band edge excitations, four sites were divided into three groups: a)sites A and B could only be excited by 4f excitation; b)site D could only be excited by band edge excitation; c) site C could be excited by both 4f and band edge exictations.

We measured emission spectra of sites A, B and C at five temperature points in the range of 10K to 77K. Some new lines appear as the temperature increases. For site A there are five lines, peaked at 20355, 20348, 20313, 20271 and 20260 cm⁻¹; for site B two lines, 20407, and 20389 cm⁻¹; for site C four lines, 20381, 20376, 20362 and 20351 cm⁻¹. As expected from Boltzmann distribution at different temperatures, the new lines were assigned to transitions from the higher Stark levels of ⁵F₃.

Time resolved spectra of 5F_3 fluorescence were measured at 10K. From the obtained spectra, it is estimated that the transition probabilities of sites D, B, C are about 3×10^4 , 1×10^4 and $4 \times 10^3 \, \mathrm{s}^{-1}$ respectively. This shows that sites D, B and C are with different ligand environments.

We prepared a group of samples doped with

10⁻⁴ mol/mol Ho and codoped with 3.5 X 10⁻³, 1 X 10⁻⁴ mol/mol Li. It is found that the ratios of emission intensities from sites C and B to that from site A obviously increase with Li concentration. As an example, the ratios in the sample with 3.5 X 10⁻³ Li increase by 60% as compared with that in the sample with 3.5 X 10⁻⁴ Li. It indicates that sites B and C might be associates formed by Ho ion and Li ions, while site A might be a center that is hardly concerned with Li ions.

REFERENCES

- 1. M.R. Brown et al, Advances in Quantum Electronics, 2 (1974) 69.
- 2. Yu Jiaqi and Hai Ying, Luminescence and Display Devices (in Chinese), 3 (1984) 12.
- 3. Huang Shihua and Luo Baozhu, New Frontier in Rare Earth Science and Applications, Vol.II, eds Xu Guanxian and Xiao Jimei, (Science Press, Beijing,1985) pp.766-769.
- H.Zimmermann and R.Boyn, Phys. Stat. Sol. (b), 130 (1985) 315.
- S. Ibuki and D. Langer, Chem. Phys. 40 (1964) 796.

Journal of Lun North-Holland

LUMINESC

Hong ZHi Changchi

The lum states (

- 1. INTRODU Most of ficiently postulated further st nonradiati 3. Here we ZnS:Ho und exist diff
- 2. EXPERIM The lum N₂laser, v ing monoch microcompa

ent energy

The obser under the

0022-2313/ (North-Holl: