pendent of the 490 eV centre. process can be behaviour of is what to be g level there uilibrium with radiative prorbidden, simi-(NO<sub>2</sub>)<sub>2</sub><sup>3</sup>.

the presence ransition probconstant lifenon-radiative levels, being the emitting

lex and sample on temperature the emitting is of the e in the decay

f the states g sublevels of licity from the way, by magthe centres.

an of samples, ort. Mr. J.M.

J. of Phys. C

nd M.F. Thomaz,
.) 'in print'.

Phys. C (Sol.

THE RECOMBINATION CROSS SECTION-ELECTRON ENERGY RELATION OF THE (e,A°) EMISSION IN CdTe:Li

Junye LIU and Xurong XU

Changchun Institute of Physics, Academia Sinica, Changchun, China

By means of the effective mass approximation, the recombination cross section-electron energy relation of the free electron-acceptor emission in CdTe:Li has been studied. This relation has been compared with the relative theory.

## 1. INTRODUCTION

The photoluminescence investigation in CdTe crystal were made by several authors  $^{1-3}$ . In this paper, the recombination cross section (RCS) was introduced to character the probability. For the shallow acceptor  ${\bf A}^{\rm O}_{\rm Li}$  (E $_{\rm A}$ =52meV), the effective mass approximation is valid. We have got RCS-electron energy relation by processing the photoluminescence line shape of the (e,A $^{\rm O}$ ) emission in CdTe:Li.

## 2. EXPERIMENT

The impurity Li was diffused into CdTe crystal by two steps  $^4$ . First, anneal of sample is made in a quartz tube at  $350^{\circ}\mathrm{C}$ , under Te atmosphere for 320 hours. Second, Li diffusion is made from  $\mathrm{Li}_2\mathrm{CO}_3$  solution deposited on a polish surface of CdTe crystal and in a horizontal furnace, under a continuous flow of  $\mathrm{H}_2\mathrm{-N}_2$  mixture. The temperature is about  $350^{\circ}\mathrm{C}$  and diffusion time is 1 hour.

For photoluminescence measurements were performed with  ${\rm Ar}^+$  laser emitting about 100 mW power at 488 nm. The sample temperature was maintained at 11K by a cryogenic system.

# 3. RESULTS AND DISCUSSION

The energy position of the (e,  $A^O_{Li}$ ) emission band is about at 12535 cm $^{-1}$ . Both the (e,  $A^O_{Li}$ ) emission band and the recombination band of the bound to the neutral acceptors ( $A^O_{Li}$ , X) were well separated $^4$ . The (e,  $A^O$ ) emission

line shape is given by the product<sup>5</sup>

$$I(\hbar \omega) \propto \rho(E_C) f(E_C) |M_{e,A} o(k)|^2$$
 (1)

where  $\mathbf{E}_{\mathbf{C}}=\hbar \mathbf{o}-\mathbf{E}_{\mathbf{g}}+\mathbf{E}_{\mathbf{A}},~\rho(\mathbf{E}_{\mathbf{C}})$  and  $f(\mathbf{E}_{\mathbf{C}})$  are the electron density of states and the electron distribution function respectively. The transition probability-energy relation has been considered in (1). But we can not obtain RCS-electron energy relation from (1) directly. However, we know that  $I(\hbar \mathbf{o})$  are proportional to the recombination rate R, The recombination rate R in the  $(\mathbf{e},\mathbf{A}^{O})$  emission is given by  $\mathbf{o}$ 

$$R = \sigma(h\omega) \quad V n_e N_A^O \qquad (2)$$

where  $\sigma$  (  $\hbar \omega$  ) is RCS,  $V = (2E_C/m_C)^{\frac{1}{2}}$  is the electron velocity before recombination.  $n_e = \rho$  ( $E_C$ ) is the electron distrubution in the conduction band, and  $N_A^O$  is the neutral acceptor concentration. RCS-electron energy relation,  $\sigma$  (  $\hbar \omega$ )  $\propto E_C^{-\frac{1}{2}}$ , has been determined by fitting (2) to the curve a which is the photoexcited emission spectrum of the sample in Fig. 1.

By the Ridley's theory, RCS of the (e,A $^{\rm O}$ ) transition can be represented by  $^{\rm 7}$ 

$$\sigma (\hbar \omega) \propto \frac{P_{CV}^2}{\left[1 + (E_C/R_{HV})\right]^4 E_C^{\frac{1}{2}}}$$
 (3)

where  $R_{HV}$  is the effective Rydberg energy,  $P_{CV}$  is the interband matrix element of the momentum operator. Using the formula (3) and the effective mass approximation, we have got the theoretical value of RCS (curve a in Fig. 2).

0022-2313/88/\$03.50 © Elsevier Science Publishers B.V. (North-Holland Physics Publishing Division)



FIGURE 1 The point curve a is the  $(e,A^{\circ})$  emission at 11K. The solid curve b has been obtained by fitting formula (2) to the spectrum data.



FIGURE 2 The curve b, the relation  $\sigma(\hbar\sigma) \propto E^{-\frac{1}{2}}$  has been compared with the theoretical value calculated by (3), curve a.

For the comparison  $\sigma(\hbar\omega)\propto E_C^{-\frac{1}{2}}$  is also given as curve b in Fig. 2. Obviously, both curves a and b decrease with the increase of the electron energy. This means that the larger electron energy is, the smaller RCS is. The relation  $\sigma(\hbar\omega)\propto E_C^{-\frac{1}{2}}$  is simpler for discribing RCS than formula (3). The maximum of RCS in our experiment is  $\sigma(\hbar\omega)_{max}=8.73~\text{X}10^{-17}~\text{cm}^2$  which is smaller than the geometric area of the acceptor  $A_{Li}^O$ ,  $\pi a^2=7.25~\text{X}10^{-16}~\text{cm}^2$ .

### ACKNOWLEDGEMENTS

The authors wish to thank Zhang Jiying, Kong Xianggwi and Li Qinghua for their technical assistance.

#### REFERENCES

- R. Triboulet et al., J. Electron-Chem. Soc. 120 (1973) 1260.
- 2. S. S. Suga et al., Solid State Commun. 15 (1974) 871.
- Q. Kim et al., Phys. Stat. Sol. (b)122 (1984) 263.
- 4. Liu Junye and Xu Xurong, Chinese J. Lumin. 8 (1987) 5.
- 5. R. Ulbrich, Phys. Rev. B8 (1973) 5719.
- 6. K. Colbew, Phys. Rev. 141 (1966) 742.
- 7. B. K. Ridley, Quantum Processes in Semiconductors, (Clarendon Press, Oxford, 1982) 198.

Journal of Lu North-Hollan

PHOTOLL

Hsiangr

Laborat P. R. C

The pho dissoci non-rad explair of hydr

It is g generated states in recombine or being t edge to di non-radiat nescence ( rising for

Where, T<sub>O</sub>
Accordi
amorphous
electrons
up to a de

Where,  $\omega_0$ To the recomponentia
(E is the states) an obtain E.
Fisher

PL is asso electron-h vated proc

Present a

0022-2313/81 (North-Hollar