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ABSTRACT: In this article, we propose a new deconvolution algorithm,

which is based on image reconstruction from incomplete measurements
in Fourier domain. Our algorithm has two steps. First, an initial estimator

is obtained using Fourier regularized inverse operator. Second, parts of

the estimator’s Fourier coefficients are saved, and the others are removed

to suppress noise energy, then the remaining coefficients are used
to recover image based on the sparse constraints. This image reconstruc-

tion problem is an optimization problem that is solved by a fast algorithm

named split Bregman iteration. Different from other deconvolution

algorithms, our algorithm only uses parts of Fourier components to
restore the blurred image and combines two different regularization

strategies efficiently by applying a selection matrix. The experiment

shows that our method gives better performance than many other

competitive deconvolution methods. VVC 2012 Wiley Periodicals, Inc. Int

J Imaging Syst Technol, 22, 233–240, 2012; Published online in Wiley Online

Library (wileyonlinelibrary.com). DOI 10.1002/ima.22027
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I. INTRODUCTION

Image deconvolution is an inverse problem existing in a wide vari-

ety of image processing fields, including physical, optical, medical,

and astronomical applications. For example, practical satellite

images are often blurred because of the limitations such as aperture

effects of the camera, camera motion, and atmospheric turbulence

(Jain, 1989). Deconvolution becomes necessary when we wish a

crisp deblurred image for viewing or further processing.

A digitally recorded image is a finite discrete data set, so the

image deconvolution problem is formulated as a matrix inversion

problem. The observed samples y consist of unknown desired signal

samples x first degraded by convolution (denoted by ‘‘~’’) with a

known impulse response h from a linear time-invariant system H
and then corrupted by zero mean additive white Gaussian noise

(AWGN) c with variance r2. The formulation of blurring often can

be described as

yðnÞ ¼ HxðnÞ þ cðnÞ ¼ ðh~xÞðnÞ þ cðnÞ: ð1Þ

Equation (1) in the discrete Fourier transform (DFT) domain can be

written as

YðkÞ ¼ HðkÞXðkÞ þ CðkÞ; ð2Þ

where Y(k), H(k), X(k) and G(k) are the 2D DFTs of y(n), h(n), x(n),
and �(n), respectively. The goal of image deblurring is to recover

clear image x from the blurred image y.

A naive deblurring estimate ex is
ex ¼ H�1y ¼ xþ H�1c: ð3Þ

The deblurring process is a mathematically ill-posed problem,

which can be interpreted as an inverting low-pass filtering, back-

ward diffusion, or entropy decreasing. The variance of the colored

noise H�1c is large. In this case, the mean squared error between x
and ex is large, making ex an unsatisfactory deconvolution estimate.

In recent years, lots of deconvolution algorithms have been pro-

posed. Among these methods, the Wiener filter and the Tikhonov

regularized can solve this problem in the frequency domain in a fast

speed. However, they often obtain a noisy result with ringing effects.

Increased performance of deconvolution methods can be attributed to

the inclusion of the wavelet-based estimators. One such kind of tech-

nique called the wavelet–vaguelette deconvolution was proposed in

Donoho (1995). In this work, functionals called vaguelettes are used

to simultaneously deconvolve and compute the wavelet coefficients.

However, the algorithm cannot provide good estimates for all convo-

lution operators. To overcome this limitation, Kalifa et al. (2003)

proposed a wavelet packet based method that matches the frequency

behavior of certain convolution operators. More wavelet-based tech-

niques have been proposed in Johnstone et al. (2004), Fan and Koo

(2002), and Figueiredo and Nowak (2003).

In Neelamani et al. (2004), the authors proposed an improved

hybrid Fourier-wavelet regularized deconvolution (ForWaRD)Correspondence to: Hang Yang; e-mail: yanghang09@mails.jlu.edu.cn
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algorithm with any ill-conditioned convolution system. This method

uses Fourier-domain regularized inversion followed by wavelet-do-

main noise shrinkage to minimize the distortion of spatially localized

features in the image. Two extensions in terms of curvelets and shear-

lets, known as ForCuRD and ShearDec, was proposed in Neelamani

et al. (2007) and Patel et al. (2009), respectively. Additional, the local

polynomial approximation (LPA-ICI; Katkovnik et al., 2005) algo-

rithm performs better than some of the best existing deblurring meth-

ods in terms of improvement in signal-to-noise-ratio (ISNR).

The iterative deblurring method is another important category.

The well-known basic iterative methods are Landweber (1951),

Richardson (1972), and Lucy et al. (1974). Many extensions and

improvements over these methods have been made that include the

use of wavelets or other sparse representations, such as curvelets.

The fast total variation based deconvolution (FTvd; Wang et al.,

2008) and TV based deconvolution using Bregman iteration (TV

Bregman; Osher et al., 2005), which are well known of edge-pre-

serving, can generally achieve good results. This total variation

(TV) deconvolution method finds approximate solutions to differen-

tial equations in the space of bounded variation functions. Some of

these are Starck et al. (2003), Elad et al. (2007), Takeda et al.

(2008), Fadili and Starck (2007), Vonesch and Unser (2008), and

Chang and Chen (2004). Note some of the these iterative techniques

make use of L1-norm transform domain sparsity promotion.

In this article, we propose a new approach to solve the convolution

problem based on image reconstruction from incomplete measure-

ments in Fourier domain. Our approach has two steps. First, we obtain

an initial estimator based on Fourier domain regularized inverse oper-

ator. Second, we select parts of the frequency domain information

(the Fourier coefficients that keep the main energy of image but little

noise energy), and then those measurements are used to reconstruct

the whole image based on the sparse constraints, and the sparsity reg-

ularization terms enable the application of a new numerical algorithm,

namely, split Bregman iteration, which can solve the proposed L1-

norm minimization problem efficiently. Experimental results demon-

strate the effectiveness of the proposed algorithm and show that it is

better than many competitive deconvolution methods.

The remainder of this article is organized as follows. In Section

II, we discuss the proposed deblurring algorithm in detail. In Sec-

tion III, we show some simulation results and present the conclud-

ing remarks in Section IV.

II. DECONVOLUTION ALGORITHM

A. The Motivation. We established a method for obtaining an

initial image estimate when the image is corrupted by colored noise,

let us now focus on how we are to use this method as part of our

deblurring routine. As blurring model is described by (1): y 5 Hx
1 n5 h ~ x1 �. A naive estimate is

ex ¼ H�1y ¼ xþ H�1c:

In the Fourier domain, the pseudoinversion operation of (1) can be

rewritten as

eXðkÞ ¼ XðkÞ þ CðkÞ=HðkÞ; ifjHðkÞj > 0;
0; otherwise;

�
ð4Þ

where eX is the DFT of ex. Unfortunately, the variance of the colored
noise H�1n in ex is large, so ex is an unsatisfactory deblurring

estimate.

From (4), we can clearly see that the noise components where

|H(k)| � 0 are particularly amplified. So if those components of the

estimate ex where |H(k)|� 0 are removed, can we use the remaining

Fourier coefficients to reconstruct the original image? We consider

to recover the image by solving an optimization problem based on

the sparse constraints.

According to the fundamental principle of compressed sensing,

the image can be recovered with incomplete measurements of it by

optimization (Candes et al., 2006; Ma, 2011). The image can be

reconstructed by solving:

argmin
u

jUuj1 þ
k
2
k g� Au k22; ð5Þ

where A is the measure matrix, F is a transform matrix, and k � 0

is the regularization parameter.

Our problem is similar to (5), in which the L1-norm optimiza-

tion problem is used to recover the clear image and obtain the esti-

mate x*:

x� ¼ argmin
u

jUuj1 þ
k
2
k g� R � Fu k22; ð6Þ

where F is the Fourier transform matrix, R is a selection matrix, for

example,

RðkÞ ¼ 1; jHðkÞj>s;
0; jHðkÞj < s

�
ð7Þ

and define g5 R � Fex.
Our method combines two different regularization procedures,

Fourier regularization and iterative restoration procedure, deter-

mined by a selection matrix. The selection matrix is an important

element for our algorithm, which is used to suppress the colored

noise’s energy and retain the main energy of image. Different from

other deconvolution methods, we only use part of the information

in the frequency domain to restore image, which could reduce the

influence of noise and improve quality to image restoration.

Figure 1 illustrates a simple deconvolution result of our pro-

posed method for the 2D r5 4.5 circular spot blur operator.

B. Improvement. Although we can obtain an estimate of the

clear image from (6), the energy of noise is not suppressed in

the remaining Fourier components. The Fourier domain provides

the most economical representation of the colored noise H�1c,
because the Fourier transform acts as the Karhunen–Loeve trans-

form (Castleman, 1996) and decorrelates the noise H�1c. Conse-
quently, among all linear transformations, the Fourier transform

captures the maximum colored noise energy using a fixed number

of coefficients (Davis, and Nosratinia, 1999). More details can be

found in Neelamani et al. (2004) and Davis and Nosratinia (1999).

So, we use Fourier shrinkage to attenuate the colored noise in ex.
An estimate of the power spectral density (PSD) can be accu-

rately determined from a method such as that proposed in Hillery

and Chin (1991), a Wiener-based solution can be found using

HaðkÞ ¼
HðkÞ

jHðkÞj2 þ a M2r2

jPsdðkÞj2
ð8Þ

where r2 is the variance of noise, a [ R1, Psd is the estimated PSD

of the image, andM is the size of image.
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Using the regularized inverse operator (8), we can obtain an ini-

tial estimate xa, its Fourier transform Xa is

XaðkÞ¼YðkÞHaðkÞ¼XðkÞ
�

jHðkÞj2

jHðkÞj2 þ a M2r2

jPsdðkÞj2

�

þ NðkÞHðkÞ
jHðkÞj2 þ a M2r2

jPsdðkÞj2
; ð9Þ

From (9), both the noise energy and image energy in the estimateeXa(k) are small in Fourier domain when |H(k)| is small. So, they can

hardly provide useful information for recovering. However, when

|H(k)| is large, the image energy is kept well and the energy of col-

ored noise is suppressed.

We use the new estimate exa to replace ex to reconstruct the image

based on (6), but for this time, g5 R � Fexa 5 R � eXa.

C. Minimization Based on Split Bregman Iterative. In this

article, our approach to the solution of the L1-norm optimization

problem (6) allows us to perform the minimization phase by some

good method. We consider a fast iterative algorithm named split

Bregman iteration, proposed in Goldstein and Osher (2009) for the

image restoration problem.

Recently, split Bregman iteration attracts much attention in sig-

nal/image recovery. The basic idea is to transform a constrained

optimization problem to a series of unconstrained problems. In each

unconstrained problem, the object function is defined by Bregman

distance (Bregman, 1967) of a convex functional. This is an

extremely fast algorithm, very simple to program. So, it has been

studied widely by researchers. The details of Bregman iteration will

not be discussed here. Rather we refer the reader to Yin et al.

(2008), Osher et al. (2005), and Cai et al. (2009, submitted for

publication) An in-depth description of the application of this tech-

nique to the split Bregman method can be found in Goldstein and

Osher (2009). Goldstein and Osher (2009) described its further

applications in image processing, and the convergence analysis was

given in Cai et al. (2009).

Split Bregman method has the advantage that it does not require

regularization, continuation, or the enforcement of inequality con-

straints. Furthermore, the technique has been shown to be an

extremely efficient solver for L1 regularized denoi!sing problems,

as well as a large class of problems from compressed sensing.

Applying split Bregman iterative to problem (6), W being a

transform matrix, we can have:

where K5 �R2 �FDF21 1 b, sk 5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jrxuk þ bkxj

2 þ jryuk þ bkyj
2

q
and ‘‘shrink( )’’ is the soft-threshold operator. When choosing F 5

r, let b 5 0; while choosing F as a transform matrix, let k 5 0.

There are more details in Goldstein and Osher (2009). This iterative

may be a little different from the ‘‘Constrained CS Optimization

Algorithm’’ in Goldstein and Osher (2009), but essentially the two

algorithms are the same.

D. Summary and Implementation. From Sections II.B and

II.C, we can see that our algorithm consists of the following three

steps:

1. Select the Fourier coefficients that should be saved in Fourier

domain, which is to determine the selection matrix R (7).

2. To suppress noise energy in the remaining Fourier compo-

nents, use (9) to Y (the Fourier transform of the observed

image y) to obtain eXa.

3. Apply split Bregman iterative to solve the sparse regulariza-

tion (6), and obtain the estimate bx.
Our method combines two different regularization procedures:

In the second step, an efficient deconvolution method using fast

Fourier transforms can be used; In the third step, effective meth-

ods like tight frame reconstruction method or TV reconstruction

method can be used. We find that the components that are deter-

mined by the selection matrix R are useless for image deconvolu-

tion. So, we remove these image components and utilize the

reminding components to reconstruct the whole image, which

could reduce the noise influence and improve the restored image

quality. The selection matrix R is an important element for our

Figure 1. (a) Test medical image (256 3 256). (b) Observed image:
smoothed by a 2-D r 5 4.5 circular spot blur plus white Gaussian

noise with variance such that the BSNR 5 40 dB. (c) The selection

matrix R, � 5 0.025. (d) Our method estimate (ISNR 5 9.46 dB).

Split Bregman Iterative Algorithm for Recovering:

Initialize: u0 5 F�1g, dx
0 5 dy

0 5 bx
0 5 by

0

while kR � Fu 2 gk22 � �2,do

For k5 0,1,. . .,do

rhsk 5 �FT R � g 1 �rx
T(dx

k 2 bx) 1 �ry
T(dy

k 2 by)1 bu
uk 1 1 / F�1(Frhsk./K)

dx
k 1 1 / max(sk 2 1/�,0)

rxu
kþbkx
sk

dy
k 1 1 / max(sk 2 1/�,0)

ryu
kþbky
sk

bx
k 1 1 / bx

k 1!xu
k 1 1 2 dx

k 1 1

by
k 1 1 / by

k 1!yu
k 1 1 2 dy

k 1 1

end For

gk 1 1 / gk 1 g2 R � Fuk11

end while

{
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algorithm, which suppresses the colored noise’s energy and retains

the main energy of image, and it is used to balance the influence

of Fourier regularization and L1-norm optimization regularization.

The parameter � of R is a major parameter in this algorithm. It can

affect the final result: the lower value may not suppress the col-

ored noise influence enough, and a higher value may not keep the

main energy of image well.

Different from other deconvolution methods, we only use part of

the information in the frequency domain to restore image, which

can reduce the influence of noise and improve quality of image res-

toration. The another advantage of this proposal is that the optimi-

zation problem in Step 2 permits fast and efficient algorithm and

produce better restored images in visual quality and ISNR than

those obtained using the combination of a data-fitting term and a

regularization term together.

III. EXPERIMENTAL RESULTS

In this section, we present results of our proposed algorithm and

compare them with some of the deconvolution methods such as

ForWaRD (Neelamani et al., 2004), ForCuRD (Neelamani et al.,

2007), LPA-ICI (Katkovnik et al., 2005), FTVd (Wang et al.,

2008), and TVBregman (Osher et al., 2005). In these experiments,

we will use the improvement in ISNR to measure the performance.

The ISNR is defined as

The ISNR is defined as

ISNR ¼ 10 log10
k x� y k22
kx� x̂k22

 !
;

where y is the observed image, x is the original image, and x̂ is the

estimated image.

For an image of M*M size, the blurred SNR(BSNR) is defined

in decibels as

BSNR ¼ 10 log10
kx~h� Eðx~hÞk22

M2r2

 !
;

where E(x ~ h) denotes the mean of x ~ h.

In our experiments, we use anisotropic TV model for image

recovering, that is to choose F 5 r. The anisotropic TV model can

preserve the edge well. (We can also choose other transform matri-

ces, such as wavelet and curvelet.) The parameter s of R is hand

tuned in each case for best ISNR, so that the comparison is carried

out in the regime that is relevant in practice.

In the first set of tests, we consider the setup of Neelamani et al.

(2004), where a Cameraman image is blurred by a 9 3 9 uniform

box-car blur. The AWGN variance, r2 is chosen with a BSNR of 40

dB. A comparison of different methods in terms of ISNR is shown

in Table I. Our proposed method yields a value 8.14 dB, which is

better than the values obtained by any of the other methods, we can

see that the selection matrix R is an important factor for improving

restored quality. And our method is not slow, because the split

Bregman iteration is a fast algorithm for image recovering. The

images obtained by different methods are shown in Figure 2.

In the second set of tests, the original image of Lena is blurred

by a Gaussian PSF defined as

hði; jÞ ¼ Ke
�i2þj2

2g2

for i,j 5 25,..,5, where K is a normalizing constant ensuring that

the blur is of unit mass, and �2 is the variance that determines the

severity of the blur. In this experiment, we chose � 5 2, the noise

Table 1. ISNR for different experiments

Methods

Our

Method LPA-ICI

For-

WaRD

For-

CuRD FTVd

TV-

Bregman

Exp. 1 8.14 7.84 7.40 7.28 7.10 7.83

Exp. 2 4.92 4.62 4.59 4.65 4.68 4.40

Exp. 3 1.42 1.00 1.12 1.03 1.10 0.95

Exp. 4 3.28 2.76 2.24 2.56 2.98 3.07

Exp. 5 5.54 4.85 4.73 4.53 4.77 5.16

Exp. 6 4.72 4.45 3.91 4.34 4.49 4.53

Exp. 7 5.53 5.08 4.54 4.27 4.95 5.28

Exp. 8 4.96 4.62 3.85 4.16 4.54 4.49

Exp. 9 5.65 4.17 3.91 4.53 – –

Figure 2. The results by different methods with a cameraman image. (a) Original image. (b) Noisy blurred image, BSNR 5 40 dB. (c) ForCuRD
estimate, ISNR 5 7.28 dB. (d) ForWaRD estimate, ISNR 5 7.40 dB. (e) FTVd estimate, ISNR 5 7.10 dB. (f) TVBregman estimate, ISNR 5 7.83

dB. (g) Our method estimate, ISNR 5 8.14 dB.
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Figure 3. The results by different methods with a Gold Hill image. (a) Original image. (b) Noisy blurred image, r 5 8 dB. (c) ForCuRD estimate,
ISNR 5 2.56 dB. (d) FTVd estimate, ISNR 5 2.98 dB. (e) TVBregman estimate, ISNR 5 3.07 dB. (f) Our method estimate, ISNR 5 3.28 dB.

Figure 4. The results by different methods with a boats image. (a) Original image. (b) Noisy blurred image, r 5 2. (c) ForCuRD estimate, ISNR

5 4.53 dB. (d) ForWaRD estimate, ISNR 5 4.73 dB. (e) FTVd estimate, ISNR 5 4.77 dB. (f) TVBregman estimate, ISNR 5 5.16 dB. (g) Our method
estimate, ISNR 5 5.54 dB.

Figure 5. The large format full face images obtained by different methods. (a) Original image. (b) Noisy blurred image. (c) LPA-ICI estimate,
ISNR 5 5.08 dB. (d) FTVd estimate, ISNR 5 4.95 dB. (e) TVBregman estimate, ISNR 5 5.28 dB. (f) Our method estimate, ISNR 5 5.53 dB.



variance, �2, with a BSNR of 40 dB. We report the simulation

results in Table I. Again, our proposed method performs best in the

known methods for this problem setup.

In the third experiment, we use the blur filter considered in Patel

et al. (2009). The original image of Barbara is blurred by a 5 3 5

separable filter with weights [1, 4, 6, 4, 1]/16 in both the horizontal

and the vertical directions and then contaminated with AWGN with

r 5 5. In this experiment, our method is better than LPA-ICI, For-

WaRD, FTVd, and TVBregman.

In the forth experiment, the original image of the 512 3 512

Gold Hill is blurred by a Gaussian PSF with standard deviation 0.4,

the size of PSF is 25 3 25. The noise variance r2 5 64. We show

our result in Table I and the details of the results in Figure 3.

In the fifth experiment, we use the motion blur filter, the

length is 11 and the angle is 458, which corresponds to a 458
motion of 11 pixels. The original image of the 512 3 512 boats

is blurred by this PSF and then contaminated with AWGN with r
5 2. The details of the images obtained by the different methods

Figure 6. The results of Exp. 8. (a) Original image. (b) Blurred image. (c) ForWaRD result, ISNR 5 3.85 dB. (d) FTVd result, ISNR 5 4.54 dB. (e)

LPA-ICI result, ISNR 5 4.64 dB. (f) Our method result, ISNR 5 4.96 dB.

Figure 7. Details of the image deconvolution experiment with a 512 3 512 Peppers image. (a) Original image. (b) Noisy blurred image, BSNR
5 30 dB. (c) ForCuRD estimate, ISNR 5 4.53 dB. (d) ForWaRD estimate, ISNR 5 3.91 dB. (e) LPA-ICI estimate, ISNR 5 4.17 dB. (f) Our method

estimate, ISNR 5 5.65 dB.
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are shown in Figure 4. Again, the proposed algorithm performs

the best in terms of ISNR and captures the details better than any

of the other methods.

In the sixth experiment, the original image of Boats is blurred

by a 19 3 19 uniform box-car blur, the noise variances r2 5 4.

From Table I, we can notice that our method performs the best in

terms of ISNR.

In the seventh experiment, we use the 2D r 5 4.5 circular spot

blur filter plus white Gaussian noise with variance �2 5 4. The orig-

inal image is the 512 3 512 face image. The large format images

obtained by the different methods are shown in Figure 5. The pro-

posed algorithm performs better than the other methods in terms of

ISNR and visual quality.

In the eighth experiment, we apply a Gaussian PSF (with stand-

ard deviation 1.6) on the House image. The deconvolution results

obtained by different methods are reported in Table I. Our method

performs yielding ISNR values of 4.96 dB. This experiment shows

that our proposed method can provide better reconstruction

than some of the competitive deconvolution methods. The details

of the images obtained by the different methods are shown in

Figure 6.

The performance of the robustness to noise suppression of our

method is shown in Figure 7. In this set of tests, the 512 3 512

Peppers image is blurred by a 9 3 9 uniform box-car blur and

the AWGN is added such that the BSNR 5 30 dB. We tested the

ForWaRD method (3.91 dB), the LPA-ICI method (4.17 dB), and

our proposed method (5.65 dB) using the same Fourier regulari-

zation parameter a (not necessarily optimal) for each routine.

This set of tests present an important comparison in robustness to

noise suppression and an indication of our method’s high default

tolerance level when the regularization parameter is not chosen

optimally.

Additionally, we explain why the partially selected Fourier com-

ponents would work better briefly. A heuristic justification is pro-

vided: our method can be written as kFuk1 1 k
2
k R

H (
jHj2

jHj2þa
Y 2

HU)k22. We find that the image components where |H(k1, k2)| � 0

are not useful for image deconvolution, so
jHðk1; k2Þj2

jHðk1; k2Þj2þa
is used to

suppress the noise’s energy and keep the main energy of image.

And different components are given different weights.

IV. CONCLUSION AND FUTURE WORK

In this work, we have proposed a novel image deconvolution

method, which is based on image recovery from incomplete

measurements in Fourier domain. The motivation of our algo-

rithm is that Fourier shrinkage exploits the Fourier transforms

economical representation of the colored noise in herent in

deconvolution, and Fourier transform captures maximum colored

noise energy using a fixed number of coefficients. When these

Fourier coefficients are removed, the energy of the remaining

noise is small, while keeping the image’s main energy. So, the

remaining Fourier coefficients are used to recover the original

image under sparse constraints. This is a L1-norm minimization

problem. The fundamental principle of compressed sensing

shows that the L1-norm optimization problem can recover the

image well from the incomplete measurements of it. Further-

more, we use the split Bregman techniques to solve this L1-

norm minimization problem.

In this article, we have assumed knowledge of the convolution

operator. However, the convolution operator is unknown in many

case. In such ‘‘blind’’ deconvolution problems, the convolution

system must be estimated from observations. It would also be

of interest to apply the methods developed here to blind

deconvolution.
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