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Abstract: The objective of this paper is to design phase shifting algorithms 
error-resistant to the nonlinearity of phase-shift error and photoelectric 
detector simultaneously. An effective construction approach is proposed 
based on self-convolution of the rectangle window to design algorithms 
with perfect zero point distribution, according to the fact that the error-
resistant capability is entirely determined by the number and order of zero 
points of Fourier transform of the related window function. Theoretical 
analysis and numerical simulations compared to the commercial 13-frame 
algorithm demonstrate the validity of the approach to design algorithms 
with enhanced error-resistant capability not only to CCD-caused harmonics 
but also to PZT ramping nonlinearity. 
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1. Introduction 

An effective means of profiling smooth surfaces interferometrically is to analyze a sequence 
of fringe patterns shifted in phase relative to each other [1]. The phase difference between an 
object wavefront and a reference wavefront is precisely controlled by a phase shift 
mechanism, and the resulting sequential irradiance distribution is exposed by a photoelectric 
detector. Then the object phase can be obtained from the arctangent of the ratio between two 
combinations of the observed irradiances, according to the chosen phase shifting algorithm. 

The most commonly used phase shift mechanism and photoelectric detector are 
piezoelectric transducer (PZT) and charge coupled device (CCD). However, due to the 
imperfect performance of hardware, systematic phase-shift errors caused by PZT nonlinearity 
and high-order harmonics caused by CCD nonlinearity usually result in systematic errors in 
retrieving the object information. Furthermore, metrology environments including vibration, 
airflow and temperature stability et al, would also lead to serious random errors. Therefore the 
phase shifting algorithm should be designed to suppress the effects of these error sources. 

Up to now, many studies have been reported on error-resistant algorithms by which 
systematic errors can be effectively minimized. The Fourier theory was introduced as a rule to 
evaluate the quality of algorithms and to derive new ones less sensitive to errors [2–5]. de 
Groot designed algorithms via integer approximation of well-known window functions such 
as the von Hanning window [6,7]. Hibino constructed algorithms to eliminate phase errors 
due to harmonics and phase-shift miscalibration error in terms of solving linear simultaneous 
equations [8]. Surrel used the characteristic polynomial theory to devise algorithms based on 
the one-to-one corresponding relation between phase shifting algorithms and characteristic 
polynomials [9]. Phillion used recursion rules to generate new algorithms that inherit good 
properties from the old ones [10]. Servin also used the Freischlad spectral analysis theory to 
combine new algorithms from the basic building blocks [11-12]. However, to our knowledge, 
the previous methods are either based on choosing the well-known window functions or based 
on somewhat complicated calculations. 

In this paper, a theoretically simple and effective approach is presented to derive new 
algorithms based on the self-convolution of a rectangle window, which allows generating 
customized algorithms with very simple calculations just like convolution. In addition, 
customization can achieve the aim that the constructed algorithms are not only error-resistant 
to the harmonics of interference signal with any order, but also error-resistant to the phase-
shift nonlinearity up to arbitrary order, which could evidently reduce the required 
performance of PZT and CCD. The error-resistant algorithms can be customized by only two 
procedures that are hardware calibration and data fitting. 

The paper is organized as follows: Section 2 introduces the basic theory about the effects 
of error sources in reconstructing the object phase and the principle to suppress systematic 
errors; Section 3 presents the core approach on how to construct the desired window function 
based on self-convolution of the rectangle window; Section 4 evaluates the self-designed 
algorithm via theoretical analysis to prove its error-resistant ability and characterizes it with 
several parameters. Finally Section 5 offers some numerical simulations for checking the 
performance of the self-designed algorithm compared with the Zygo 13-frame algorithm [13]. 

2. Principle 

The basic idea is to picture the phase shifting algorithms as a filtering process in the 
frequency domain and to analyze the performance of various algorithms according to their 
frequency response, following the Freischlad Fourier transform (FT) spectral analysis theory 
[2]. 

Most phase shifting algorithms can be characterized as follows, 

  1tan arg arg .n n n n n n n n n

n n n n

s I c I c is I w I       
         

     
     (1) 

Similarly, they can be expressed in a continuous form, 
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     arg ,w t I t dt    (2) 

where sn and cn are the coefficients of algorithms, wn is the complex coefficients, In is the nth 

fringe,  w t is the continuous window function and  I t is the continuous fringe signal. 

Using Parseval’s identity, Eq. (2) can be rewritten by, 

     *arg ,W v I v dv    (3) 

where  W v and  I v are the FT of the window function  w t and the signal  I t  respectively. 

In view of the nonlinearity of PZT ramping and CCD intensity response, the mathematical 
model of a distorted signal could be described as the following form [3,5,9-10], 

   0

0 1

cos ,
q p

j

k k j

k j

I t k v t t  
 

  
      

  
   (4) 

where
k and

k are the amplitudes and phases of the kth-order harmonics; 
0 equals zero and 

1 is the object phase; v0 is the PZT ramping velocity and j is the nonlinear coefficients. 

Provided that the coefficients j are small enough, the signal  I t  can be approximated by 

a first-order Taylor series expansion as follows, 

      0

1

exp exp 1 ,
2

q p
jk

k j

k q j

I t i ikv t ik t


 
 

  
    

  
   (5) 

where the Euler formula      exp cos sini i     is used and ,k k k k       . 

The Fourier transform of the signal can be written by, 

          1

0 0

1

exp .
2

q p
jjk

k j

k q j

I v i v kv k i v kv


   

 

 
    

 
   (6) 

As depicted in Fig. 1, the harmonics of the signal spectrum are mainly the integer multiple 
of the PZT linear ramping velocity as shown in Fig. 1. 
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Fig. 1. The signal spectrum 
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Fig. 2. The amplitude spectrum of windows 

According to the property of delta function, 

         0 0 , integer,
j j

x t t t dt x t j is    

Equation (3) can be evolved into the following form, 

          
1

0 0

1

arg exp .
2

q p
j jk

k j

k q j

i W kv k i W kv


  




 

  
      

  
   (7) 

So the necessary and sufficient condition for
1    is as follows, 

 
   0 0, 0,1, , , , , 2,0,1, , .

j
W kv j p k q q      (8) 

From Eq. (8), the FT of the window function must have 2q equidistant multiple roots of 

order p+1 except at k = 1. Namely it can filter out the unwanted components with the first 
negative fundamental frequency passed. An example is shown in Fig. 2. The greater the p and 
q values satisfy Eq. (8), the stronger the ability of the algorithm error-resistant to the PZT and 
CCD nonlinearity will be, but always at the cost of more needed frames. In what follows, a 
self-convolution construction method is presented. 

3. Design method based on self-convolution 

As is known, the Fourier transform of a rectangle window is a sinc function which has 
equidistant simple roots [7]. If the rectangle window is convolved with itself once, the Fourier 
transform of the obtained window function will have multiple roots of order two, increased by 
one compared to the rectangle window. The theoretical basis is that the Fourier transform of 
convolution of two functions in the time domain is equal to the products of their Fourier 
transforms in the frequency domain [7]. When the rectangle window is convolved with itself 
repeatedly, the window functions which meet the requirements of Eq. (8) might be obtained. 

Firstly, construct a time domain rectangle window function as follows, 

  
0

0

00

1, 2 2
, ,

0, 2

t T
x t T

vt T

 
 



 (9) 

whose Fourier transform is a sinc function, 

  
0 0

2
sin c ,

v
X v

v v




 
  

 
 (10) 

here  X v has simple roots at
0v kv for all but 0k  . 

According to the convolution property of Fourier transform, define a function as follows, 
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       ,
p

y t x t x t    (11) 

so its Fourier transform is the p + 1 power of a sinc function, 

    1 ,pY v X v  (12) 

where  Y v has multiple roots of order p+1 at
0v kv for all but 0k  . 

Based on the frequency-shifting property of Fourier transform, define a window function, 

      0exp ,w t iv t y t   (13) 

so its Fourier transform is, 

    0 ,cW v Y v v   (14) 

Obviously  cW v has multiple roots of order p+1 at
0v kv for all but 1k   . 

In practice, a few fringe intensity values are discretely sampled in interferometry. Hence 
the window function w(t) should be sampled. Suppose the sampling function is, 

   ,s s

m

p t t mT




   

so the discrete sampling window is, 

      ,d sw t w t p t  

and the corresponding Fourier transform is, 

    
1 2

, .d c s s

ms s

W v W v mv v
T T





    (15) 

As seen from Eq. (15),  dW v  is a periodic function with period
sv , and  cW v has 

equidistant roots at the integral multiple of the fundamental frequency
0v , so in order to make 

 dW v  meet the requirement in Eq. (8), the following condition must be satisfied, 

 
0

2 and integer.sv
r q r is

v
    (16) 

Up to now, the continuous case of designing the window function of phase shifting 
algorithm is finished. Next it’s the turn to show the discrete realization of the algorithm. 

The construction method is very simple: firstly construct a vector of r(= q+2) dimensions; 
secondly self-convolve the vector p times; at last multiply the self-convolved vector with a 
phase factor to shift the frequency components of the Fourier domain. Then the coefficients of 
the algorithm are the real and imaginary parts respectively, and the phase shift step 

is 2 r   . The number of fringe patterns needed is (p+1)r-p. Usually r = q+2 is chosen to 

design the algorithm with the least number of fringes. 
For example, if the nonlinear orders of PZT and CCD are 3 and 2 respectively, that is p = 

3, q = 2, the discrete approach can be done as follows: A four dimensional vector 

 1 1 1 1a   is constructed first, then self-convolve it three times, so a vector is derived 

as, 

 1 4 10 20 31 40 44 40 31 20 10 4 1 ,b   

after shifting the frequency components, the following vector is obtained, 
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 1 4 10 20 31 40 44 40 31 20 10 4 1 .w i i i i i i        

Then the parameters of our 13-frame phase shifting algorithm are 

 

   

   

imag 0 4 0 20 0 40 0 40 0 20 0 4 0

real 1 0 10 0 31 0 44 0 31 0 10 0 1

2

s w

c w




    

    

 

 (17) 

4. Theoretical analysis 

To verify the approach developed in Section 3, we analyze the algorithm in Eq. (17) in theory. 
The window function and its Fourier transform curves are shown in Fig. 3. 
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Fig. 3. The correlative curve of the designed phase shifting algorithm in Eq. (17).  
(a) The window function; (b) its amplitude spectrum. 

In Fig. 3(b), it is obvious that the period of the amplitude spectrum is 4 and there are 

multiple roots of order 4 at integers except at 1, which means that the Fourier transforms of 
the associated window function satisfy the following equation, 

 
       0 0, 0,1,2,3, 2,0,1,2

j
W kv j k W v    and isof period 4.  (18) 

So we can affirm that this algorithm should be error-resistant to as high as third-order 
phase-shift nonlinearity and second-order signal nonlinearity simultaneously. 

To provide evidence for the claim, we calibrate two main interferometer hardware devices 
including PZT and CCD, and then obtain the following calibration curves shown in Fig. 4(a) 
and Fig. 4(b). The measured values are fitted with polynomials, in which the well fitted orders 
of PZT and CCD values are three and two respectively. 
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Fig. 4. The calibration curve of hardware devices. (a) PZT calibration curve; (b) CCD 
calibration curve. Inside each curve, the red marks mean measured points and the blue line 
mean fitted polynomial curve. 
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The fitted equation of the PZT curve is, 

 
   

 

2 3

0 1 2 3

2 315.79 0.25 0.00057 0.00000031

P x p x p x p x p x

x x x x

    

     
 (19) 

and the fitted equation of the CCD curve is, 

   2 2

0 1 2 8.93 180.30 42.85 ,C x a a x a x x x       (20) 

where p1, p2 and p3 are the PZT miscalibration error, second-order and third-order 
nonlinearity coefficients respectively. The coefficients a0, a1 and a2 of CCD curve will affect 
the amplitude of harmonics of an interference signal. Because the coefficients p1, p2 and p3 are 
close to zero, taking first-order Taylor series approximation like Eq. (5) is reasonable. 

An ideal interference signal is 

 0 1 cos ,oI A A    

but according to the CCD fitted model, the nonlinearity will distort the signal as follows, 

 

 

     

   

2

0 1 2

2 2

2 2 1 2 1

0 1 0 2 0 1 1 2 0 1

0 1 2

2 cos cos 2
2 2

cos cos 2

r o o oI C I a a I a I

a A a A
a a A a A a A a A A

B B B

 

 

   

 
       
 

  

 (21) 

So the nonlinearity of CCD will result in harmonics of higher order. The higher the CCD 
nonlinearity order is, the higher order the distorted signal harmonics will have. 

To take into account the nonlinearity of PZT, the sampled frame of the interference signal 
will be distorted further as follows, 

      

      

0 1 0 2 0

0

2
2 31

0 1 0 2 0 3 0

2
2 31

0 1 0 2 0 3 0

2

4 4
cos cos 2

4 4

exp 1
2 4 4

exp 1
2 4 4

e
2

nI B B P nv B P nv

B

B
i nv ip nv ip nv ip nv

B
i nv ip nv ip nv ip nv

B

   
 

   

 


 

 


 

       
              

       



  
         

  
          

       

      

2
2 3

0 1 0 2 0 3 0

2
2 32

0 1 0 2 0 3 0

xp 2 1 2 2 2
4 4

exp 2 1 2 2 2
2 4 4

i nv ip nv ip nv ip nv

B
i nv ip nv ip nv ip nv

 


 

 


 

  
        

  
          
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  
             

  
            

 
2

2 2 2 3 32

1 0 2 0 3 0exp 2 1 2 2 2
2 4 4

n

B
i I ip v n ip v n ip v n

 

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




  
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where 
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According to the differential property of Fourier transform, 
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the Fourier transform of 
nI  can be expressed as, 

 

 

 

 

0

0

21 2 1 3 1

1 2 3 2 4 31

1 0 2 0 3 02 3

21 2 1 3 1

1 2 3 2 4 31

1 0 2 0 3 02 3

22

exp
2 4 4

exp
2 4 4

exp 2
2

v v

v v v

v

v v v

v

v

I B I

dI d I d IB
i I i p v i p v i p v

dv dv dv

dI d I d IB
i I i p v i p v i p v

dv dv dv

B
i I

 


 

 


 



  



 

  
           

  
            

 

 

22 2 2 3 2

2 3 2 4 3

1 0 2 0 3 02 3

22 2 2 3 2

2 2 3 2 4 32

1 0 2 0 3 02 3

2 2 2
4 4

exp 2 2 2 2
2 4 4

v v v

v v v

v

dI d I d I
i p v i p v i p v

dv dv dv

dI d I d IB
i I i p v i p v i p v

dv dv dv

 

 

 


 

  
         

  
            

(23) 

where 

   

   

 

0 0 1 1

0

1 1 2 2

0 0

2 2

0

2 2 2 2

2 2 2 2 2

2 2 2

n v n v

l l

n v n v

l l

n v

l

I I v l I I v v l

I I v v l I I v v l

I I v v l

     

     

  

 

 

 
 

 


 



      

       

   

 

 



 

According to Eq. (3), one can get 
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To ensure   , the Fourier transform  W v  must satisfy the following equation, 

     0 2 0, 0,1,2,3, 2,0,1,2, , , ,
j

W kv l j k l         

which is consistent with Eq. (18) as long as
02 v equals four. So it’s proved that the self-

designed 13-frame algorithm is extremely error-resistant to three-order PZT nonlinearity and 
two-order CCD nonlinearity at the same time. 

The suppression ability of a phase shifting algorithm to higher harmonics can be estimated 
by the highest side-lobe level [7]. The smaller level stands for better suppression ability to 
harmonics. The immunity of a phase shifting algorithm to phase-shift nonlinearity can be 
estimated by the order of zeros at the integer harmonics of the window function. The bigger 
the value of the order of zeros is, the stronger the error-resistant ability to phase-shift 
nonlinearity will be. The sensitivity of a phase shifting algorithm to random noise can be 
estimated by the equivalent noise bandwidth (ENBW for short [5,7,10]). Usually the smaller 
the ENBW value is, the stronger the error-resistant capability to the random noise will be. 

Table 1. Performance of several algorithms for higher harmonic suppression,  
compensation for phase-shift error and sensitivity to random noise. 

Window functions 
Highest side-lobe 

level (dB) 
Capability for phase-

shift error 
Sensitivity to 
random noise 

Number of 
Frames 

Rectangle 12 None 1.00 4 

self-convolved once 23 of first order 1.33 7 

self-convolved twice 34 of second order 1.65 10 

self-convolved thrice 45 of third order 1.92 13 

von Hanning 32 moderate 1.50 13 

Hamming 38 moderate 1.36 13 

Table 1 shows the error-resistant capability of algorithms with several window functions. 
When the rectangle window is self-convolved repeatedly, the side-lobe level will fall off 
quickly and the order of error-resistant capability for phase-shift nonlinearity will increase 
evidently, but at the cost of being more sensitive to random noise. 

5. Numerical simulations 

Next we will give some numerical simulations to compare the Zygo 13-frame high resolution 
phase shifting algorithm [4] and the self-designed 13-frame algorithm expressed in Eq. (17). 

The amplitude and log-amplitude spectrums of the Zygo and self-designed algorithms are 
shown in Fig. 5(a) and Fig. 5(b) respectively. Obviously the highest side-lobe level of the 
self-designed algorithm is smaller, and the spectrum curve of the self-designed algorithm 
touches zeros more smoothly at integer harmonics, which means that the spectrum of the self-
designed algorithm has higher-order derivatives equal to zero than the Zygo algorithm. It 
indicates more error-resistant ability to harmonics and phase-shift nonlinearity. 

The PV phase error versus the PZT miscalibration coefficient, second-order nonlinearity 
coefficient and third-order nonlinearity coefficient curves of the two algorithms is shown in 
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Fig. 5(c), Fig. 5(d) and Fig. 5(e) respectively. In all curves, the second harmonic component is 
with amplitude 20% of the fundamental, and the PZT miscalibration, second-order and third-

order nonlinearity coefficients ranges from 0.2 to 0.2, from 0.04 to 0.04, from 0.008 to 
0.008 respectively. As seen from the curves, the PV phase errors for the self-designed 
algorithm are much smaller than those for the Zygo algorithm on a large scale. So it proves 
that the self-designed algorithm is more error-resistant to PZT nonlinearity errors. 

The PV phase error versus the coefficient of signal second order harmonics curves of two 
algorithms is shown in Fig. 5(f), where the PZT miscalibration, second-order nonlinearity and 

third-order nonlinearity coefficients are 0.2, 0.04 and 0.008 respectively and the second 
order harmonic coefficient ranges from 0 to 0.4. Obviously the PV phase error for the self-
designed algorithm is much smaller than that for the Zygo algorithm on a large scale. Even if 
the second order harmonic coefficient reaches 0.4 of the fundamental one, the PV phase error 
of the self-designed algorithm would be just 0.025 radians, far smaller than 0.2 radians from 
the Zygo algorithm. So it proves that the self-designed algorithm is more error-resistant to 
high-order harmonics resulted from CCD nonlinearity. 
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Fig. 5. Comparison of Zygo 13-frame and self-designed algorithm. (a) The amplitude spectrum 
of two algorithms; (b) the log-amplitude spectrum of two algorithms; (c) the PV phase error 
versus the miscalibration coefficient; (d) the PV phase error versus the second-order 
nonlinearity coefficient; (e) the PV phase error versus the third-order nonlinearity coefficient; 
(f) the PV phase error versus the coefficient of second order signal harmonics. 
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In general, to reach the same accuracy, the self-designed 13-frame algorithm allows a 
larger range of the miscalibration or nonlinearity coefficients of PZT and CCD compared to 
the Zygo 13-frame algorithm, which means that the self-designed phase shifting algorithm can 
tolerate greater systematic errors in the interferometer hardware. 

6. Summary 

This paper presents a comprehensive theory to design a new effective phase shifting algorithm 
error-resistant to various error sources, such as the phase-shift nonlinearity, the existing high-
order harmonic signal and random noise et al. Through analysis, we know that the merits of 
the phase shifting algorithms completely depend on the Fourier frequency domain 
characteristics of the corresponding window function. And we also use the self-convolution of 
the rectangle window to design the satisfying window function. According to the analysis and 
simulation section, the self-designed phase shifting algorithm is very straightforward and 
more error-resistant to error sources. Future research will focus on how to reduce the random 
errors simultaneously while reducing the systematic errors. 
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