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Refractive indices for extraordinary waves in nniaxial crystals
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In order to support our earlier experimental investigation of extraordinary rays, behavior in uniaxial
crystals [Zhongxing Shao and Chen Yi, Appl. Opt. 33, 1209 (1994)],as well as to determine the indices of
refraction for the extraordinary waves at arbitrary incidence and in arbitrary orientation of the optical
axis, and to compare with our experimental results, the ellipsoidal equation depicting double refraction
propagation is solved with the expressions given in terms of the easily measured parameters: incident
angle 0, rotational angle N of the crystal, and the inclined angle g of the axes. Based on the solutions,
the refractive angle re of the ray (or the Poynting vector) and the angle Pe between the ray and the opti-
cal axis, as well as the refractive angle r of the wave normal of the extraordinary wave and the angle ll
between the normal and the axis are given. The results of the indices of refraction for the extraordinary
waves are practically presented by applying the derived angles combined with the equation [A. Yariv,
Quantum Electronics, 2nd ed. (Wiley, New York, 1975)]:

1/ 'n(P )=cos'(P )/no+sin'(P )/n, ' .

As an example of application, the indices of calcite and quartz are calculated using some angular param-
eters. To clarify the divergence [M. Born and E. Wolf, Princt'ples of Optics, 5th ed. (Pergamon, New
York, 1975); F. A. Jenkins and H. E. White, Fundamentals of Optics, 4th ed. (McGraw-Hill, New York,
1976), p. 508], regarding the index and by analogy with Snell s law, the ratio n, (r )=sin(8)/sin(r ) is
also discussed.

PACS number(s): 42.25.Bs

I. INTRODUCTION

cosP =cos&b cos9 (2)

has been frequently used [8], where @ is the rotation an-
gle of the optical axis (or the crystal) away from the in-
cident plane (while @=0, the axis is in the plane). Unfor-
tunately, Eq. (2) is valid only for crystals with optical
axes parallel to the surface (CAPS). Even then, it is con-
strained by the limitations of incidence at the Brewster
angle and the wave normal must be assumed to stay in
the incident plane, whatever W is. In addition, the ambi-

The extraordinary rays in double refraction crystals are
a long-recognized optical phenomenon. Almost all opti-
cal textbooks have mentioned it, and some recent articles
have discussed the tracing of the ray [1—7] as well, but as
far as we know, it has not been described satisfactorily.
Consequently, the indices of refraction for the extraordi-
nary waves have not yet been established unequivocally.
Although we have had the familiar formula

I/n, (13 )=cos (f3 )/no+sin (ll )/n,

to calculate theoretically the index n, (13 ), where no and
n, are the principal indices of the ordinary and the ex-
traordinary waves, respectively, the problem is how to
practically define the angle P between the wave normal
of the extraordinary wave and the optical axis with
measurable quantities. The expression

, guous expression, sin(0)/sin(r )=n„where r is the re-
fractive angle of the wave normal, was employed in the
derivation of Eq. (2). As we pointed out in Ref. [1] the
wave normal does not stay in the plane unless the axis is
in the plane; the expression is not correct except when
the axis is vertical to the plane. Equation (1) is neverthe-
less very useful in some theoretical analyses in crystal and
nonlinear optics for assigning a preliminary angle P

Our earlier experimental studies on the extraordinary
rays' behavior [1] revealed the following. (i) While the
crystal with optical axes inclined to the surfaces (CAIS) is
turned around the normal, the ray always rotates around
the ordinary ray. When the crystal is turned to m, the ray
rotates to ~. But the rotation is not in step with the turn-
ing. For the CAPS the ray rotates up to m while the crys-
tal is only twisted to n. /2. (ii) The traces of the ray on the
emerging surface in the CAIS, surprisingly, are a series of
curves that resemble the Pascal worms at di6'erent in-
cident angles. In CAPS, the traces degenerate to a series
of ellipses. (iii) For CAPS, Snell s law is tenable only in
the case where the axes are perpendicular to the incident
plane.

Based on these discoveries, we have solved the ellip-
soidal equation depicting the ray s propagation and deter-
mined three-dimensional coordinates that prove useful
for tracing the extraordinary ray. Then the refractive an-
gle of the ray (which is specifically the angle between the
ray and the normal of the crystal and the angle between
the ray and the optical axis), the refractive angle of the
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wave normal, and the angle between the wave normal and
the axis are obtained in terms of the easily measurable an-
gular parameters 0, N, and q. Fitting the angle between
the wave normal and axis to Eq. (1), the indices for the
extraordinary waves can be determined in practical ex-
periments.

II. THE CQ(0RDINATKS
QF THK EXTRAORDINARY RAY

0, ~/s~ne, ay

Y

A movable rectangular system OX'F'Z' is chosen to
aid in the analysis of a uniaxial crystal in arbitrary orien-
tation of the optical axis. The OF axis is in the same
direction as the axis OA (see Fig. 1). The ellipsoidal
equation in the system can be written as

2Xt2+ 2 Ft2+ 2Z I2
ne np ne (3)

I'„X +I' F +BZ +I"„„XY+I',FZ+I',„ZX=1,
with

=n, cos 4+ A sin N,
I =n, sin N+ 3 cos @,
3 =n pcos 'g+ne sin g

8 =npsin q+n, cos g,
F„»=(n, na)sin—(2$)cos rl,

F», =(n, —n0)cos Csin(2q),

F, =(n0 —n, )sin C&sin(2q) .

All the factors in Eq. (4) are in terms of the angular pa-
rameters q and @only. But, generally, g is fixed once the
crystals are cut for use as an optical component. Hence,
our interest in the index for the extraordinary wave
focuses on its relation to 4 in the foregoing analysis.

A beam making an arbitrary angle 0 is incident on the
crystal. It is divided into the ordinary and the extraordi-
nary rays, OEp and OE„respectively, as it enters the
crystal. The point I'(X, , Y, ,Z, ) observed on the extraor-
dinary ray satisfies Eq. (4),

I' Xi+I' Yi+BZi+F Xi Fi+F, FiZi+E, ZiXi —1.

On the other hand, when considering point P' to be of
equal optical path to P, we find that the distance from O
to F' d (OP') =ct/sinO. For the sake of convenience, tak-
ing the time t =1/c [c denotes the light velocity; actual-
ly, it is under this assumption that Eq. (3) is obtained.
Note that the incident plane is the OYZ plane (refer to

After rotating the OX'F'Z' system in such a way that
the OF' axis is erst turned at an angle g around the OX'
axis, then at angle + around the OZ' axis, the system
OXFZ is set in the same way as the original orientation of
the OX'F'Z' used to observe the rays' behavior. The
OXY plane is on the front surface and the OZ axis coin-
cides with the normal of the crystal. Equation (3) can be
rewritten, in the system being observed, as

FIG. 1. A movable rectangular system OX'F'Z' is rotated in
such a way that the OF' axis is turned an angle q around the
OX' axis first, then angle N around the OZ' axis. The station-
ary system OXFZ is set as the original orientation, as the
OX'F'Z' system used to be for observing the extraordinary
ray's behavior. I' is the point where the optic path is equal to
the point P being observed. d(OP')=ct/sinO (t denotes the
time, c the light velocity).

ol

Yi =(2sin8 —F„X,+F,Z, )/(2F ) .

Substituting Eq. (6) into (5), we have

X, = (b++b 4ac)j(2a), —

where

(6)

6 =[F,„F,F, /(2F )]Z, —,
a =F F„ /(4F ), —

c =[B F, /(4F )]Z,—+sin (8)/F —1 .

In order to find Zi, Xi in Eq. (5) must be zero. (Mak-
ing Z& equal to zero apparently does not make sense, be-
cause it means the light would not have entered the crys-
tal. Alternatively, if F, =0, it would confine the case to
normal incidence. ) Then Eqs. (5) and (6) simplify to

Fi+BZi+E, FiZi =1

or

[Z, +F„Y,j(2B)]'j( I j&B )'

+ Y, /[I j+F F», /(4B)] =1—
Yi =(2 sin6 —F,Zi )j(2F» ) .

Evidently, Eq. (8) is an ellipselike equation describing the
intersecting curve between the ellipsoid and the OFZ

Fig. 1 or 2)], the coordinates of P' should be
(0, I/sin9, 0). Hence, the tangent equation going through
points P and P' is found to be

Fy Fi +F yX$ /2 F yZ] /2 = sinO
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FIG. 2. Diagram showing the rotation of
the extraordinary ray (the Poynting vector)
around the ordinary ray and the wave normal
of the extraordinary wave around the extraor-
dinary ray while the optical axis is rotated at
an angle N. OP denotes the Poynting vector.
08' which is separated by a small angle a
from OP, represents the wave normal. The
coordinates of point P are {X„I'„Z, ). Pp is
the angle between the extraordinary ray and
the axis. p indicates the angle between the
wave normal and the axis. rz and r are the
refractive angle of the ray and the wave nor-
mal, respectively.

plane. One of its axes 1/&B, does not relate to N, but
the other one does. Anyway, substituting Eq. (9) into (8),
we obtained

Z, =4(F —sin 8)/(4BF F~, ) . — (10)

F =A —(A —n, )sin 4 .

For simplicity, by making rI=O (which leads to 2

=no�

),
Eq. (11) is simplified to

F =no —(no —n, )sin 4 .

If the coordinate axes, X, Y, Z, are changed to the
principal in'. ices, i.e., Y =no, X =Z =n„ then the ellip-
soidal equation can be regarded as the index ellipsoid.
So, Eq. (11') proves that the indices in the CAPS, owing
to the change of N, vary from the ordinary ray's princi-
pal index (when C&=0) to that of the extraordinary wave
(when C&=sr/2). The rule for varying between the two
extreme values (the principal indices) follows the
sinusoidal (sin 4&) pattern. The increment of the varia-
tion is (no n, )sin N. Comparing —Eqs. (11) and (11'), we
see that the variation rule for the CAIS is the same as
that for CAPS, except that the term 3 should be replaced
with no. Returning to the matter of rays propagation,
similarly to the index, Z, varies between the two extreme
values (Zo and Z &z ):

Z, =Zo —(Z —Z )sin N .

This means that while the optical axis is in the incident

Taking into account Eq. (10), Z, should attain one of
its extreme values, as F, becomes maximum at @=0:

Zo =( A —sin 8)/(n no, ) .

On the other hand, if F, becomes zero at N=~/2, then
Z

&
should change to another extreme value,

Z &2
= A (n, —sin 8)/(non, ) .

The two extreme values of Z, are only related to the an-
gular variables 0 and g.

Next we are going to determine the varying rule of Z&
for changing N. To accomplish this, it is important to
note the factor F~ with regard to the Y axis (so that it re-
lates to the optical axis), which aids in coordinate
transfer. The fact can be rewritten as

plane, Z, becomes Zo and the observation point I' is in
the plane OXZ (X=O). Once the axis is rotated away
from the plane, Z i will decrease by the increment
(Zo —Z &2)sin @. When the axis is again perpendicular
to the plane, Z& will attain the other extreme Z y2, At
the same time, X, no longer equals zero until the axis re-
turns to the plane. Point P will travel around the rim of
the ellipsoid.

So far, all three coordinates needed to describe the ex-
traordinary ray's behavior are solved in terms of the easi-
ly measured angular parameters 6, N, g and the known
principal indices no and n, .

III. THE ANGLES rl, P~, r, P AND THE INDICES

Having found the coordinates describing the extraordi-
nary rays, the refractive angle of the extraordinary ray,
rp, and the angle between the ray and the optical axis, p~,
as well as the refractive angle of the wave normal, r, and
the angle between the normal and the axis, p„, can be
defined with the coordinates and the angles 0, N, g.

When +=0, we know that the optical axis, the ex-
traordinary ray, and the wave normal to the extraordi-
nary wave are coplanar and in the incident (OXY) plane.
Note that the wave normal should lie to the right of the
extraordinary ray in order to conform to the indices of
refraction: at any incidence and in any orientation of the
optical axis, they are confined within the principal indices
no and n, .

When the optical axis OA rotates at an angle N around
the OZ axis away from the OYZ plane, the extraordinary
ray rotates to OP. To keep the ray, the wave normal, the
electrical vector, and the displacement vector coplanar as
well as perpendicular to the magnetic vector (or the mag-
netic induction), according to Refs. [4] and [9j, the wave
normal 08'must rotate around the ray in the same direc-
tion as OA's rotation and at the same angle as @ to fol-
low the rotation of the electrical vector of the ray (see
Fig. 2). Cxenerally, the wave normal is separated a small
angle (several degrees) a from the ray. Because of the
double refraction angle o., the extraordinary wave normal
is confined to a single side (which side depends on wheth-
er the crystal is positive or negative) as compared to the
ordinary ray (wave), although the extraordinary ray ro-
tates around the ordinary ray while the crystal is being
turned. The angle a, according to Ref. [10],equals
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tana=(no/2)(l/n, —I/no)sin(2P ) .

Taking into account the coordinate plane of point P,
OpXp Yp which is parallel to and has a separate Z, from
the OXY plane, we can easily determine the refractive an-
gle of the extraordinary ray and the extraordinary wave
normal, respectively,

cos(rp) =Z& /d (OP),

COSPp =sin(rp )cosil cos(~I +yp )+cos( rp )sining, (16)

with

tan(yp) =X, /Y, .

In the same way, the angle between the wave normal
and the axis, P, can be determined in triangle OA 'W:

cosP„=[d (OW)+d (OA')

with —d ( A 'W) ]/2d (OW)d (OA ') . (17)

[d (OP)] =X, + Y, +Z, , All the terms on the right-hand of Eq. (17) are solved in
the Appendix. With the help of Eqs. (13) and (14), we
can also write Eq. (17) in the form of angular variables:

cos(r ) =Z, /d (OW),

with

OW=(X.'+ Y.'+Z.')'",

(13)
cost8 =sin(r )cosil cos(4+y )+cos(r )sining,

with

tan(y )=X /Y„.

(18)

where X, Y, Z are the coordinates of the point 8'and

X„=X&—d (PW) sin@,

Y~ = Y, +d (PW ) cos@,

Z~ Z] o

(14)

d (PW) in Eqs. (14) is a function of a and is solved in the
Appendix. (Note that d(OW) should be shorter than
d (OP) because the phase velocity is the projection of the
ray velocity on the direction of the wave normal, so that
point 8' should not be in the O&X& Yz plane. Here, for
convenience, we extend the normal so that it intersects
the plane, since the extension does not affect the angles.

Considering triangle OPA' (the plane OpXp Yp inter-
sects the optical axis at point A'), we find the angle Pp:

cosPp = [d (OP)+d (OA ')

d(PA')]—/2d (OP)d (OA') . (15)

Applying the coordinates of point P and Eq. (12), and
with proper mathematical operations, Eq. (15) can be
rewritten as

Equations (16) and (18) do not have the problems in-
curred in Eq. (2) because they do not use the ambiguous
expression sin(8)/sin(r )=n, and also because of the as-
sumption that the wave normal must be in the incident
plane no matter what the positions of the optical axis is.
Hence, they are more general than Eq. (2). In fact, Eqs.
(16) and (18) could be simplified to Eq. (2) if the axis were
parallel to the surface and perpendicular to the incident
plane, y=X, /Y, =0 (X, =0 in this case), so that y'=0.
And note that if 8 is the Brewster angle, sin(rp) or
sin(r ) can be replaced with cos8 by using the ambiguous
expression sin(8)/sin(r ) =n, .

Substituting Eq. (18), at last, into Eq. (1), the indices
for the extraordinary wave can be determined at any in-
cidence and in arbitrary orientation of the optical axis.

As concrete examples of applying the angle 13, the in-
dices of calcite and quartz are calculated and listed in
Table I. The parameters used in the calculations are
q=45. 93' for calcite (natural cleavage), 45' for quartz,
and no=1. 65836, n,, =1.48641 for calcite, no=1.54425,
n, =1.55336 for quartz. For the sake of showing the
agreement between the equations derived here and the ex-

TABLE I. The indices of refraction for the extraordinary waves, n, (P ) for calcite and quartz, and
the sine ratio n, (r ) for calcite only. The parameters applied in the calculations are q=45. 93' for cal-
cite (natural cleavage) and 45' for quartz. The principal indices no =1.658 36, n, =1.48641 for calcite,
no =1.54425, n, =1.553 36 for quartz.

n, (P )

6I = —~/6 0=~/4
calcite quartz calcite quartz

0= 77./3
calcite quartz

8=57T/12
calcite quartz

n, (r„,)
0= 77./3
calcite

0 1.620 99 1.545 94 1.638 47
77 /8 1.615 52 1.546 24 1.629 86
w/5 1.562 38 1.547 13 1.572 48

377 /8 1.580 90 1.548 23 1.578 52
77 /2 1.560 31 1.549 25 1.550 43

Sm/8 1.S39 23 1.550 23 1.523 79
3m/8 1.526 42 1.550 95 1.509 16
777/8 1.520 65 1.551 37 1.503 19

1.519 13 1.551 50 1.501 71

1.545 06
1.545 49
1.546 72
1.548 18
1.549 72
1.550 99
1.551 85
1.552 31
1.552 45

1.649 13
1.637 66
1.608 73
1.573 40
1.540 67
1.511 82
1.497 84
1.492 91
1.491 80

1.544 56
1.545 10
1.546 59
1.548 39
1.550 19
1.551 60
1.552 47
1.552 89
1.553 00

1.654 12
1.640 54
1.607 49
1.568 52
1 ~ 533 61
1.504 60
1.492 18
1.488 58
1.487 90

1.544 35
1.544 96
1.546 55
1.548 60
1.550 54
1.551 99
1.552 81
1.553 15
1.553 24

1.646 94
1.564 70
1.472 51
1.433 17
1.434 59
1.461 84
1.487 78
1.506 99
1.514 76
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TABLE II. Comparison between calculation and experiment
of the refractive angles (in degrees) of the extraordinary ray, rI,
in calcite.
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0=~/6
calc. expt.

0=m/4 0=n/3 0= 5m/12
calc. expt. cale. expt. cale. expt. APPENDIX

0 12.70 13.01 21.46
n/8 13.83 13.23 22.59
n/4 16.43 14.35 25.23
3m/8 19.21 17.03 28.05
n/2 21.42 19.49 30.15

5m /8 23.13 23.00 31.60
8'/4 23.83 23.65 31.78
7m. /8 23.96 23.97 31.59

23.94 24. 12 31.46

21.42 28.77
23.03 29.93
26.15 32.62
28.21 35.44
30.05 37.39
31.04 38.37
31.22 38.25
31 ~ 14 3776
31.26 37.52

28.60
29.77
32.84
35.85
37.66
38.37
38.56
37.96
37.49

33.73
34.90
37.63
40.43
42.26
42.84
42.49
41.86
41.55

33.78
35.33
38.17
40.77
42.22
42.53
42.01
41.72
41.50

To work out the coordinates of W(X, I',Z„), which
de6ne the point of intersection between the extended ex-
traordinary wave normal and the coordinate surface of
point P (see Fig. 2),

X =X, d(P—W) sinN,

Y' = F, + d (PW ) cos@,

zu) Z1

the segment PR'should be settled as

periments in Ref. [1], the refractive angles of the ray for
calcite are listed in Table II.

d (PW) =d (OP) sin(a) /sin(a+ ZOPW),

with

IV. CONCI. USION AND DISCUSSION

The ellipsoidal equation depicting double refraction
propagation is solved by setting up the coordinate equa-
tions describing the extraordinary ray's behavior with the
easily measured angular parameters. Based on the solu-
tions, the equations with respect to the refractive angle of
the ray, rp, and the angle /3p between the ray (or the
Poynting vector) and the optical axis, as well as the re-
fractive angle r and the angle p between the axis and
the wave normal of the extraordinary wave, are given.
They are applicable to CAIS [of course, to CAPS as well,
provided the inclined angle of the axis g in Eq. (18)
equals zero] at any incidence and for arbitrary rotation of
the crystal. By applying these solutions together with
Eq. (1), it is now feasible to determine the indices of re-
fraction for the extraordinary wave with experimentally
measurable parameters. As an example of application,
we calculated the indices for calcite and quartz under
some angular parameters and listed than in Table I.

By analogy with Snell's law for the extraordinary wave,
we have

sin(0)/sin(r ) =n, (r ) .

To identify the sine ratio from the index, n, (r ) for cal-
cite at 0=m/3 is also listed in Table I. Apparently, the
ratio does not equal n, (P„). Also, we calculated the ratio
sin(8)/sin(rp) for the extraordinary ray, which also does
not equal the index. Therefore, Snell's law is generally
not valid for either the extraordinary wave or the ex-
traordinary ray, except when the axis is both parallel to
the surface and perpendicular to the incident plane.

d (OP) =Xi + I'i +Z i

cos(ZOPW)

= [d (OP)+d (PM) d(OM)—]/2d (OP)d (PM)

d (PM) =X& /sin@,

d (OM)=Z +d (0 M)

d(OpM)= Y, +X, /tanC& .

To work out P with an expression of angular variables

cosp = sin(r )cosy cos(C&+ y )+cos(r )sing,

the following equations are necessary:

cosP =[I (OW)+d (OA')

—d (2'W)]/2d(OW)d(OA'),

d (OW) =Z, /cos(r ),
d (OA ') =Z, /sinai,

d (A'W)=[d (OpW)+d (Op A')

—2d(Op W)]d (Op 3 ')/cos(4+@'),

d(OpW)=Z, x tan(r ),
d(Op A') =Z, /tang .
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