx′)
=

1

D
, B =

(l − z′)δq sin(qx′)

l − δ cos(qx′)
.

Supposing that gV = g̃elastic · D is the bulk density, and

considering the surface free energy, we can obtain the

whole Gibbs free energy of this system

G =

∫ Ly

−Ly

dy

∫ Lx

−Lx

dx′

∫ l

0

dz′gV

+

∫ Ly

−Ly

dy

∫ Lx

−Lx

dx′gs , (11)

where the expressions of gV and gs are

gV =
k

2

{ 1

E
(θ′x′ + Bθ′z′)2 + Eθ′2z′

+ C2
θ

[ 1

E
(φ′

x′ + Bφ′
z′)2 + Eφ′2

z′

]

+ 2C2
θSφ(θ′x′φ′

z′ − θ′z′φ′
x′)

}

, (12)

gs =
1

2
W1 cos2 θ sin2 φ +

1

2
W2 cos2 θ cos2 φ , (13)
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where θ and φ are the function of x′ and z′.

Substituting gV and gs into the Euler–Lagrange equ-

ations[21]

∂gV

∂θ
− ∂

∂x′

∂gV

∂θ′x′

− ∂

∂z′
∂gV

∂θ′z′

= 0 , (14)

∂gV

∂φ
− ∂

∂x′

∂gV

∂φ′
x′

− ∂

∂z′
∂gV

∂′φz′

= 0 , (15)

we can obtain the bulk equations respect to θ and φ

SθCθ

[

(Âφ)2 +
[(

E
∂

∂z′

)

φ
]2]

+ Â2θ+
(

E
∂

∂z′

)2

θ = 0 , (16)

Â(C2
θ Âφ) +

(

E
∂

∂z′

)[

C2
θ

(

E
∂

∂z′

)

φ
]

= 0 , (17)

where

Â =
∂

∂x′
+ B

∂

∂z′
.

At the upper boundary z′ = l, θ(x′, l) = 0, φ(x′, l) = 0.

θ and φ satisfy the following equations at the bottom

boundary z′ = 0,

∂gV

∂′θz′

∣

∣

∣

z′=0
=

∂gs

∂θ

∣

∣

∣

z′=0
, (18)

∂gV

∂φ′
z′

∣

∣

∣

z′=0
=

∂gs

∂φ

∣

∣

∣

z′=0
. (19)

Substituting Eqs. (12) and (13) into Eqs. (18) and (19),

respectively, we have

k
[B

E
Âθ + Eθ′z′ − C2

θSφφ′
x′

]∣

∣

∣

z′=0

= −[SθCθ(W1S
2
φ + W2C

2
φ)]|z′=0 , (20)

k
[B

E
Âφ + Eφ′

z′ + Sφθ′x′

]∣

∣

∣

z′=0

= [SφCφ(W1 − W2)]|z′=0 . (21)

Based on the above bulk and the boundary equa-

tions, the LC director’s profile in the NLC cell with a

grating substrate and a planar substrate can be calcu-

lated. We discuss the deformation of director for the cell

with different grating conditions. The elastic constant

of LC is k = 10 pN. Some parameters of the cell are

l = 5 µm or 10 µm, λ = 1 µm, δ = 100 nm or 1 µm,

A1 = 1.0 × 10−4 J/m2, A2 = 7.0 × 10−5 J/m2.[17−18] In

calculation, we only consider one period along the x direc-

tion. According to the different cell gaps and amplitudes,

we can obtain four combinations such as l = 5 µm and

δ = 100 nm, l = 10 µm, and δ = 100 nm, l = 5 µm, and

δ = 1 µm, l = 10 µm, and δ = 1 µm. The LC director’s

distribution are shown in Figs. 2–5.

Fig. 2 Distributions of liquid crystal director for l = 5 µm and δ = 100 nm. (a) Tilt angle; (b) Twist angle.

Fig. 3 Distributions of liquid crystal director for l = 10 µm and δ = 100 nm. (a) Tilt angle; (b) Twist angle.
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Fig. 4 Distributions of liquid crystal director for l = 5 µm and δ = 100 nm. (a) Tilt angle; (b) Twist angle.

Fig. 5 Distributions of liquid crystal director for l = 10 µm and δ = 100 nm. (a) Tilt angle; (b) Twist angle.

The anchoring of the grating substrate is decided by two factors: the interaction potential[22−23] between LC
molecules and the molecules of substrate, the increased elastic strain energy[14] induced by grating substrate. The
interaction potential leads to the LC molecules along the normal direction of grating surface. The increased elastic
strain energy can bring a deviation from the normal direction in the tilt and twist angles.[24] Because the increased
elastic strain energy is dependent on the surface geometry of the grating substrate, the different grating surfaces will
have the different influences on LC alignment on the grating substrate. These influences can extend to the whole LC
layer because of the elasticity of LC. From these figures, we can see this kind of variation. In the cell with the relatively
small amplitude and the relatively thick cell gap, the distributions of the tilt angle and the twist angle are linear in
the LC layer except a very thin layer near the grating surface from Fig. 3. This means that the tilt angle and the twist
angle of director are independent on the coordinate x when the cell has the relative thick LC layer and the relative
small amplitude. However, an opposite result is shown in the cell with the thin LC layer and large amplitude. The
nonlinear distributions of the tilt angle and the twist angle in the whole LC layer are shown in Figs. 4 and 5. This
implies that the tilt angle and the twist angle vary with the coordinates x and z.

In this paper, we give the detailed theoretical analysis on the problem of the grating surface and numerically
calculate the distribution of LC director in the NLC cell with a grating substrate and a planar substrate by the two-
dimensional finite-difference iterative method. For the relatively shallow groove and the relatively thick cell gap, the
director is only dependent on the coordinate z. As a result, some investigations on the NLC cell with grating substrate
in this case can be simplified.[12,25] On the contrary, for the case of the relatively deep groove and the relatively thin
cell gap, the director must be dependent on the coordinates x and z.
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