North-Holland, Amsterdam

LUMINESCENCE AND CHARGE TRANSFER BANDS OF THE Sm(3+) AND EU(3+) IN Mg_BO_F_

Kingren LIU, Yinglan ZHANG, Zhihua WANG and Shuhua LU

Changchun Institute of Physics, Academia Sinica, Changchun, China

The excitation and emission spectra and the charge transfer bands of the Sm(3+) and Eu(3+) in $Mg_{*}BO_{*}F_{3}$ have been investigated under UV radiation and CR excitation. The charge transfer bands of Sm(3+) and Eu(3+) which center around at 43.5 and 34.2 $X10^{\circ}$ cm⁻¹, respectively are observed , respectively are observed at room temperature

1. INTRODUCTION

The magnesium fluoroborate material studied has composition $\mathrm{Mg_3B0_3F_3}.$ The luminescence of the rare earth activators in the system ${\rm Mg}_{\rm q}{\rm BO}_{\rm q}{\rm F}_{\rm q}$ has not been reported. In the past investigation charge transfer band was of doped with Eu(3+) $ion^{1,2}$.

In this paper we report the luminescence properties of the host lattice, Sm(3+) and Bu(3+) and charge transfer bands presenting in the excitation spectra of the Sm(3+)and Eu(3+) emissions in the magnesium fluoroborate.

2. EXPERIMENTAL

Samples discussed were prepared by solidstate reaction. An appropriate amount MgO, MgF $_2$, B $_2$ O $_3$ (or H $_3$ BO $_3$), and Sm $_2$ O $_3$ or compounds were mixed and fired at 1100°C for 2 hours. The white powder samples obtained were checked by x-ray powder diffraction analysis and have the hexagonal structure of $r-Mg_3BO_3F_3$. The luminescence properties of samples were measured by the YF-2 cathode-ray measurement system and MPF-4 type fluorespectrophotometer.

3. RESULTS AND DISCUSSION

It is found that a strong emission band peaking at 388 nm is the emission of the the excitation of the host lattice under

FIGURE 1 Emission spectrum of $Mg_3BO_3F_3$: Sm^{3+} phosphor

short wavelength UV radiation. Main emissions of the Sm(3+) and Eu(3+) ions in $Mg_2BO_2F_2$ are respectively located at 651 rm of the Sm(3+) ${}^{4}G_{5/2} - {}^{6}H_{9/2}$ transition and at 613 $^{5/2}$ $^{9/2}$ nm corresponding to the $^{5}\mathrm{D_0}^{-7}\mathrm{F_2}$ transition of the Eu(3+) under UV radiation and cathode-ray time to 10% initial excitation. The decay about 80 ms for the brightness value is Sm(3+) and Eu(3+) doped samples under CR excitation.

The fluorescence spectrum of $Mg_2BO_2F_2:Sm(3+)$ involves a emission band of the host lattice situated in the blue-violet region and some characteristic emissions of Sm(3+) the energy levels of Sm(3+) transition were marked, as in Fig. 1. The excitation spectrum the Sm^{3+} 615 nm emission in $\mathrm{Mg_3BO_3F_3}$ is shown in Fig. 2. The excitation and emission

sion rays

crograph of em particles

5102

optical

Eu(WO4)4

(WO4)4+SiO2

0022-2313/88/\$03.50 © Elsevier Science Publishers B.V. (North-Holland Physics Publishing Division)

INTENSITY (a.u.)

200

400

WAVELENGTH, nm

600

400

WAVELENGTH, nm

500

300

FIGURE 3 Excitation(left, $\lambda_{\rm em}$ =613 nm) and emission(right $\lambda_{\rm ex}$ = 295 nm) spectra of Eu(3+) in Mg_3BO_3F_3.

spectra of the ${\rm Eu}^{3+}$ in the magnesium fluoro-borate phosphor are shown in Fig. 3. All measurements were performed at room temperature.

and Blasse⁴ in other compounds.

Both the excitation spectra of the Sm(3+) and Eu(3+) emission in the magnesium fluoroborate contain an intense lines of the narrow 4f-4f and Eu(3+) transitions. transfer positions the of charge bands of the Sm(3+) and Eu(3+) ions in $Mg_3BO_3F_3$ at 43.5 and $34.2 (X10^3 cm^{-1})$, are located The difference value (9.3X10³ respectively. cm⁻¹) between the CTB positions of the Sm(3+) and Eu(3+) in magnesium fluoroborate very coincides with that one obtained by Jørgensen

ACKNOWLEDGEMENTS

200

The authors are grateful to Engineers Yu Baogui and Guan Zhongsu for measuring the optical spectra of samples.

REFERENCES

- 1. G. Blasse and A. Bril, J. Inorg. Nucl. Chem. 29 (1967) 2231.
- 2. G. Blasse, J. Chem. Phys. 45 (1966) 2356.
- 3. C. K. Jørgensen, Theoretical Chemistry of Rare Earths, in: Handbook on the Physics and Chemistry of Rare Earths, Vol. 3, eds. K. Gschneidner, Jr. and L. Eyring (North-Holland, Amsterdam, 1979) pp. 111-169.
- 4. G. Blasse and A. Bril, Phys. Letters 23 (1966) 4401.

SYNTHESI Ho, Er,

Journal of Lun

North-Holland

Hongjie Changchu

Present Ca_YSbO The R³⁺ yellowdiscuss

1. INTRODU Recentl: -Sb₂0₃-Eu₂ have been on the lum timonate i vestigate In this Sm^{3+} , Dy^{3+} (M=Ba, Ca of their our prece is to pres of the eff luminescer In add Dy³⁺ emis

ratio of

2. EXPERI
The
phosphors

tion and

concentra

Their lat powder n structur monoclin

3. RESULT

0022-2313/ (North-Holl