formal of Luminescence 40 & 41 (1988) 653-654 Sorth-Holland, Amsterdam

or the $^{5}D_{0}$ ($^{5}6$)

epletion and j states in the wing ratio for $^{\rm C}_2$ site at $^{\rm C}_{\rm Eu}$ 05 : 0.5 : 0.6 ement with the

⁵D₀(S₆)

on (%)

ties from the ier stationary . Dashed lines alculations.

1966) 1689; 968) 283. hem. Soc.

1.

28 (1983) 275. M.E. Baken and Laboratohilips TCDS), vision for the

strochem. Soc. et al.,

sfer Processes ess, New York $_{\text{1b}}^{3+}
ightharpoonup \text{Ce}^{3+}$ ENERGY TRANSFER IN $_{3}^{\text{Ga}}_{5}^{\text{O}}_{12}\text{:Ce}^{3+}$, $_{\text{Tb}}^{3+}$ GARNET

Xingren LIU, Xiaojun WANG, Long MA, Wufu SHEN and Zhongkai WANG Changchun Institute of Physics, Academia Sinica, Changchun, China

The Ce^{3+} excitation spectrum, the Tb^{3+} fluorescence lifetimes and $\text{Tb}^{3+} \rightarrow \text{Ce}^{3+}$ energy transfer in $\text{Y}_{2}\text{Ga}_{5}\text{O}_{12}$: Ce^{5+} , Tb^{3+} have been studied under the excitation of ultra-violet radiation containing 266.0 nm laser pulses at room temperature.

1. INTRODUCTION

Yttrium aluminium($Y_3Al_5O_{12}$) and gallium ($Y_3Ga_5O_{12}$) garnets are the excellent host for luminescence and laser material. The $Y_3Al_5O_{12}$ and $Y_3Ga_5O_{12}$ garnet phosphors codoped with (2(3+)) and Tb(3+) are an interesting system in which a number of radiative, nonradiative and energy transfer processes can take place simultaneously.

In studing the fluorescence properties of the ${}^{\gamma}_{3}{}^{\Lambda}_{5}{}^{\circ}_{12}$: ${\rm Ce}^{3+}$, ${\rm Tb}^{3+}$ garnet, energy transfer from ${}^{\tau}_{5}{}^{\Lambda}_{15}{}^{\circ}_{12}$: ${\rm Ce}(3+)$ was observed by Liu and Ma of ${\rm Us}^{1}$. ${\rm Tb}(3+) \longrightarrow {\rm Ce}(3+)$ energy transfer in ${}^{\gamma}_{3}{}^{\Lambda}_{5}{}^{\circ}_{12}$: ${\rm Ce}$, ${\rm Tb}$ single crystaly films made by liquid phase epitaxy was studied under the excitation of the electron beam pulse 2 . Recently luminescence properties of the ${\rm Ce}(3+)$ ion in ${}^{\gamma}_{3}{\rm Ga}_{5}{}^{\circ}_{12}$ garnet 3 have been reported just. Here new green luminescence material by ${\rm Ce}(3+)$ and ${\rm Tb}(3+)$ —coactivated yttrium gallium garnet phosphor and ${\rm Tb}(3+) \longrightarrow {\rm Ce}(3+)$ energy transfer in this system are investigated for the first time.

2. EXPERIMENTAL

The procedure used in preparing the phosphors studied was essentially a solid-state synthesis at high temperature. A part of the Y(3+) ions were replaced by Ce(3+) and Tb(3+) ions. The performance of the processes of the preparation and optical measurement of sample had been described previously.

The 266.0 nm laser pulses obtained by

FIGURE 1 Excitation spectrum of the Ce(3+) 520 nm emission in $\rm Y_3Ga_5O_{12}$:Ce, Tb phosphor.

fourth-generation of YAG:Nd laser are used as the excitation source. The signal was analyzed by an BX-530 boxcar integrator.

3. RESULTS AND DISCUSSION

The strongest excitation band corresponding to the 4f-5d transition of the ${\rm Tb}(3+)$ is presented in the excitation spectrum of the ${\rm Ce}(3+)$ emission for ${\rm Y}_3{\rm Ga}_5{\rm O}_{12}$:Ce, Tb when the ${\rm Ce}(3+)$ emission at 520 nm is monitored (see Fig. 1). In ${\rm Y}_3{\rm Ga}_5{\rm O}_{12}$:Ce, Tb the excitation spectrum of the ${\rm Ce}(3+)$ ions coincides with the absorption spectra of the ${\rm Ce}(3+)$ and ${\rm Tb}(3+)$ ions. In the system ${\rm Y}_3{\rm Ga}_5{\rm O}_{12}$:Ce, Tb between the ${\rm Tb}(3+)$ (donor) emission spectrum and the ${\rm Ce}(3+)$ (acceptor) excitation spectrum overlaps considerably.

©22-2313/88/\$03.50 © Elsevier Science Publishers B.V. North-Holland Physics Publishing Division) These results show that the energy obsorbed by Tb(3+) ions transfers to Ce(3+) ions by non-radiative and radiationless energy transfer mechanisms.

Another feature of the radiationless energy transfer is to exhibit a charge of the fluorescence lifetime observed of donor. In fact the donor fluorescence lifetimes observed of the $^5\mathrm{D}_\mathrm{q}$ and $^{5}\mathrm{D}_{\mathrm{A}}$ levels of the Tb^{3+} are decreased with Ce concentration when the Y_Ga_5O_12:Ce,Tb samples are respectively excited by the 266.0 nm laser pulse with a width of 10 ns. For example, the intrinsic lifetimes γ_0 (418nm) and γ_0 (544nm) of ${\rm Tb}^{3+}$ in ${\rm Y_3Ga_5O_{12}}$:0.01Tb are 0.59 and 3.38 ms, respectively. The lifetimes au(418nm) and γ (544 nm) of the donor in the present of the acceptor [Ce(3+), 0.5%], however, are 0.16 and 2.38 ms, respectively. The radiationless energy transfer efficiency η is given. The calculated values of 7 (418 nm) and 7 (544 nm) are 0.73 and 0.30, respectively.

This sensitization effect depends on the donor (Tb) concentration. Figure 2 shows that the emission intensities of the Ce(3+) depend on the concentrations of Tb in $Y_3 \text{Ga}_5 \text{O}_{12}$ under 263 nm UV excitation at room temperature.

It has been established that the energy transfer from the $^5\mathrm{D}_3$ and $^5\mathrm{D}_4$ levels of Tb(3+) to the Ce(3+) ions takes place in the system $\mathrm{Y}_3\mathrm{Ga}_5\mathrm{O}_{12}$:Ce,Tb, which results in to enhance the emission. Under excitation of short wavelength UV, Tb(3+) ions in YGG:Ce, Tb system are excited into f⁷5d state which lies in the region from 250 to 285 nm and then rapidly nonradiatively decay to $^5\mathrm{D}_3$ and $^5\mathrm{D}_4$ levels. A part of the excitation energy directly transits from $^5\mathrm{D}_3$ and $^5\mathrm{D}_4$

FIGURE 2 Relative intensity of the Ce(3+) $5d(^2D_{3/2})-4f(^F_J)$ emission as a function of Tb concentration (χ) under 263 nm UV excitation at RT.

to $^7\mathrm{F}_\mathrm{J}$ levels and results in Tb(3+) characteristic emissions; and other part of energy transfers from $^5\mathrm{D}_3$ and $^5\mathrm{D}_4$ levels to Ce(3+) ions by nonradiative energy resonance. Radiative energy transfer from Tb(3+) to Ce(3+) is not important in the system $\mathrm{Y}_3\mathrm{Ga}_5\mathrm{O}_{12}$.

ACKNOWLEDGEMENTS

The authors are indebted to Yu Baogui and Guan Zhongsu for measuring the opetical spectra of samples.

REFERENCES

- 1. Liu Xingren, Ma long, Lumin. Disp. Dev. 5 (1984) 93(Chin.)(Received May 19, 1983).
- 2. J. Shmulovich, G.W. Berkstresser and D. Brasen J. Chem. Phys. 82 (1985) 3078.
- 3. Liu Xingren, Wang Xiaojun, Shen Wufu, Physica Status Solidi (a), 101 (June 16, 1987).

journal of Lumine North-Holland, A

ENERGY TRA

Siyuan ZHA Changchun

The fluore ters, the fluorescer calculated

The Tb³⁺ rescence, sc luminescent originates energy level about 380-6 of To 3+ ion is conside color in lu by ⁵D₃ ener of light c to improve It have increase th light colo xation beta pairs. Bu lower in stronger t of Th $^{3+}$. Ving lilgh a new quen of ⁵D₃ er machanism process b 75³⁺ ion ion. In

> 0022-2313/ North-Holl

phosphoric method. Were meas MPE-4 sp