b 0000

:Ce,Mn(b).

result are:

ases

O₇ Ca₅(PO₄)₃F

is formed via in 650-800⁰C, some gases are wing reactions

+ 6P0F₃

8CO₂ + 8CaF₂

eted only when s. So the fored phosphor can sing amount of

8-201882 (1983). Solid State

at. Bull., V. 7

es. Report,

LASER SELECTIVE EXCITATION OF Cas:Pr *

Shihua HUANG, Wenlian LI, Xi LUO

Changchun Institute of Physics, Academia Sinica, Changchun, China

 ${
m C_{2V}}$ and ${
m C_{4V}}$ sites have been identified in CaS:Pr,Na by laser selective excitation. Vibronic transition from the sites without charge compensator nearby has also been discussed.

1. INTRODUCTION

CaS has NaCl structure, the local symmetry of Ca is O_{h} . As trivalent rare earth ion substitutes for divalent calcium, the excessive charge is compensated by codoped monovalent alkali metal ion or by calcium vacancy 1 . Moreover, introducing charge compensation distorts the local symmetry of the rare earth ions, thus makes intra-4f configuration electric dipole transition of the rare earth ion possible.

In this paper, Pr³⁺ sites with different local symmetries in CaS:Pr,Na have been studied by laser selective excitation, their properties have been discussed.

2. EXPERIMENTAL RESULTS

Sample was prepared with the method described in². The concentrations of Pr and Na are 0.1 at.% and 0.5at.% respectively. X-ray differaction shows that only CaS phase exists in the sample.

The sample immersed in liquid nitrogen is excited by a nitrogen laser pumped dye laser. A mixture of coumarin-460 and coumarin-485 dissolved in ethyl alcohol (molar concentration $5 \times 10^{-3} + 5 \times 10^{-3}$) is used as laser dye. Fluorescence of the sample is measured by a Spex-1403 monochromator and processed by a microprocessor. Emission spectrum excited by the nitrogen laser is also measured.

The dye laser is tuned around 20200cm^{-1} , with

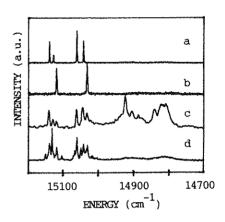


FIGURE 1 $^{3}P_{0}^{-3}F_{2}$ emission spectra of Pr $^{3+}$ in CaS: 0.1 at.% Pr. 0.5 at.% Na at 77K, the excitations are a)20198 cm $^{-1}$; b)20182 cm $^{-1}$; and c)20291 cm $^{-1}$; d) 337.1 nm.

which $^3\mathrm{P}_0$ of Pr^{3+} is populated. Spectra of $^3\mathrm{P}_0^{-3}\mathrm{F}_2$ emission under various excitation wavenumbers are shown in Fig. 1 a-c. Fig.1 d is the emission spectrum exicted by 337.1nm. In Fig. 2, excitation spectra of the flurescences corresponding to Fig. 1 a, b and c are shown.

Samples with constant Pr concentration (0.1 at.%) and different concentrations of codopant (0.01 at.% and 0.5 at.% K) were also prepared. Their fluorescence spectra excited by 337.1nm are compared in Fig. 3.

3. DISCUSSION

The emission lines in Fig. 1 a, b and d are

Work Supported by National Natural Science Foundation of China

0022-2313/88/\$03.50 © Elsevier Science Publishers B.V. (North-Holland Physics Publishing Division)

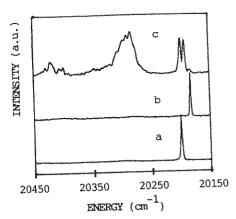
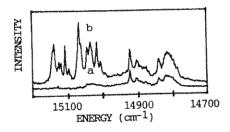



FIGURE 2 Excitation spectra of CaS:Pr,Na, at 77K, monitoring at a) 15062 cm $^{-1}$ (A); b) 15119 cm $^{-1}$ (B); and c) 14927 cm $^{-1}$ (C).

 $$^{3}\rm{P_{0}}^{-3}\rm{F_{2}}$$ emission spectra of a) CaS: 0.1 at.% Pr, 0.01 at.% K; b) CaS: 0.1 at.% Pr, 0.5 at.% K, excited with 337.1 nm at 77K.

listed in Table 1. With 337.1nm, many sites can be excited simultaniously. Most of the lines in first row of Table 1 can be selectively excited, site A and site B are the strongest among them. ${}^{3}P_{0} - {}^{3}F_{2} \text{ emissions of A and B are with 4 and 2 lines respectively. Considering possible compensation sites and selection rules, A and B are, most likely, sites with C<math display="inline">_{2v}$ and C $_{4v}$ symmetries, compensations are in (1,1,0) and (0,0,1) directions, which are the directions oriented to the nearest and next nearest calcium sites.

Table 1. ${}^{3}\text{P}_{0}-{}^{3}\text{F}_{2}$ emission lines of various Pr sites in CaS:Pr,Na

Site	Excitation (cm ⁻¹)	Emission (cm ⁻¹)
out.	29665 (337.1rm)	15151.8, 15144.4, 15140.6 15138.4, 15133.0, 15129.0 15123.8, 15119.2, 15105.0 15087.6, 15071.0, 15068.2 15062.0, 15051.2, 15043.4 15037.0, 15032.4, 15022.4 15017.8, 15005.6
A	20198	15140.6, 15129.0, 15062.0, 15043.0
В	20182	15119.4, 15032.4

In the spectrum excited by 337.1nm, besides two groups of narrow lines, there are two broad bands (C) located at about 220cm⁻¹ below the narrow ones, while C is rather weak in the case of selective excitation of A and B. Intensity of C relative to that of the narrow lines increases with reducing the concentration of compensation ions (Fig. 3) or increasing temperature. Excitation peaks of C are at the high energy side of ${}^{3}P_{0}$. The facts indicate that C is from vibronic transition. Local symmetry of Pr ions without compensation nearby is approximately O_h, intra-4f transition in this case is mainly due to coupling of the electronic states with the vibration modes without inverse symmetry.

REFERENCES

- H.L. Tsai and P.J. Maschter, J. Electrochem. Soc. 128 (1981) 2229.
- W. Li, T. Shao, Y. Zhou and H. Liu, in New Frontiers in Rare Earth Science and Applications, Vol. II, eds Xu Guangxian, Xiao Jimei (Science Press, Beijing, 1985) pp. 788-792.

Journal of Lumin North-Holland, A

THE EFFEC

Weiping Changchur

IR stimul the IR ef

1. INTRODUCTOR There excenters, on citation, to the latter indecay of the

tation, whi

transfer, i

under chara In ZnS:1 excitation spectra and paper, the:

2. EXPERIM
ZnS:Nd
in liquid
gen laser
sten lamp
as the IR
spectra of
cate that
mulated af
A quenches

Center ted², when for the ending IR as absorp origin of IR sti

*Work su

0022-2313/ (North-Holl