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Tunneling effect of graphite is studied by atomic force microscopy. The tunneling current in
the gap between a conductive tip and a newly cleaved graphite surface at a given voltage keeps
almost constant when the gap-distance varies within 1 µm, which cannot be explained by the
commonly accepted well model of the potential outside a conductor. Thus modification of the
well model is made and a cup model, with a certain wall thickness of the cup, is proposed in
the present work.
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1. Introduction

Electron tunneling effect between two electrodes has
been widely studied both theoretically and experi-
mentally. Simmons1 proposed a generalized formula
for the electron tunneling effect with a potential
barrier of arbitrary shape between two electrodes
over the full range from close-spaced metal–vacuum–
metal tunneling effect to field-emission tunneling.
The current density J between two electrodes can
be written as

J =
e

2πh(βL)2
{
ϕ exp(−Aϕ1/2) − (ϕ + eV )

× exp
[−A(ϕ + eV )1/2

]}
, (1)

where A = 4πβL
√

2me

h , β ≈ 1, V is the potential
between the two electrodes me is the electron mass,
ϕ is the average barrier height between the two elec-
trodes above Fermi level, L is the potential thickness
at Fermi level, which is approximately equal to the
gap-distance or electrode separation, d.

Obviously, Eq. (1) predicts the strong dependence
of J on L or d, which has been the basic principle of
the scanning tunneling microscopy. The room tem-
perature gold–vacuum–gold tunneling experiments
within 2 nm of d performed by Teague2 supported
the formula. Young3 experimentally confirmed Sim-
mons’ formula too with tungsten and platinum elec-
trodes within 40 nm of d, but beyond this distance,
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J was almost independent of d, which apparently
contradicts Simmons’ formula. More than 30 years
ago, this confliction had not been noticed (see Fig. 1
in Ref. 3). Here in our experiment, the tunneling cur-
rent between a conductive tip and a graphite surface
was measured, the result of which also contravenes
Simmons’ formula.

2. Experimental

The experiment was performed with Solver P47
atomic force microscopy (AFM) at room tempera-
ture. Silicon tips coated with conductive W2C or
TiN films were used for measuring the I–V curves.
The force constants of the cantilever are 48, 11.5,
5.5, and 3 N/m, and the lengths are 90, 100, 130,
and 200µm, respectively. The curvature radius of the
tip is around 35 nm. The sample is a highly oriented
pyrolytic graphite (HOPG).

At first, the testing area on the surface of the
newly cleaved HOGP was proved to be atomically
flat by scanning the surface topography. Then the
I–V curve was measured with d reduced from 1 µm
till the tip touched the graphite surface (in this case
there is still a gap distance no matter how small it is).
The tunneling current keeps almost constant within
the measuring range as shown in Fig. 1, which is
hardly explained by Simmons’ formula. Thus, further
consideration is necessary.

3. Results and Discussion

Commonly a conductor was assumed to be a three-
dimensional potential well with a plain bottom
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Fig. 1. Tunneling current with gap distance between a
conductive tip and a newly cleaved graphite surface, mea-
sured by an AFM.

(Fermi level). The energy of the electron resting at
the bottom of such a potential well is less than that
of the vacuum level — the energy of electron resting
infinitely far from the conductor surface. And the
well depth, called work function, can be defined as
the minimum energy to remove an electron from the
Fermi level in a conductor to a point at infinite dis-
tance outside the surface.4–9 In 1914, Schottky pro-
posed an image potential,10 which modified the well
model. In the image potential theory, the corner of
the mouth of the well was smooth and rounded rather
than orthogonal, but the well shape of the poten-
tial was still kept,11–18 as shown in Fig. 2(a). In his
treatment, Schottky considered that the work func-
tion came from the attraction of an escaping electron
to its image on the surface (image force). Most of the
other calculations, thereafter, were based on the def-
inition that the work function was the difference in
energy between a lattice with an equal number of ions
and electrons and the lattice with the same number
of ions but with one electron removed.4,5 No matter
what ways were used to calculate the work function,
they all led to the well shape of the potential.

Energy level of electron 
Ef

E0

Ec

Vacuum VacuumInterior of conductor 

Image potential Image potential W(x)

x0

(a)

Energy level of electron
W(x) 

E0

Ef

Ec

x0 x0Interior of conductor 
Vacuum Vacuum

(b)

Fig. 2. Comparative illustration of the well model (a)
and the cup model (b) for a conductor. E0: vacuum level;
Ef : Fermi level; Ec: bottom of conduction band; φ: work
function; W : surface potential.
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To explain our experimental results, however, the
well shape of the potential has to be reconsidered. For
a conductor, there is an electron gas, like a curtain,
gathered nearby the surface of the conductor. When
an electron passes through the curtain, the curtain
may exert a repulsion force on the electron. If we
simply assume this repulsion to be the main force
exerted on the passing electron and ignore any other
effects, such as the core attraction to the electron,
the well shape of the potential will be modified, as
calculated in the following sections. Apparently, this
simple assumption overemphasizes the effect of the
electron gas on the passing electron. And it is not cor-
rect actually if the other effects are neglected. This
kind of simplification, however, will definitely show
an extreme condition when only the repulsion from
the electron gas is considered. And it will be helpful
to clearly understand the real shape of the potential
outside a conductor.

Let us assume that the electron gas is a single-
layer network, as shown in Fig. 3, which provides
electrostatic resistance to prevent an electron, with a
velocity of v, passing through it. Let 2l be the aver-
age diagonal length of one unit square of the elec-
tron network, x be the distance of the electron to
the plane of the network. The force exerted by the
electron network on the passing electron at point x

will be given by

Fx =
4Ke2

x2 + l2
cos α, (2)

where K is constant. Here, only the four neighboring
electrons of the unit square are considered to exert
force on the passing electron.

As

cos α =
x√

x2 + l2
, (3)

A

B

C 
D

x
l 

l 
FA

FB

Fx v 

Fig. 3. Illustration of the forces exerted by a unit square
of electron network on a passing electron at point C.

Eq. (2) can be changed into

Fx = 4Ke2x(x2 + l2)−
3
2 . (4)

When x = 0 or x = ±∞, Fx = 0.
Let

dFx

dx
= 0 then xmax = ± l√

2
, (5)

which means that the electron at the distance of ± l√
2

from the plane of the network experts the maximum
force.

Then an electron from x =−∞ to x must do work
W (x) to overcome force Fx, therefore,

W (x) = −
∫ x

−∞
Fxdx = −4Ke2

∫ x

−∞
x(x2 + l2)−

3
2 dx

=
4Ke2

√
x2 + l2

∣∣∣∣
x

∞
=

4Ke2

√
x2 + l2

. (6)

According to Eq. (6), the graph of W (x) to x

can be drawn as shown in Fig. 2(b). The graph is
symmetrical to the plane of the network and presents
the shape of a cup with a certain thickness of the
wall, rather than a well.

The single-layer electron network is only an ide-
alized model. If we further take into account of the
other effects on the passing electron, the graph of
W (x) to x may be much more complicated and def-
initely not symmetrical, but the basic shape like a
cup will still be remained.

In terms of the well model previously mentioned,
when two electrodes approach each other, it is quite
understandable that the thickness of the potential
barrier for an electron to go through is approximately
equal to the electrode separation and the work func-
tion can be taken as the average barrier height
from the Fermi level between the two electrodes.
In the new cup model, however, the thicknesses of the
potential barrier between the two electrodes will be
dependent on the thickness of the cup walls because
different electrodes may possess different thickness
of the surface potential. To show it more clearly,
we simply use a rectangular shape of the cup walls,
which may not influence our analysis of the intrin-
sic nature of the phenomena. Suppose d1 and d2 are
the thicknesses of the potential barrier of the two
electrodes, respectively, d is the electrode separation
and L is the potential barrier thickness between the
two electrodes in Eq. (1). If d1 and d2 are both
extremely small, even the two electrodes get into
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contact with each other (still keep a gap distance
of several angstroms in this case), d is still larger
than L, which is equal to (d1 + d2), as shown in
Fig. 4(a). When d varies, L keeps constant. As a
result, J is independent of d according to Eq. (1).
If d1 and d2 are relatively large, the walls of the
two potential barriers may be overlapped as shown
in Fig. 4(b). In this case, d is equal to L, but smaller
than (d1 + d2). When d varies within (d1 + d2),
L varies too. Accordingly, J is strongly dependent
on d according to Eq. (1). But when d varies beyond
(d1+d2), as shown in Fig. 4(c), L, which is (d1+d2),
keeps constant and does not change with d, which
leads to the independence of J on d.

In the present experiments, the two electrodes are
the sharp silicon tips coated with conductive W2C or
TiN film and graphite, respectively. For the sharp tip

d 
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Ec Ec
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barrier 1 

Potential 
barrier 2 

Electrodes
Separation

(b)

d

ϕd d1 2

Ef Ef

EcEc
Electrode 1 Electrode 2

Potential 
barrier 1

Potential
barrier 2

Electrodes Separation

(c)

Fig. 4. Different cases when two electrodes with differ-
ent potential thicknesses approach each other, based on
the cup model.

coated with conductive compound, it is quite accept-
able that it may have a small density of electron
on the compound film surface, which leads to the
smaller thickness of the potential cup wall. For the
layer-structured graphite with relatively large layer
spacing, a small electron density on the surface is
also understandable, which may also present a small
wall thickness. Accordingly, the present experiment
with compound-coated tip and graphite corresponds
to the case of Fig. 4(a), by which the real result is
perfectly explained. In Young’s experiment,3 the two
electrodes were pure metals, tungsten and platinum,
which provide larger values of the wall thickness. The
experimental result is just what Figs. 4(b) and 4(c)
depict. Within a critical range of the electrode sep-
aration J is dependent on d, but beyond this range,
J is independent of d. In Young’s experiments, the
critical range was 400 Å, which means the thickness
of the wall of the potential cup for the tungsten–
platinum system is about 200 Å. For the other pre-
vious measurement of the tunneling effect, they all
can be explained by the case of Fig. 4(b).

The well model means that an electron outside
the conductor surface will return to the surface with-
out any barrier. But the cup model predicts that
an electron outside the conductor surface beyond
the potential cup wall have to overcome a bar-
rier to return to the surface, but within the cup
wall the electron will return to the surface with-
out any barrier. For metals, the thickness of the
cup wall is probably in the order of a few hun-
dreds of angstroms. Therefore, an electron beyond
this range from the surface is difficult to return to the
surface. By combining laser techniques with angle-
resolved photoelectron spectroscopy, Hofer et al.
observed that electron wave packet travels about
200 Å away from the surface into the vacuum and
then returns with a period of 800 fs.17,18 This exper-
imental result coincides with the above cup model
prediction.

According to the well model, the energy of an
electron outside a conductor (vacuum level) is higher
than the Fermi level in the conductor. But accord-
ing to the cup model, the vacuum level is at the
ground level, which is lower than the Fermi level
in the conductor. As we know that the electrons
in the conductor are confined inside the conduc-
tor by the surface potential barrier resulting in the
formation of energy level in the conductor, and due
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to the Pauli’s exclusion principle, the electrons in
the conductor have to occupy the higher level up to
Fermi level. But, the electrons outside the conduc-
tor do not have any confinement, so they should all
occupy the ground level. Therefore, the vacuum level
should be at the ground level rather than above the
Fermi level. That means that our cup model but not
the commonly accepted well model for a conductor
is reasonable theoretically.

4. Conclusions

In order to explain the tunneling effect of graphite,
we modified the commonly accepted well model of
the potential barrier for conductors, and a cup model
with a thickness of the cup wall is proposed. The new
model can also be applied to the results previously
explained by the well model.
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