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In the application of a nematic liquid-crystal (LC) spatial light modulator, we derived the formula of retardation
dynamic response of the device by solving the Erickson–Leslie equation. Then, the response time of the 2π
phase change can be expressed as a function of the LC cell gap. The theoretical and experimental results all
indicate that the response time of 2π first decreases and then increases with the LC cell gap increasing, and there
is an optimal cell gap to obtain the shortest response time. Therefore, the method of optimizing the cell gap shows
potential to improve the switching frequency for all type of nematic LC optical device with specific modulation
quantity. © 2011 Optical Society of America
OCIS codes: 230.3720, 230.6120, 230.4110.

Liquid-crystal (LC) adaptive optics systems have been
widely investigated to solve the spatial resolution limita-
tion of the deformable mirror while it is used on larger
aperture telescopes. Furthermore, LC spatial light mod-
ulators (SLMs) have other advantages of high precision,
low cost, high reliability, and low power consumption.
However, the LC SLM also has the disadvantages of
low energy utilization and slow response speed. To solve
the energy loss caused by the polarization dependence
and the dispersion, many kinds of methods were pro-
posed [1–5]. To achieve the high-speed LC SLM, dual-
frequency LCs have been considered [6]. However, it
needs higher driving voltage, which is not compatible
to the very large scale integration (VLSI) technique.
Therefore, the active element number is very little and
the advantage of the LC SLM is lost. Nematic LCs are
compatible to the VLSI and easily manufactured into
the SLM. Gauza et al. have acquired a new nematic LC
material with a high response speed [7]. Now, Boulder
Nonlinear Systems, Inc.has fabricated the high speed
LC SLMs with 500Hz switching frequency. Consequently,
in this Letter, we only consider the nematic LC SLM to
improve the switching frequency.
The response time of the LC SLM is proportional to

the square of the LC thickness [1,8]. Wang et al. have dis-
cussed optical response time as a function of the cell gap
in detail [9]. Therefore, the LC cell gap should be as slight
as possible to obtain higher response speed. However,
a thinner LC layer produces lesser phase modulation.
A kinoform method is presented to solve this confliction,
and larger phase modulation and faster response can be
achieved [10]. Using this method, an LC SLM with the
phase modulation of 2π can produce several, even tens
of micrometer modulation magnitude to compensate
the distortion of atmospheric turbulence. Here, the total
phase modulation of the LC SLM must exceed 2π in the
kinoform mode, then the 2π phase is selected to modu-
late the wavefront. However, the response time at a
specific modulation quantity, e.g., the 2π phase, that is

affected by the cell gap does not suit the above principle,
and is unresolved. Consequently, it is necessary to opti-
mize the cell gap of the LC device to achieve the fastest
response speed of the 2π phase.

The response time of the nematic LC device includes
rise time and decay time; normally, the rise time is
smaller than the decay time. Therefore, the decay time is
studied as the response time of the device in the sections
below. In this Letter, hydrodynamics of LC is utilized to
analyze the effect of the cell gap on the response time
of the 2π phase. Then, an experiment is performed to
validate our analysis.

Figure 1 shows the device configuration of a parallel-
aligned LC cell which is regarded as a prototype of the
transmissive LC SLM. θ is the rotation angle between
LCs director and substrate, and d is the LC cell gap.

In the hydrodynamics of LCs, when backflow and
inertial effects are ignored, the director rotation of LCs
can be described by the Erickson–Leslie equation [11,12].

γ1
∂θ
∂t

¼ ðK11cos2θ þ K33sin2θÞ
∂2θ
∂z2

þ ðK33 − K11Þ sin θ cos θ
�
∂θ
∂z

�
2

þ ε0jΔεjE2 sin θ cos θ; ð1Þ

where γ1 is the rotational viscosity, K11 and K33 are the
splay and bend elastic constant, respectively, E is the

Fig. 1. Schematics of the parallel-aligned LC cell structure.
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electric field strength, and z is the position of the LC layer
from one substrate in the perpendicular direction.
When the decay response is studied, E ¼ 0, and an

approximation of K33 ∼ K11 is assumed; Eq. (1) can be
simplified to

γ1
∂θ
∂t

¼ K11
∂2θ
∂z2

: ð2Þ

In our analysis, we assume that the surface anchoring
energy is strong and the pretilt angle of LCs is 0; the
general solution of the differential equation is given
as:

θðz; tÞ ¼ θm sinðπz=dÞ expð−t=τdÞ; ð3Þ

where τd ¼ γ1d2=K11π2 is defined as the device decay
time which represents the LC director reorientation time
(1θ → 1=eθ), and θm is the maximum deformation angle,
whose position is located as d=2 at the z axis [13].
The relative retardationΔnd of the LC cell at a specific

instant can be expressed as

Δnd ¼
Z

d

0

nenoffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2
e cos2 θðzÞ þ n2

o sin2 θðzÞ
p dz − nod: ð4Þ

The average rotation angle �θ of all LCs is introduced to
simplify the integrating factor of Eq. (4), so the initial
phase change (E at an on-state) of the LC cell is approxi-
mately described as

δt0 ¼ Δnd
2π
λ ≅

2πd
λ

� nenoffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2
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e sin2 �θt0
p − no

�
:

ð5Þ

�θt0 is the initial average rotation angle at E on-state.
From Eq. (3), the average rotation angle of t instant can

be expressed as

�θðtÞ ¼ �θt0 expð−t=τdÞ: ð6Þ

Therefore, when the voltage is released instanta-
neously at t ¼ 0, the transmissive phase change of t
instant can be derived as

δðtÞ ≅ 2πd
λ

� nenoffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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�
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As the phase change of the LC device reaches 2π, we
obtain the equation δðt2πÞ ¼ δt0 þ 2π, and substitute
Eqs. (5) and (7) to it. The response time of the 2π phase
(t2π) can be derived as Eq. (8). t2π is the longest time of all
decay response within the 2π phase modulation, it repre-
sents the response performance of the LC device:

t2πðdÞ ¼ −τd ln
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When the value of t2π affected with the cell gap is
analyzed from Eq. (8), we select parameters of an isothio-
cyanate LC material to simulate t2πðdÞ which is a fast
response LC mixture reported by Gauza et al. [7]. The
following are parameters of LCs and the device:
ne ¼ 1:884, no ¼ 1:541 at incident light λ ¼ 635 nm,
γ1=K11 ¼ 8:310ms μm−2 when the drive voltage is applied
to the LC cell, and �θt0 is assumed to 1:065 rad. Figure 2
plots the cell gap-dependent t2π value of the parallel-
aligned LC cell. The t2π first decreases and then slowly
increases with the cell gap increasing for 635 nm incident
light, and there is an optimal d value at the phase stroke
of 2π to obtain the shortest time. The physical mechan-
ism of this phenomenon could be described as: if the
cell gap is thinner than optimal value, the phase change
increases acutely in the incipient stage but increases very
slowly when the modulation is close to the 2π phase.
Finally, the t2π is relatively long. While the cell gap is
thicker than the optimal value, the phase increases
slowly in all the 2π ranges, which results in a longer t2π
than that of the optimal thickness. Moreover, the similar
phenomena are obtained at the other incident light
wavelength with corresponding parameters, as shown
in Fig. 2.

In order to calculate the optimal cell gap value, we do
the derivation of Eq. (8) and make it equate to zero, as
shown in Eq. (9). The solution of Eq. (9), doptimal, is the
cell gap to obtain the fastest response speed. When the
above parameters of isothiocyanate LCs at λ ¼ 635 nm
were used, doptimal was 2:86 μm.

∂t2πðdÞ=∂d ¼ 0: ð9Þ
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Fig. 2. (Color online) Response time of the 2π phase
(λ ¼ 533nm, 635nm, 785 nm) depending on the LC cell gap
at �θt0 ¼ 1:065 rad. The filled squares with the error bar are
the experimental values at λ ¼ 635nm.
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In the experiment, a series of parallel-aligned LC cells
were prepared and injected with the isothiocyanate LC
materials. The cell gaps were determined by the interfer-
ence method. The pretilt of each LC cell was less than
1:0°. The LC cell was sandwiched between two crossed
polarizers, and the LC directors without applied voltage
is at 45° to the polarizing direction of a polarizer. A semi-
conductor laser (λ ¼ 635 nm) was used as incident light
whose direction is perpendicular to the substrate of the
LC device. The voltage 4:0Vp−p (squarewave, 2000Hz)
was applied to each LC cell. �θt0 of each cell was equiv-
alent [13] and calculated as 1.065 from Eq. (5). When the
voltage was released instantaneously, transient light
intensity was recorded by a photoreceiver (New focus,
Model 2031) and an oscillograph. The time-dependent
transmittance was converted to the time-dependent
phase change by the formula δ ¼ 2 arcsin

ffiffiffi
I

p
[14]. The

time between the released instant and instant of the 2π
phase was recorded as t2π of the cell. These t2π values are
also plotted in Fig. 2, and approximately accord with
the theoretical values from Eq. (8). Little deviation may
originate from theoretical calculation errors in the highly
deformed LC region [15] and the error of simplifying
average rotation angles.
Figure 3 shows the phase changes of two LC devices

depending on response instant. The cell gaps are 2.49
and 2:94 μm, respectively, and the voltage 4:0Vp−p was
released at 0ms. The discrete data points are experimen-
tal phase change values, and the solid lines are the
theoretical values given by Eq. (7). It is obvious that
the theoretical formula can closely describe the phase
change of the parallel-aligned LC cell during decay
response. In Fig. 3, the experimental response times of 2π
were measured as 8.2 and 7:1ms, respectively, which

were close to the theoretical values (7:93ms, 7:34ms).
The actual measurement result obviously indicates that
the LC cell with about an optimal cell gap can offer
shorter response time of 2π than that of the LC cell with
a nonoptimal cell gap.

In summary, the response time depending on the cell
gap have been analyzed when the target phase change is
2π. The derived formula can describe real-time phase
changes of the parallel-aligned LC cell in decay response.
The response time of the 2π phase change also can be
described by the formula with parameters d, ne, no,
K11, γ1, λ, and �θt0. The time t2π first decreased and then
slowly increased with the cell gap increasing; there is an
optimal cell gap to obtain the shortest response time of
2π. The optimal cell gap could be obtained via solving
the derivative equation. The experimental results also
indicate that the LC cell with an optimal cell gap can offer
the shortest response time of 2π. Therefore, the method
and formula in this Letter can improve the switching
frequency of the LC SLMs through the optimal cell gap.
Although the transmissive LC cell is employed to inves-
tigate as a prototype device of the SLM in this study, the
method of optimizing cell gap is not restricted to this type
device and can be applied to fabrication of any other LC
optical devices with specific modulation to improve the
response performance.
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Fig. 3. Experimental phase change (circles and squares) and
response time of 2π of the two parallel-aligned LC cells in decay
response at λ ¼ 635 nm. (a) d ¼ 2:49 μm, (b) d ¼ 2:94 μm. The
voltage 4:0Vp−p was released instantaneously at 0ms. The solid
lines in the figure are theoretical calculated values from Eq. (7).
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