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［摘要］ 对空化射流抛光喷嘴的流场整体进行了仿真分析。对锥形射流喷嘴与旋转射流喷嘴的流场进行模拟计
算，得到流场中速度与压力分布图，工件表面处速度和压力都呈现 M形分布。旋转射流因为具有旋转速度而有更
好的掺混能力，空化能力更强。综合比较，旋转射流喷嘴更适合空化射流的应用。
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Numerical Simulation of Nanoparticle Colloid Jet Machining Nozzle
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［Abstract］Cavitating liquid jet machining nozzle flows was simulated and analyzed． Cone － shaped jet nozzle and swirling jet nozzle
flow field distribution characteristics were compared． Axial velocity met the maximum value near the nozzle outlet and decreased． Veloc-
ity and pressure were both appeared M form on the workpiece surface，so the removal functions were M form． Swirling jet had better tur-
bulent blending and cavitating capacity due to the tangential velocity． The swirling jet nozzle was more suitable for cavitating jet machi-
ning．
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引言

纳米颗粒胶体射流抛光技术是一种新提出的应用
于先进光学制造、薄膜科学与微电子领域的超光滑表面
加工方法，通过界面化学反应与流体动力作用实现纳米
级粗糙度和原子去除的加工方法。在胶体射流动压作
用区内，纳米颗粒与工件表面原子发生界面化学反应而
粘附在工件表面上，由于流动胶体的粘滞拖拽作用，迫
使纳米颗粒与发生反应的表面原子一起离开工件表面，

可以有效使工件表面达到一个新的超光滑表面状态，明
显降低工件表面粗糙度［1］，但去除效率仍然不高。

空化水射流在石油钻井、岩石切割、清洗行业中已
经得到了很广泛应用，由于空化现象的存在经验证比
普通射流有更高的材料去除效率［2］。另外，空泡溃灭
时的瞬时高温高压会导致的直接热分解、自由基反应
和超临界水氧化［3］，而使得液体中局部产生高浓度的
OH －，这有利于提高胶体射流抛光去除效率。为此提
出将空化射流与纳米颗粒胶体射流抛光结合起来，目
标是探索一种新的纳米颗粒胶体空化射流抛光技术，
以提高其去除效率，为发展一种高效的超光滑表面加
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工方法提供基础。
为了描述抛光去除函数，本文用 CFD ( 计算机流

体力学) 软件 FLUENT对锥形射流喷嘴与旋转射流喷
嘴流场进行模拟计算并作分析与比较，为纳米颗粒胶
体空化射流抛光喷嘴的选择以及后期实验结果的分析
提供参考。

1 纳米颗粒胶体空化射流抛光原理

纳米颗粒胶体空化射流抛光的工作原理从两方面
说明:

①工件表面的活性基团会与纳米颗粒胶体中的
OH －离子发生化学吸附，胶体射流中有高表面能与化学
活性的纳米颗粒与工件碰撞以后会激发界面反应而停
留在工件表面，在流动胶体液的粘滞作用下将工件表面
原子剥离工件表面，从而实现工件材料的原子级去除。

②空化现象是液体中某处的压强低于在该温度下
某特定值( 与蒸汽压强相近) ，在该处将出现的空化气
泡的产生、发展、长大与溃灭的整个过程。一方面，空
泡溃灭时在空泡周围极小范围内产生瞬时的高温与高
压，并形成强烈的冲击波与高速( 100m /s 以上) 微射
流，会大大加强射流与工件表面材料的相互作用;另一
方面空泡溃灭时发生水的热分解( H2O→H + + OH － )

会在局部生成高浓度的 OH －，提高胶体颗粒界面化学
反应的速率，从而使得抛光去除速率增加。

2 两种射流喷嘴流场仿真与分析

为了找到更适合进行纳米颗粒胶体空化射流抛光
的喷嘴，需要了解胶体射流流场相关参数以及抛光去
除函数。为此对常用的锥型射流喷嘴和旋转射流喷嘴
进行流场模拟计算分析。

对流场的数值模拟计算中，进行了相应的假设:
①假定入口截面与出口截面压力均匀分布，工作

环境温度为 300K。
②纳米颗粒胶体为不可压缩的均匀流体。
边界条件与参数设置:
压力入口: 10MPa 泵压 ; 压力出口: 0． 103MPa

( 围压) ;绝热无滑移壁面条件。
材料特性:纳米颗粒胶体液的密度为 1150kg /m3，

粘度为 0． 0013kg / ( m × s ) ; 水蒸气的密度为 0． 5542
kg /m3，粘度为 1． 34 × 10 －5kg / ( m × s)
2． 1 锥形射流喷嘴数值模拟计算与分析
2． 1． 1 锥形喷嘴结构与网格划分

图 1 锥形射流喷嘴结构

锥形射流喷嘴
结构如图 1 所示，
充分考虑流场的实
际分布进行建模，
网格在喷嘴喉部进
行加密，网格划分
结果如图 2 所示:

图 2 锥形射流喷嘴网格划分
2． 1． 2 仿真结果与分析

①速度与压力分布图
选用 Mixture模型与 K － ε 紊流模型，并采用 SIM-

PLE压力速度耦合算法对喷嘴流场进行计算，观察计
算残差图，等待计算收敛以后，查看速度场和压力云图
如图 3 所示。

( a) 速度云图 ( b) 动压云图 ( c) 静压云图
图 3 锥形喷嘴射流流场的速度与压力云图
沿轴向从喷嘴入口到收缩段，流体速度因截面积

减小而逐渐增大，动压升高，静压降低。在喷嘴喉部之
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外，速度继续增大一段然后减小。这是因为胶体被看
作不可压缩流体，在喷嘴出口处，胶体因为膨胀作用速
度继续增大。射流因与周围液体发生摩擦剪切作用而
使射流速度减小，但因为喷距很短 ( 4mm) ，速度减少
量比较小。

射流冲击到工件表面时，在射流中心与工件表面的
交点( 滞点) ，射流将动能一部分转化为滞点的压能。

②工件表面处的速度与压力分布

( a) 轴向速度 ( b) 径向速度 ( c) 动压力
图 4 工件表面处沿径向位置的速度与压力分布
从工件表面处的速度分布图可以看出，轴向速度

沿半径增大先减小后增大，切向速度在抛光区中心比
较大，然后逐渐减小。抛光区动压在抛光中心处最低，
沿径向先迅速增大然后减小。

③相含量分布图

图 5 锥形射流喷嘴
相含量分布图( 水蒸气)

液体中产生空化现
象时，会在产生空化区，
也就是气相区。流场中
气相含量分布图如图 5
所示，在射流与工件作用
区两侧空化气泡比较多，
在工件的表面射流中心
两侧产生对称的空化区，
但空化气泡的含量很低，射流两侧出现的对称空化区
中气含量不足 10% 。
2． 2 旋转射流喷嘴的流场数值模拟计算与分析
2． 2． 1 旋转射流喷嘴结构与网格划分

图 6 导向叶轮

旋转射流喷嘴是在
锥形喷嘴收缩段内放置
一个导向叶轮( 如图 6 ) ，
液体进入喷嘴内部经过
导向叶轮加旋后成为具
有一定旋度的旋转射流。
用 SolidWorks 对喷嘴内
流体计算域进行建模，导
入 gambit 进行分区域网

格划分，对喷嘴出口处以及旋转叶片周围的流体进行
网格细化以后如图 7 所示。

图 7 旋转射流喷嘴网格划分
2． 2． 2 仿真结果与分析

选用 Mixture 多相流模型，并采用 SIMPLE 压力速
度耦合算法对喷嘴流场进行计算。

①中截面速度场与压力场
中截面速度场与压力场云图如图 8 所示。

( a) 速度 ( b) 动压 ( c) 静压
图 8 中截面速度场与压力场云图

图 8 中可以看出，旋转叶片射流喷嘴与锥形喷嘴
流场的速度与压力基本趋势一致，在导向叶轮导向作
用下，射流成为低旋射流。旋转射流等速核比普通锥
形射流喷嘴较小，是因为旋转射流会不断卷入周围静
止的液体，发生紊动掺混作用，不断与周围液体发生动
量交换，速度快速衰减，等速核较短。

②不同喷距处的速度与压力分布旋转射流由于旋
转叶片的导流作用，流体具有旋转速度 ( 切向速度) ，
图 9 显示了喷嘴出口处与喷距分别为 1mm、2mm、3mm
的截面上速度随径向位置变化图，该结果与文献［4 － 5］

比较符合。

( a) 轴向速度 ( b) 径向速度
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( c) 切向速度 ( d) 动压力
图 9 不同喷距速度与压力沿径向位置分布
由图 9 可以看出，旋转射流速度各分量中轴

向速度最大。射流轴向速度为高斯分布，存在一定程
度衰减;切向速度呈现以射流中心为对称点的 N 形轴
对称分布，在轴心处最小，轴心两侧达到峰值后减小。
旋转射流的卷吸作用也就是因为切向速度分量引起了
角动量通量，因而射流两侧切向速度大的地方射流卷
吸混合能力也就越强;射流径向速度，在射流中心处比
较小，随半径增大而逐渐增大，到达最大值后开始衰
减，以上对于旋转射流速度各分量随径向位置的变化
与文献 5 中描述相符合。射流不同喷距处的动压随着
喷距的增加而减小，在工件表面处呈现 M形分布。

③工件表面的速度与压力分布
射流动压作用区内的速度与压力分布是射流抛光

去除函数的重要的影响因素。因在模拟计算中将工件
表面视作刚性固壁，选距工件表面 0． 05mm 的表面作
为工件表面进行分析其速度与压力分布如图 10 所示:

( a) 轴向速度 ( b) 径向速度 ( c) 切向速度

( d) 合速度 ( b) 动压
图 10 工件表面沿径向位置的速度与压力

图 10 中看出，工件表面处的轴向速度呈现近似高
斯分布，径向速度为 N 形分布，切向速度为近似 N 形
分布，合速度与动压都呈现 M 形分布，中心速度与压
力都比较小，在抛光中心两侧速度和压力都先增大到
最大值然后减小。

④相含量分布图

旋转速度的存在使周围液体紊动掺混能力增强，
使射流抛光动压作用区周围压力波动，为空泡的产生
与长大创造了很好的条件。流场中空化区分布图如图
11 所示，在喉部入口处的空化区一直向后发展到淹没
射流区，最高含量达 99%，空化区的形状与文献［6］中
相符。

图 11 气相含量分布图( 空化区)

用纳米颗粒胶体在旋转射流喷嘴流场中对平面光
学玻璃 K9 进行抛光，十分钟后用表面轮廓仪测量垂
直入射时纳米颗粒胶体射流抛光的实际材料去除轮
廓，如图 12 所示。图中可以看出，抛光的去除区为近
似 M形。

图 12 抛光后的平面光学玻璃 K9 表面轮廓

3 结论

① 锥形射流喷嘴流场仿真的结果显示速度沿轴
向增大，到喷嘴出口之外达到最大值，然后减小。

② 锥形射流作用区，工件表面处轴向速度为高斯
分布，切向速度为 N形对称分布，压力呈现 M 形，空化
程度比较小。

③ 旋转射流喷嘴轴向速度与径向速度分布与锥
形射流类似，多了旋转速度分量，增强了射流与周围介
质的紊动掺混能力，空化区的范围与空化程度大，射流
核心段长度比锥形射流短。

( 下转第 11 页)
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1200Hz，由于切削激振力的频率小于薄壁回转体工件
的 1 阶固有频率，工件的振幅较小;当切削激振力频率
接近 1400Hz，振幅迅速增大，这与模态分析得到的工
件 1 固有频率 1396． 5Hz相对应，当切削激振力频率等
于 1396． 5Hz时，工件产生 1 阶共振，振幅为 0． 011mm;
切削激振力频率大于 1400Hz 后，工件振幅迅速减小。

为避免产生共振，切削力频率应远离共振频率。
以六齿铣刀加工 LY12CZ 薄壁回转体工件为例，由切
削激振力的频率计算公式 w = 2πnE /60 可得到当铣刀
转速为 2224r /min 时，切削力频率与共振频率相等从
而产生共振。故选在用六齿铣刀加工 LY12CZ 薄壁回
转体工件时，铣刀转速应远离这个速度，从而使切削力
频率避开共振频率区域，避免共振的产生。

4 结论

本文基于商业有限元软件 ANSYS，进行了轴向车
铣加工薄壁回转体工件的动力学有限元分析。以
LY12CZ铝合金薄壁回转体工件为例，计算了工件的
一阶固有频率，通过对工件的谐响应分析，得出工件的
振幅随刀具转速的变化。有限元分析结果与实验测量
结果吻合较好，验证了薄壁回转体工件的动力学有限
元分析的合理性。分析结果表明，车铣加工过程中应

合理选择铣刀转速，使切削频率避开共振频率。采用
六齿铣刀加工 LY12CZ 薄壁回转体工件时，铣刀转速
应远离 ，从而使切削力频率避开共振频率区域，避免
共振的产生。
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( 上接第 8 页)
④ 旋转射流作用区，工件表面处速度和压力都呈

现 M形，切向速度为近似 N形分布。
⑤ 流场中速度与压力分布以及空化区的特征为

实验提供一定的理论指导作用。
综合考虑射流场中与工件表面处的速度、压力分

布以及空化区的形状与空化程度，旋转射流喷嘴在胶
体空化射流中比锥形射流喷嘴具有更优越的特性。
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