金纳米棒对 SPR 生物传感器灵敏度的增强效应^{*}

李峰杰^{1,2},郝 鹏¹,吴一辉¹

(1.中国科学院 长春光学精密机械与物理研究所 应用光学国家重点实验室, 吉林 长春 130033;2.中国科学院 研究生院,北京 100039)

摘 要:研究不同长径比的金纳米棒对表面等离子体共振(SPR)生物传感器灵敏度的增强效应。利用晶 种生长法合成不同长径比的金纳米棒,并对其形貌、光学性质进行表征。采用双抗体夹心法,以金纳米棒 与羊抗人 IgG 的偶联体作为第二抗体,利用实验室自行研制的波长调制 SPR 生物传感器对人 IgG 进行测 试。实验结果表明:不同长径比的金纳米棒可使人 IgG (1 mg/L) 与羊抗人 IgG 的反应信号增强 20 ~ 100 倍;长径比为 2、纵向等离子体共振吸收峰为 630 nm 的金纳米棒的增强倍数最大,为 90~100 倍;利用 此金纳米棒增强后,可将 SPR 传感器对人 IgG 的最低检出限由 500 μg/L 减小到 10 μg/L,灵敏度提高 50 倍。金纳米棒能大幅度提高 SPR 生物传感器的灵敏度,且金纳米棒的纵向等离子体共振吸收峰越接近 SPR 分析仪的共振波长 增强效应越好。

关键词:表面等离体共振生物传感器;金纳米棒;长径比;夹心法 中图分类号:TP212 文献标识码:A 文章编号:1000-9787(2011)07-0020-04

Sensitivity enhancement effect of gold nanorods on SPR biosensor^{*}

LI Feng-jie^{1 2}, HAO Peng¹, WU Yi-hui¹

(1. State Key Laboratory of Applied Optics , Changchun Institute of Optics , Fine Mechanics and Physics , Chinese Academy of Sciences , Changchun 130033 , China;
2. Graduate University of Chinese Academy of Sciences , Beijing 100039 , China)

Abstract: The sensitivity enhancement effect of different aspect ratio on gold nanorods (GNR) surface plasmon resonance (SPR) biosensor is studied. GNR with different aspect ratio are synthesized using typical seed-mediated solution phase approach. Characterization of those geometric features and optics properties are performed. By using double antibody sandwich technique ,as the second antibody the GNR-antibody ,laboratory-designed wavelength modulation SPR biosensor is used to test human IgG. It is found that GNR with different aspect ratio is 2 and longitudinal SPR is 630nm can achieve maximum enhancement of biosensor sensitivity ,about 90 ~ 100 times; using this gold nanorods the detection sensitivity of the SPR biosensor is estimated to 10 μ g/L ,which is 50 times more sensitive than the SPR biosensor without gold nanorods. GNR could significantly enhance the sensitivity of SPR biosensor , and maximum enhancement effect can be achieved when the longitudinal surface plasmon resonance peak wavelength of GNR functionally matches the surface plasmon wavelength.

Key words: surface plasmon resonance (SPR) biosensor; gold nanorods (GNR); aspect ratio; sandwich technique

0 引 言

自 Liedberg 等人于 1983 年首次运用表面等离子体共 振(surface plasmon resonance SPR) 技术进行抗原抗体相互 作用分析 并逐步将此项技术引入生物传感器领域以来, SPR 技术已广泛应用于分子生物学、医学、环境科学等领 域。实践证明,SPR 传感器与传统检测手段相比,具有无需 对样品进行标记、实时动态检测、高灵敏度等突出优点。因 而,其在生物分子反应研究、免疫学、早期癌症检测等领域 中有着巨大的优势。但是,SPR 传感技术的检测精度要求 在敏感膜上的生物分子吸附量大于1pg/mm²,这对于低浓 度、小分子量分子来说是不够的^[1-3]。

为了克服这个缺点,一些科研人士将金属纳米粒子用 于 SPR 生物传感器中,能大幅度增强小的生物分子的反应 信号。1994 年,Lenung T 等人就从理论上提出了粒子增强 提高 SPR 灵敏度的不规则团(fractal-cluster)模式^[4]。1998 年,He Lin 等人提出了利用胶体金与贵金属薄膜间的电磁 场耦合谐振效应和胶体金的表面富积效应,提高 SPR 检测 灵敏度的新方法^[5]。金属纳米粒子能大幅度增强 SPR 生 物传感器灵敏度的原因主要有 2 个: 1)金属纳米粒子的表 面富集效应; 2)金属纳米粒子产生的局域 SPR 与金膜产生 的 SPR 之间的耦合作用。

金纳米棒(gold nanorods ,GNR)的横向和纵向表面电 荷密度不同,因而具有一个横向等离子体共振吸收峰 (transverse surface plasmon resonance peak wavelength,TSPR) 和一个纵向等离子体共振吸收峰(longitudinal surface plasmon resonance peak wavelength,LSPR)^[6-8]。TSPR 在 520nm 左右; LSPR 在 600nm 至近红外区域,随金纳米棒的长径比 增加而红移。LSPR 对周围介质的折射率的变化极其敏感, 基于这种特性,将金纳米棒用于 SPR 生物传感器中,有很强 的增强效应。

1 实 验

1.1 合成不同长径比的金纳米棒

金纳米棒的合成采用晶种生长法,以十六烷基三甲基 溴化铵(CTAB)为表面活性剂,通过改变硝酸银的量来控制 合成的金纳米棒的长径比^[9,10]。

合成步骤: 1) 种子溶液的制备: 将 5 mL 0.5 mmol/L 的 HAuCl₄ 溶液与 5 mL 0.2 mol/L 的 CTAB 溶液混合,搅拌 1 min后,加入 0.6 mL 0.01 mol/L 冷冻的 NaBH₄ 溶液,搅拌 2 min,溶液变为棕黄色。水浴 28 ℃下静置 3 h 后备用。2) 生长溶液的制备: 取 4 支充分洗净的 50 mL 的试管,每个试 管加入 20 mL 0.2 mol/L 的 CTAB 溶液,向 4 支试管分别加 入 0.2 ρ .4, 0.6 ρ .8 mL 0.004 mol/L 的 AgNO₃溶液,混合 后向每个试管加入 20 mL 0.001 mol/L 的 HAuCl₄ 溶液,搅拌 1 min 后,每个试管加入 0.28 mL 0.0788 mol/L 的抗坏血酸, 搅拌 2 min 后溶液变为无色透明的生长溶液。3) 金纳米棒 的合成:向上述4 瓶生长液中分别加入 48 μL 种子溶液,摇 晃 2 min 后,在水浴 28 ℃下静置 1 d。金纳米棒合成后,离心 处理(13000 r/min,15 min)两遍,抽掉上层清夜,将下层的 金纳米棒复溶于40 mL 5 mmol/L 的 CTAB 溶液,这样金纳米 棒溶液便能保存几个月。

1.2 金纳米棒与抗体的偶联

在金纳米棒的制备中,CTAB 也是金纳米棒的稳定剂和

保护剂,得到的金纳米棒的表面都吸附有 CTAB。但是, © 1994-2012 China Academic Journal Electronic Publi CTAB 对细胞具有高毒性,会阻碍金纳米棒与生物分子的偶

联。本文所采用的方法是在金纳米棒表面包覆一层聚丙烯酸(poly(acrylic acid),PAA),以消除 CTAB 的影响。PAA 具有-COOH 官能团,能很好地与生物分子结合^[11]。

实验步骤:配制 1 mmol/L NaCl 溶液 將 PAA(35WT)用 1 mmol/L NaCl 溶液稀释至 10 g/L 。取一 3 mL 离心管 注入 3 mL 制备的金纳米棒溶液 离心(8000 r/min β min)后 金纳 米棒颗粒沉淀在离心管底部 缓慢抽掉上层液体。向离心管 内注入 1 mL 1 mmol/L NaCl 溶液和 200 μ L 10 g/L PAA 溶液, 摇晃 15 s后 静置 30 min,然后离心(8000 r/min β min)清洗 两遍 抽掉上层清液 注入 1 mL 去离子水。逐滴加入 100 μ L 0.01 mol/L EDC 和 100 μ L 10 mg/L 羊抗人 IgG 摇晃 20 s 后 静置 1 d。然后离心(8000 r/min β min)处理,溶于 1 mL PBS。

2 实验结果与讨论

2.1 金纳米棒的合成与表征

利用晶种生长法,以 CTAB 为表面活性剂,可以制作长径比为2~5的金纳米棒;以 CTAB 和 BDAC(benzyldimethylhexadecylammoniumchloride)混合物为表面活性剂,改变两者的比例,可以制作长径比为2~25的金纳米棒;且金纳米棒的产量可达到97% 副产品为金纳米球。

由于金纳米棒的短轴和长轴的表面电荷密度不同,因 而具有2个等离子体共振吸收峰。短轴对应TSPR,一般在 520 nm,金纳米棒的长径比的变化对它基本无影响。长轴 对应LSPR,一般为600 nm 至近红外区域,随金纳米棒长径 比的增大而红移^[12]。

本文合成了4种金纳米棒,用扫描电子显微镜对其 形貌特征进行表征。图1是4种金纳米棒的扫描电镜图 像,由图1可得4种金纳米棒的几何尺寸。4种金纳米 棒的几何尺寸与硝酸银的用量对应关系如表1所示。 随着硝酸银的用量增加,金纳米棒的长径比由2.04增 加到3.12。

表1 SEM 观察到的 Ag⁺的用量对金纳米棒的长度、直径、

长径比的影响

Tab 1 Effect of Ag ⁺ amount on length diameter aspect ratio

by SEM charactrization

AgNO ₃ 用量(mL)	0.2	0.4	0.6	0.8
直径(nm)	20.4	19.6	18.6	16.1
长度(nm)	41.7	46.8	51.7	50.2
长径比	2.0	2.4	2.8	3.1

用紫外-可见分光光度计测得 4 种金纳米棒的吸收光 谱,如图 2 所示。图中,左边的峰值比较小,对应 TSPR,右 边的峰值较大,对应 LSPR。TSPR 基本无变化,LSPR 随着 长径比的增大而逐渐红移。TSPR 和 LSPR 与长径比的对应 hing House. All rights reserved. http://www.cnki.ne 关系如表 2。

图 2 金纳米棒的 UV-vis 光谱表征(金纳米棒的长径比分别为:(a)2.04;(b)2.39;(c)2.78;(d)3.12)

Fig 2 UV-vis spectroscopy of gold nanorod(The aspect ratio of gold nanorods are (a) 2.04;(b)2.39;(c)2.78;(d)3.12) 表 2 4 种金纳米棒的 TSPR 和 LSPR

Tab 2 The TSPR and LSPR of four kinds of gold nanorods

GNR 的长径比	2.04	2.39	2.78	3.12
TSPR(nm)	518	516	516	526
LSPR(nm)	630	650	690	734

通过增加硝酸银的量可制得更大长径比的金纳米棒, 但纵向等离子体吸收峰已超出 SPR 传感器的波长范围,不 予研究。

2.2 免疫测定

将金纳米棒与不同浓度抗体的偶联体作为抗体,直接 测试其与抗原的反应,虽也可得出其反应信号,但由金纳米 棒与抗体的偶联过程可知,偶联体中抗体的浓度不能确定, 抗体与金纳米棒的结合是否达到饱和也不能确定。因而, 免疫测定采用双抗体夹心法,将金纳米棒与抗体的偶联体 作为第二抗体,测试其对抗原与第一抗体的反应信号的增 强效应。

在室温下,向流通池中通入不同的第二抗体,实时记录 共振波长的变化。如图3所示:曲线d对应的第二抗体为 金纳米棒(GNR734,LSPR为734nm)与羊抗人IgG(10mg/ ©1994-2012China Academic Journal Electronic F L)的偶联体,曲线f对应的第二抗体为没有与抗体偶联的 金纳米棒(CNR734)。图3表明:没有与抗体偶联的金纳米 棒对前面抗原抗体的反应无影响;金纳米棒只有与抗体偶 联后,通过抗原抗体反应连接到金膜上,才会对抗原抗体的 反应信号有增强作用。

图 3 夹心法测得的共振波长随时间的动态响应(第二抗体 分别为:(d) GNR734-antiIgG; (f) unconjugated GNR734) Fig 3 Dynamic response of resonance wavelength on time measured by sandwich(The second antibody are:

(d) GNR734-antiIgG; (f) unconjugated GNR734)

测试4种金纳米棒对抗原抗体反应信号的增强效应, 然后与金纳米球的增强效应进行对比,如图4所示。第一 抗体为羊抗人人 IgG(200 mg/L),抗原为人 IgG(1 mg/L),第 二抗体分别为4种金纳米棒和金纳米球(直径为20 nm)与 羊抗人 IgG(10 mg/L) 偶联后的偶连体。对每种金纳米棒重 复测量 5次 GNR630 所对应的增强倍数为90~100倍, GNR650 所对应的增强倍数为60~75倍,GNR690 所对应的 增强倍数为40~50倍,GNR734 所对应的增强倍数为20~ 30倍。对于单一长径比的金纳米棒重复测量所得的增强倍 数不能完全相同,产生误差的原因主要有:采用晶种生长法 制得的金纳米棒溶液的产量只有97%,溶液中的金纳米棒 不是完全相同的;结合在传感芯片上的金纳米棒排列的无 规则性;金纳米棒与金膜的距离的变化。因而,重复测量所 得的结果不能完全一致,但只是在范围内波动,基本趋势不 变。

图4 夹心法测得的共振波长随时间的动态响应(第二抗体分别为:

(a) GNR630-antiIgG; (b) GNR650-antiIgG; (c) GNR690-antiIgG;

(d) GNR734-antiIgG; (e) Colloidal Au-antiIgG)

Fig 4 Dynamic response of resonance wavelength on time

measured by sandwich (The second antibody are:

(a) GNR630-antiIgG; (b) GNR650-antiIgG; (c) GNR690-antiIgG;

. بر الم

g House: AntilgG; (e) Colloidal Au-antilgG) 以 GNR630 为例 改变与之偶联的抗体的浓度,将其分 别与浓度为 5 20 50 mg/mL 的羊抗人 IgG 偶联后,测的其 对抗原与第一抗体反应信号的增强倍数在 90~100 范围 内,与浓度为 10 mg/L 所对应的增强倍数相一致,说明浓度 为 10 mg/L 的羊抗人 IgG 与金纳米棒的结合已达到饱和。

计算金纳米棒和金纳米球的表面积,如表3所示。

表3 金纳米棒与金纳米球的表面积

Tab 3 Surface area of gold nanorods and colloidal Au

样品	GNR630	GNR650	GNR690	GNR734	Colloidal Au
表面积					
(nm^2)	2671.14	2882.72	3020.07	2536.68	1256.00

4 种金纳米棒的表面积均远大于金纳米球的表面 积。金纳米球对 SPR 传感器灵敏度最大能增强 20 倍^[13,14],本实验测得的增强倍数约为 10 倍。金纳米棒 对 SPR 传感器灵敏度的增强效应优于金纳米球,有表面 富集效应的原因,但最主要的原因是金纳米棒与金膜之 间的等离体耦合。

GNR630 的表面积小于 GNR650 和 GNR690 的表面积, 大于 GNR734 的表面积,但 GNR630 的增强效果是最好的, 证明表面富集作用对之影响甚微。实验条件下,SPR 传感 器的共振波长为 632 nm,GNR630 的 LSPR 最接近这个值, 增强倍数最大,GNR650,GNR690,GNR734 的 LSPR 逐渐远 离这个值,增强倍数逐渐降低。金纳米棒对 SPR 生物传感 器灵敏度的增强效应主要取决于金纳米棒的 LSPR,金纳米 棒的 LSPR 越接近 SPR 生物传感器的共振波长,金纳米棒 与金膜之间的等离体耦合越好,增强效应越强。

实验室自制的小型波长 SPR 生化分析仪对人 IgG 的最低检出限为 500 μg/L,利用增强倍数最大的 GNR630 放大后,可测出对人 IgG 的最低检出限为 10 μg/L,灵敏度提高了 50 倍。

3 结 论

参考文献:

本文根据金属纳米粒子增强 SPR 传感器灵敏度的机 理,利用晶种生长法合成金纳米棒,并将之用于 SPR 传感器 中,研究不同长径比的金纳米棒对 SPR 传感器灵敏度的增 强效应。实验结果表明: 长径比为 2、LSPR 为 630 nm 的金 纳米棒的增强效应最好,可放大反应信号 90~100 倍;将 SPR 传感器对人 IgG 的最低检出限由 500 µg/L 降低到 10 µg/L,灵敏度提高了近 50 倍。金纳米棒的 LSPR 越接近 SPR 传感器的共振波长,金纳米棒与金膜之间的等离体耦 合越好 增强效应越强。 cell ligand interactions [J]. Analytical Biochemistry ,2000 ,281: 135 – 143.

- [2] Englebienne P ,Hoonacker A V ,Verhas M. Surface plasmon resonance: Principles ,methods and applications in biomedical sciences [J]. Spectroscopy 2003 ,17:255 - 273.
- [3] Piliarik M ,Homola Jiří. Surface plasmon resonance (SPR) sensors: Approaching their limits [C]// Pro of Optical Society of America 2009: 16505 – 16517.
- [4] Leung T ,Pollard-Knight D ,Malan G P. Modelling of particle enhanced sensitivity of the surface-plasmon-resonance biosensor[J]. Sensors and Actuators B ,1994 22: 175 – 180.
- [5] He Lin Musick M D. Colloidal Au-enhanced surface plasmon resonance for ultrasensitive detection of DNA hybridization [J]. J Am Chem Soc 2000 ,122:9071 – 9077.
- [6] Pérez-Juste J , Pastoriza-Santos I , Liz-Marzan L M. Gold nanorods: Synthesis , characterization and applications [J]. Coordination Chemistry Reviews 2009 249: 1870 – 1901.
- [7] Yu Chenxu ,Irudayaraj J. Multiplex biosensor using gold nanorods [J]. Anal Chem 2007 ,79: 572 – 579.
- [8] Huanga Haowen ,Tanga Chunran Zenga Yunlong. Label-free optical biosensor based on localized surface plasmon resonance of immobilized gold nanorods [J]. Colloids and Surfaces B: Biointerfaces 2009 ,71:96 – 101.
- [9] Nikoobakht B ,El-Sayed M A. Preparation and growth mechanism of gold nanorods (GNRs) using seed-mediated growth method [J]. Chem Mater , 2003 , 15: 1957 – 1962.
- [10] Sau T K ,Murphy C J. Seeded high yield synthesis of short Au nanorods in aqueous solution [J]. Langmuir 2004, 20: 6414 – 6420.
- [11] Gole A ,Murphy C J. Biotin-streptavidin-induced aggregation of gold nanorods: Tuning rod-rod orientation [J]. Langmuir ,2005 , 21:10756-10762.
- [12] Park K. Synthesis characterization and self-assembly of size tunable gold nanorods [D]. Atlanta: Georgia Institute of Technology, 2006.
- [13] Lyon L A pena D J Natan M J. Surface plasmon resonance of Au films: Particle size dependence [J]. J Phys Chem B ,1999 ,103: 5826 - 5831.
- [14] He Lin Musick M D Nicewarner S R. Colloidal Au-enhanced surface plasmon resonance for ultrasensitive detection of DNA hybridization[J]. J Am Chem Soc 2000 ,122:9071 – 9077.
- 作者简介:

[1] Quinn J G O Neill S ,Doyle A. Development and application of 994-2012 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net surface plasmon resonance-based biosensors for the detection of 成微光机电系统。