2012年3月

Mar. , 2012

Article ID: 1000-7032(2012)03-0280-06

Relationship Between Photoluminescence Properties of ZnO/CuO Core/Shell Nanowires and The Thickness of CuO Shells

MENG Xiu-qing¹, ZHAO Dong-xu²,
WU Feng-min¹, FANG Yun-zhang¹, LI Jing-bo^{1*}

- (1. Research Center for Light Emitting Diodes (LED), Zhejiang Normal University, Jinhua 321004, China;
 - 2. State Key Laboratory of Luminescence and Applications , Changchun Institute of Optics , Fine Mechanics and Physics , Chinese Academy of Science , Changchun 130033 , China)
 - * Corresponding Author, E-mail: jbli@semi.ac.cn

Abstract: ZnO/CuO one-dimensional core/shell nanowires have been synthesized by sequential growth of core and shell, respectively. Phase and structural analyses reveal that the ZnO core has single crystalline phase whereas the CuO shell has polycrystalline phase covering on the surface of the core. The photoluminescence (PL) properties of ZnO nanowires change with the CuO shell thickness. The photoluminescence intensity increases when the shell is very thin, which is attributed to the surface modification by CuO shell. When the shell gets thicker, the intensity of the photoluminescence does not change any more because a type-I band alignment is formed between the core and shell. The experimental result is discussed.

Key words: ZnO/CuO; core/shell nanowires; photoluminescence properties; type-I band alignment

CLC number: 0469 **Document code**: A **DOI**: 10.3788/fgxb20123303.0280

ZnO/CuO 核壳结构纳米线光致发光性能 与 CuO 壳层厚度的关系

孟秀清¹,赵东旭²,吴锋民¹,方允樟¹,李京波^{1*}

(1. 浙江师范大学 LED 芯片研发中心, 浙江 金华 321004;

2. 发光学与应用国家重点实验室 中国科学院长春光学精密机械与物理研究所, 吉林 长春 130033)

摘要:通过分别生长核层与壳层制备出了 ZnO/CuO 核壳结构的纳米线。形貌和结构分析表明 ZnO 核为单晶纳米线而 CuO 则以多晶形式覆盖在核层表面上。光致发光(PL) 研究表明 ZnO 纳米线 PL 强度随 CuO 壳层厚度的变化而变化。当壳层比较薄时 ZnO 的 PL 强度增大,这主要是由于 CuO 壳层对 ZnO 核层的修饰减少了表面态,而当壳层厚度增加到一定程度时 ZnO 的 PL 强度不再变化,这主要是由于在核壳结构中形成了type-I 型结构的原因。我们对这一现象做了详细的讨论。

关 键 词: ZnO/CuO; 核壳结构纳米线; 光致发光性质; type-I 型结构

收稿日期: 2012-01-20; 修订日期: 2012-02-14 基金项目: 国家自然科学基金(11104250) 资助项目

作者简介: 孟秀清(1978-),女,山东聊城人,博士,主要从事低微半导体纳米结构与相关器件的研究。

E-mail: xqmeng@zjnu.cn

1 Introduction

One-dimensional (1D) nanostructured oxides have received ever-increasing attention recently due to their intriguing properties and unique applications in novel nano-devices^[1-3]. One of the most predominant properties of the 1D oxide nanowires is as optoelectronic materials, because the 1D nanowires provide direct path for carriers transporting. ZnO, as a stable n-type semiconductor with a large band gap ($E_g = 3.3$ eV at 300 K), is always considered as potential candidate for optoelectronic materials^[4-6] because of its low-cost, non-toxic, and high electron mobility. As another important oxide semiconductor, CuO, has also drawn considerable attention, for its intrinsic p-type conductivity with narrow band-gap (1.2 ~ 1.9 eV) , large photoconductivity and strong absorption in the visible region^[7-8]. It is promising to fabricate ZnO/CuO core/shell p-n heterojunction nanostructures for optoelectronic and clean solar energy applications, considering their respect and combined advantages. For example, ZnO/CuO core/ shell structures can enlarge the optical absorption range and improve solar device efficiencies, as the wide and narrow band gap of ZnO and CuO can respectively absorb UV and visible solar energies. Indeed, great effects have been put to their solar energy applications $^{[7,940]}$, and Zhao X H $et\ al^{[7]}$ have obtained a 0.71% photo-to-hydrogen conversion efficiency from photoelectrochemical water with ZnO/ CuO core/shell nanowires. However, the optical properties of the core/shell structures have been seldom studied. Though Wang R C et al [11] obtained enhanced UV emission in ZnO-CuO core/shell nanorods , Zhu Y W et al^[12] have studied the PL properties of ZnO/CuO as a function of Zn content.

To our knowledge, the photoluminescence properties of the ZnO/CuO core/shell structures as a function of shell thickness have never been reported. In this paper, we have successfully synthesized ZnO nanowire arrays by a simple hydrothermal method. After that the CuO shells with different thickness have been fabricated by soft chemical treatment of the as-synthesized ZnO nanowires. The structural

and optical properties of the core/shell nanowires are studied. It is indicated that the ZnO core shows a near band edge emission centered at 378 nm. After CuO shell modification, the emissions spectral change with the thickness of CuO shells: the PL intensity first increases when the shell is thin and does not change any more when it saturates the surface dangling bonds of ZnO core. The reasons for these changes are attributed to the passivation of the surface states at the initial growth stage of the shell and the eventual formation of a type I band alignment between the core and shell when the shells become thick.

2 Experiments

The samples are obtained through a two-step method. High aspect ratio ZnO nanowires are first synthesized by a simple hydrothermal method. Typically ,0.05 mol/L of Zn($NO_3)_{\,2}$ • $6H_2O$ and 0.05 mol/L of $C_6H_{12}N_4$ were initially dissolved in 30 mL of water under vigorous stirring to form a homogeneous mixture , the solution is then transferred to an Teflon autoclave.

The solution was allowed to reach to 180 °C and kept at this temperature for 3 h. The as-synthesized sample is then cut into pieces for the following growth of CuO shell. The preparation of CuO shell is carried out in two steps. First , ZnO samples are immersed in Cu(NO₃)₂ • 3H₂O solution for 30,60 and 120 min, respectively. Then, the samples are annealed under oxygen atmosphere at 800 °C for 1 h. The as-synthesized sample and the samples treated for 30,60, and 120 min are labeled as sample A, B, C and D, respectively. The samples are then characterized by a series of techniques. X-ray diffraction (XRD) techniques are done using Cu Kα irradiation on an 800 W Philips 1830 powder diffractometer. Field-emission scanning electron microscopy (FESEM) images and energy-dispersive X-ray (EDX) analysis are acquired on a Hitachi S-4800 microscope instrument by using an accelerating voltage of 10 kV. High-resolution transmission electron microscopy (HRTEM) observations are carried out on a JEM-2010 microscope instrument by using an accelerating voltage of 200 kV. Steady state PL spectra are recorded by using a Princeton sp2500 spectrometer that utilized a 325 nm He-Cd laser line of 30 mW. All the measurements are performed at room temperature under the same conditions , the reproducibility of the samples is confirmed by measuring several points for the same sample.

3 Results and Discussion

The X-ray diffraction (XRD) patterns of the products from sample A to D are shown in Fig. 1, which reveal that the diffraction peak of the as-grown products (sample A) can be indexed to the wurtzite structure of ZnO. The strong and intense (002) diffraction peak indicates the nanowires are c axial preferred orientation. The peak structure remains almost the same for the short CuO treatment time (sample B). With the increasing treatment time of CuO, a new peak corresponding to the plane of monoclinic CuO gradually appears in sample C to D, indicating that CuO has successfully covered on the core surface and its thickness increase with the increase of treatment time.

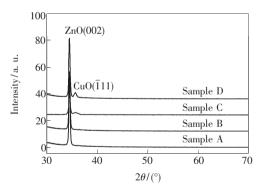


Fig. 1 XRD patterns of sample A ~ D , besides the strong (002) diffractive peaks of ZnO , (111) of CuO diffractive peak gradually emerges from sample C to D , indicating that CuO has successfully covered on the core surface and it thickness increase with the increase of treatment time.

A typical SEM image is shown in Fig. 2 ,which demonstrates that the as–synthesized products consist of high aspect ratio ZnO nanowires. The size of ZnO nanowires ranges from 80 to 200 nm in diameter and 2 μm in length. The smooth surface reveals high quality of the nanowires. After treated with shell layers ,

the morphologies of the nanowires remain nearly the same with those of the as-synthesized one from the FESEM observations, which may be the result that the shell is overrun the FESEM resolution.

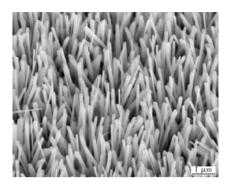


Fig. 2 FESEM image of the as–synthesized ZnO nanowires , the image is tilted 30° , the length of the nanowires is about 2 μm with diameter in the range of 80 \sim 200 nm.

To determine the shell thickness and probe the internal structure of the composite systems as a function of CuO coverage, TEM techniques are employed. The thickness of CuO shells increase with the treatment time. A representative low magnification TEM image of sample C is depicted on the right part of Fig. 3 (a), which indicates the nanowire is core-shell structure.

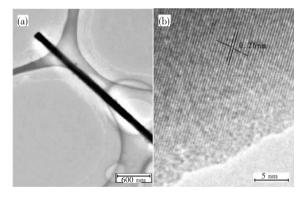


Fig. 3 (a) TEM and (b) HRTEM images of sample C. The HRTEM image of sample C illustrates a well defined interface between ZnO core and CuO shell is observed, the ZnO core is single crystal with well resolved lattice fringes, whereas the shells are polycrystalline CuO.

The HRTEM image of sample C is shown in Fig. 3(b), where a well defined interface between ZnO core and CuO shell is observed, the ZnO core is single crystal with well resolved lattice fringes, the

measured lattice spacing is 0.26 nm, corresponding to the (101) direction of wurtzite ZnO, whereas the shells are polycrystalline CuO with thickness of about 3 nm.

Fig. 4(a) shows the evolution of the PL spectra from sample A to sample D. The spectrum of pure ZnO nanowires (sample A) shows a UV near band edge emission centered at 378 nm. When ZnO nanowires are modified by CuO shells, the PL spectra show an interesting evolution both in intensity and peak position of the emissions. The PL intensity increase first (sample A) and reach to the highest value in sample C, but further increase of shell treatment time does not lead to a continuous increase in intensity for sample D. At the same time, the peak position red-shift from sample A to D for about 3 nm. The treatment of ZnO with CuO is a soft process. The thickness of CuO shells increases with the treatment time. At the beginning (from sample A to sample C), the PL intensity of the core/shell nanowires increases, indicating that CuO capping process greatly reduces the number of surface states. When ZnO is treated with Cu2+ for short times, Cu2+ slowly reacts with ZnO: the Cu2+ ions are first absorbed on the ZnO nanowires surface, part of them bind with the surface atoms of ZnO and passivates the surface dangling bonds and the residual are oxided during the following oxygen annealing, forming CuO. Because the CuO layer covered on the surface of ZnO is thin in sample B, the whole electronic structure of the system does not change too much. However, these thin shells are thick enough to passivate most of the dangling bonds on the surface of the ZnO nanowire core , thus removing the surface states which act as carrier trapping centers, leading to the increase of the PL peak intensity, as shown in Fig. 4 (a). However, the shells become thick enough for sample C and D, the interruption of increasing in intensity at this time can be attributed to the electronic structures of the core/shell systems. According to the band alignment of the two components, the core/ shell structures are typically classified into two types. Type-I, in which the conduction band minimum (CBM) and the valence band maximum

(VBM) of the core/shell structure is at the same side of the core or shell, so both electrons and holes are localized in the same region. Type-II, in which the CBM and VBM are in different sides of the core and shell, so the energy gradient existes on the interfaces and tends to spatially separate electrons and holes on different side of the core/shell^[13-15]. In type-I core/shell systems with both electron and hole localized in the core region, such as ZnO/CuO, the purpose of the shell is to passivate surface trap states and to protect the excitons from exposure to environmental factors [11]. In type-II core/shell systems the electrons are confined in the core, and the holes are located in the shell, which can lead to some interesting properties. For example, when comparing with either material in isolation, the emission spectrum shifts to lower energies, and the band-gap emission is reduced because of the spatial separation of electrons and holes [1649]. In our ZnO/CuO core/shell systems, the change in intensity of the PL properties

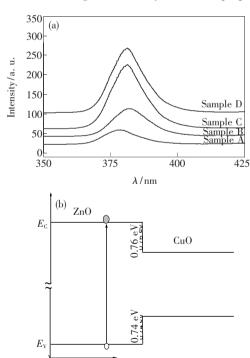


Fig. 4 (a) PL properties of ZnO/CuO core/shell nanowires as a function of CuO shell thickness, the intensity of the band edge emission increase first from sample A and reach to the highest value in sample C, but it stops to continuous increase for sample D, meanwhile the peak position red-shift for about 3 nm from sample A to D; (b) The calculated band alignment.

suggests a transition to type-I band alignment, where both electrons and holes are localized in the core region and no carriers transports to the shell from the core. The calculated band alignment is shown in Fig. 4(b), which clearly confirms that the system has a type-I band alignment. Therefore, the observed PL change is consistent with the calculated band alignment. The red shift of PL emission of the ZnO nanowires after CuO surface modification is attributed to the fact that the band gap of CuO is narrower than that of ZnO, when Cu2+ are adsorbed on the ZnO nanowires surface, translate state ZnCuO may be formed at the interface, which is equal to ZnO doped with Cu and narrows the band gap of ZnO, thus leads to the red shift of the PL emissions.

4 Conclusion

In summary , ZnO/CuO core/shell nanowires are successfully synthesized. The ZnO core is single crystal while the CuO shell is polycrystalline. The effects of the shell thickness on the optical properties are studied in detail. The PL properties of the core/shell structures change with the increase of shell thickness. The increase in intensity of the PL properties at the beginning of the shell growth is due to the decrease of surface states modified by the shell. As the shell is thick enough , a type-I band alignment core/shell structures form , where both electrons and holes are localized in the core , which is responsible for the later interruption of increasing in intensity of the PL properties.

References:

- [1] Huang M H, Mao S, Feick H, et al. Room-temperature ultraviolet nanowire nanolasers [J]. Science, 2001, 292(5523): 1897-1899.
- [2] Allam N K, Shankar K, Grimes C A. A general method for the anodic formation of crystalline metal oxide nanotube arrays without the use of thermal annealing [J]. Adv. Mater., 2008, 20(20):3942-3946.
- [3] Wang X D, Song J H, Liu J, et al. Direct-current nanogenerator driven by ultrasonic waves [J]. Science, 2007, 316 (5821):102-105.
- [4] Banerjee D, Jo S H, Ren Z F. Enhanced field emission of ZnO nanowires [J]. Adv. Mater., 2004, 16(22): 2028-2032.
- [5] Zhang H, Yang D, Ma X, et al. Synthesis and field emission characteristics of bialayered ZnO nanorod array prepared by chemical reaction [J]. J. Phys. Chem. B, 2005, 109(36): 17055-17059.
- [6] Yang J L , An S J , Park W I , et al. Photocatalysis using ZnO thin films and nanoneedles grown by metal-organic chemical vapor deposition [J]. Adv. Mater. , 2004 , 16(18):1661-1664.
- [7] Zhao X H, Wang P, Li B J. CuO/ZnO core/shell heterostructure nanowire arrays: Synthesis, optical property, and energy application [J]. Chem. Comm., 2010, 46(23):6768-6770.
- [8] Nair M T S, Guerrero L, Arenas O L, et al. Chemically deposited copper oxide thin films: Structural, optical and electrical characteristics [J]. Appl. Surf. Sci., 1999, 150(1-4) 143-151.
- [9] Cui J B , Gibson U J. A simple two-step electrodeposition of Cu₂O/ZnO nanopillar solar cells [J]. J. Chem. Phys. C , 2010 ,114(14):6408-6412.
- [10] Wang M, Wang Y, Li Jingbo. ZnO nanowire arrays coating on TiO₂ nanoparticles as composite photoanode for a high efficiency DSSC [J]. Chem. Comm., 2011, 47(40):11246-11248.
- [11] Wang R C , Lin H Y. ZnO-CuO core-shell nanorods and CuO-nanopaticle-ZnO-nanorod intergrated structures [J]. *Appl. Phys.* A , 2009 , 95(3):813-818.
- [12] Zhu Y W , Sow C H , Yu T , et al. Co-synthesis of ZnO-CuO nanostructures by directly heating brass in air [J]. Adv. Func. Mater. , 2006 , 16(18): 2415-2422.
- [13] Li J , Wang L W. Comparison between quantum confinement effects of quantum wires and dots [J]. *Chem. Mater.* ,2004 , 16(21):4012-4015.
- [14] Kim S , Fisher B , Eiser H J , et al. Type-II quantum dots: CdTe/CdSe(Core/Shell) and CdSe/ZnTe(core/shell) heterostructures [J]. J. Am. Chem. Soc. , 2003 , 125(38):11466-11467.

- [15] Kumar S , Jones M , Lo S S , et al. Nanorod heterostructures showing photoinduced charge separation [J]. Small , 2007 , 3 (9):1633-1639.
- [16] Ivanov S A, Piryatinski A, Nanda J, et al. Type-II core/shell CdS/ZnSe nanocrystals: Synthesis, electronic structures, and spectroscopic properties [J]. J. Am. Chem. Soc. , 2007, 129(38):11708-11719.
- [17] Zhong H Z , Scholes G D. Shape tuning of type II CdTe-CdSe colloidal nanocrystal heterostructures through seeded growth [J]. J. Am. Chem. Soc. , 2009 , 131(26): 9170-9191.
- [18] He J, Lo S S, Kim J, et al. Control of exciton spin relaxation by electron-hole decoupling in type-II nanocrystal heterostructures [J]. Nano. Lett. , 2008 , 8(11): 4007-4013.
- [19] Milliron D J , Hughes S M , Cui Y , et al. Colloidal nanocrystal heterostructures with linear and branched topology [J]. Nature , 2004 , 430(6996) : 190-195.

欢迎订阅 欢迎投稿 《光学 精密工程》(月刊)

《光学 精密工程》是中国仪器仪表学会一级学术期刊,中国科学院长春光学精密机械与物理研究所主办 科学出版 社出版。由国内外著名科学家任顾问, 陈星旦院士任编委会主任, 青年科学家曹健林博士担任主编

《光学 精密工程》坚持学术品位 集中报道国内外现代应用光学、光学工程技术、光电工程和精密机械、光学材料、微 纳科学与技术、医用光学、先进加工制造技术、信息与控制、计算机应用以及有关交叉学科等方面的最新理论研究、科研 成果和创新技术。本刊自2007年起只刊发国家重大科技项目和国家自然科学基金项目及各省、部委基金项目资助的论 文。《光学 精密工程》竭诚欢迎广大作者踊跃投稿。

本刊获奖:

国际检索源:

中国精品科技期刊

《美国工程索引》(EI Compendex)

中国权威学术期刊(RCCSE)

《美国化学文摘》(CA) 《英国 INSPEC》(SA)

中国科学技术协会择优支持期刊

《俄罗斯文摘杂志》(PЖ)

中国百种杰出学术期刊

《美国剑桥科学文摘》(CSA)

第一届北方优秀期刊

吉林省精品期刊

国内检索源:

中国科技论文统计源期刊

中国学术期刊(光盘版)

万方数据系统数字化期刊

台湾华艺中文电子期刊网

中国科学引文数据库

中国物理文献数据库

中国期刊网

中文核心期刊要目总览(北大)

中国科学期刊全文数据库

中国光学文献数据库

中国学术期刊文摘

中国物理文摘

址: 长春市东南湖大路 3888 号

《光学 精密工程》编辑部

邮 编: 130033

电 话: (0431)86176855

传 真: (0431)84613409

E-mail: gxjmgc@ ciomp. ac. cn

gxjmgc@ vip. sina. com

http://www.eope.net

中国学术期刊综合评价数据库

国内邮发代号: 12-166 国外发行代号: 4803BM

定 价: 50.00 元/期

帐 户: 中国科学院长春光学

精密机械与物理研究所

银 行:中行吉林省分行营业部

帐 号: 0000162005506170