Self-guiding method for ruling diffraction gratings

Liang Hao-ming, Hao De-fu
Changchun Institute of Optics \& Fine Mechanics, Chinese Academy of Sciences
P.O. Box 1024, Changchun, People's Republic of China

Abstract

\section*{Abstract}

The paper presents a new approach to rule a lon diffraction grating, in which a short ruled portion of the ruling crating blank is used as a new dividing element of the encine to continue its ruling. The main ruling errors are analysed and some formulae for the calculation of these errors are derived. The actual resolution of a specimen is go\% of its theoretical value. 'The tentative results have verified the correctness of the principle links to this method.

Introduction

Diffraction cratings are now used not only for optical spectrometers, but slso for high precision measurement instruments. In order to rule ε long diffraction crating, a correspondincly lons dividing element in on engine as a reference is usually recarded as indispensable, but as we know, the long dividing system is very difficult to make. The dividing system with a datum grating has some advantaces, but the controlling length is limited to the lencth of the datum grating as well.

To solve this problem, we suçest the "self-guiding method" for ruling diffraction cratings. The "self-guiding method" is different from the traditional method, in which the dividing elements of the ruling encines are independent of the being ruled crating. It uses a ruled section of the ruling crating as a dividing datum element, so that ony long crating can be expected to rule in this way.

> Principle of the self-guiding method and analysis of the switching error

Imagine of the self-guiding method
At first, the encine ruled a portion of the rating on the becinninf of a lonc blank under the control of the signals from an interferometer with a conventional reference. When the Jength of the ruled section is long enough to the second interferoneter, it is utilized as the datum element for cenerating the "self-guiding sisnals" (fieg.l). By means of electronic circuits we revulate the amplitude and phase of the self-cuiding sionals to approach that of the sicnal from the first interferometer as close as possible . Then, the control sicnal of the encine is switched over to the self-guiding sicnal for further ruling . Obviously, in this way, any long cratings can be ruled.
Formation of the self-guiding gratings and its svitching errors
The grating error coused by the phase difference between the first signal and selfguiding signal at the moment of switching over is called "switching error" . We must find out the relationship between the "switching error" and the ruled prating error .

The error transferences of the daturn erating of splitting beam grating interferometer have been detailed in another paper, * here ve only use its some conclusions and formulae to analyse the switching error transferences.

In the interferometer, two diffraction beams of the grating (m_{I} and m_{2} beams in Fig.2) interfere and form a set of "half-wave phase difference plane". In the self-cuiding method, the half-wave planes of the last secment of the crating become the control sicnals for ruling the following section -

Fig. 2 is the schematic diagram about the switching error transference. It is drawn accordinc to the process in which the self-guiding sratinल is beinc ruled. The coordinate plane XOZ expresses the self-cuiding gratinc; the XOY plane expressesthe half-wave planes. गhe d is the lencth which is covered by diffraction beam; bis the spece between two beams. The simple exposition about secments of self-cuiding grating is explained below.

The segment I_{o} is the beginning secment which was ruled by conventional control signals, its grating pitch is e, there is no errors. The Δ, is the switching error . It is formed in the first ruling line after two signals have juet been switched. The Δ is switching error coefficient . The segments I_{1}, I_{2}, and I_{3} correspond respectively with the half-wave planesfrom the I_{0}, I_{1} and I_{2}. The formulation of these half-wave planes is :

[^0]\[

$$
\begin{equation*}
x_{k}=\frac{a}{2 m}\left(k+\frac{7}{2}\right) \tag{I}
\end{equation*}
$$

\]

The space between two neighbouring half-wave planes is :

$$
\begin{equation*}
\delta x=\frac{a}{2 m} \tag{2}
\end{equation*}
$$

The corresponding new grating pitch is :
$\bar{a}=2 \mathrm{~m} \cdot \delta \mathrm{x}$
Where k is an integer, m is the diffraction order number . From above-mentioned analysis we know the pitches of L_{1}, L_{2} and I_{3} all are a. These three segments all are normal segments .

$$
\begin{aligned}
& \text { Fig. 1. Schematic diagram of self-guiding method for ruling } \\
& \text { diffraction grating . }
\end{aligned}
$$

The segment l_{1} is a transition segment which has been formed while two beams of the interferometer are crossing the switching error Δa. The $x_{0} u$ and $x_{0} v$ are named transition lines, they divide the half-wave planes, which are between y_{1} and y_{2}, into A, B and C three different areas. The k-th half-wave plane equation is shown as follows :

$$
\begin{equation*}
x_{k}(X, Y)=\frac{a}{2 m}\left(k+\frac{1}{2}\right)+\frac{1}{2} \int_{0}^{x_{k}-y \operatorname{tg} \alpha} f_{2}(x) d x+\frac{1}{2} \int_{0}^{x_{k}+y \operatorname{tg} \alpha} f_{1}(x) d x \tag{4}
\end{equation*}
$$

Where α is diffraction angle of the two beams; $f_{1}(x)$ is the grating pitch error coefficient of the section which is covered by diffraction beam $m_{1} ; f_{2}(x)$ is the grating pitch error coefficient of the section which is covered by beam ma. For the position of the k-th halfvave plane in various area is different, when along the y direction to compute the averace position of the half-wave plane, the equation can approximately be shown (for $l_{1 I}$):

$$
\begin{equation*}
\bar{x}_{k}=\frac{1}{y_{2}-y_{1}}\left[\int_{y_{1}}^{y=-\left(x_{k}-x_{0}\right) \operatorname{ctg} \alpha} x_{A K}(x, y) d y+\int_{y=-\left(x_{k}-x_{0}\right) \operatorname{ctg} \alpha}^{y_{2}} x_{B k}(x, y) d y\right] \tag{5}
\end{equation*}
$$

According to different value of \bar{x}, we can divide this part into I,II and III segments . Finally, the new grating pitches of the above three segments are obtained respectively:

$$
\begin{aligned}
& \bar{a}_{l_{1} I}=a\left(1+\frac{a}{2 d} \Delta\right) \\
& \bar{a}_{l_{1} I I}=a \\
& \bar{a}_{l_{1} I I I}=a\left(1+\frac{a}{2 d} \Delta\right)
\end{aligned}
$$

The new pitch error coefficient is :

$$
\begin{equation*}
\bar{\Delta}=\frac{a}{2 d} \Delta \tag{6}
\end{equation*}
$$

The accumulated error from x_{1} to x_{2} is :

$$
\begin{equation*}
\int_{X_{1}}^{X_{2}} f(x) d x \tag{7}
\end{equation*}
$$

The accumulated error in l_{1} is :

$$
\int_{X_{0}-\frac{b}{2}-d}^{X_{0}-\frac{b}{2}} \bar{\Delta} d x+\left\{\begin{array}{l}
X_{0}+\frac{b}{2}+d \\
X_{0}+\frac{b}{2} \\
\Delta d x=\Delta a
\end{array}\right.
$$

Where x_{0} is the position of the switching error from the abovementioned analysis, it is clear that the error value of Δa was spread into $l_{1} I$ and l_{1} III, but the total accumulated error value is still Δa.

Tig. 2. " Half-wave phase difference plane " and error transfer of self-cuiding method •

The segment l_{2} is formed while the two beams are gradually crossing the l_{1}. From four boundary points between three portions of the l_{1}, there are eight transition lines, they divide the half-wave plane into C,D,......, 0 , thirteen areas and I,II,, eight segments. Each area and segment can be analysed by means of the formulae (4) and (5). Here we only give out the corresponding new grating pitches of each segment in

$$
\begin{aligned}
& \bar{a}_{l_{2} \mathrm{I}}=a\left[1+\frac{\bar{\Delta}}{2 d}\left(x-x_{1}+d+\frac{b}{2}\right)\right], \\
& \bar{a}_{l_{2} \text { 听 }}=a\left[1-\frac{\bar{\Delta}}{2 d}\left(x-x_{1}-3 d-\frac{3}{2} b\right)\right]
\end{aligned}
$$

Where x_{1} is the beginning point of the l_{1}. The accumulating error of each segment can be evaluated according to formule. (7) . Obviously, the total accumulating errors in the l_{2} are still $\triangle \mathrm{a}$.

Recause of the length of L_{3} is shorter than (2d+b), so that any normal segment will not arise. The transition lines will be closer and closer. The error function will be more complicated, but the amplitudes of errors will give more average values and they can be evaluated by the above formulae. Obviously, the maximum pitch error of a self-guiding crating is the Δa at the switching point; the next one is the $\frac{a}{2 d} \Delta a$ in the l_{1} segment; the later vill be much smaller

Since $2 d \gg a$, so the $\frac{a}{2 d} \Delta a$ and the later pitch errors can be usually nesilected. If the phose difference between two signals while they are switched is s^{0}, then

So long as $s<7.2 \mathrm{~m}$, then $\Delta \mathrm{a}<\frac{1}{1 \cap 0} \mathrm{a}$, this precision can satisfy the requirement of sood diffraction gratings. Practically, some phase comparision instruments can sive $s<1^{\circ}$. Relations between self-guiding grating length and its accumulating errors

It is clear from the forming process of self-guiding gratings that the lensth of each normal segment becomes shorter and shorter with a quantity $(2 d+b)$ and the length of each error segment becomes longer and longer with a quantity (2d+b) .
(I) If $n(2 d+b) \leqslant I_{0}, n$ is an integer, then normal segments and error segments are formed n times alternately . The total lencth of the self-guiding grating is

$$
\begin{equation*}
I_{\Sigma 1}=(n+1) I_{0}-n(2 d+b)+n \Delta a \tag{9}
\end{equation*}
$$

(2) If $(n+t)(2 d+b)>I_{0}$, t is an integer, then no normal segment arises after In . If only consider the relation between the length of the grating and the accumulating errors, we can assume a combined segment $(2 d+b)+l_{n-1}+I_{n}$ and repeat it t times, so the lensth is

$$
\begin{equation*}
I_{\Sigma 2}=t\left[I_{-}-\frac{J}{2}(2 d+b)\right]+t \Delta a \tag{10}
\end{equation*}
$$

The total length of the first part n segments and the second part t segnents is
$L_{\Sigma}=(n+t+1) I_{10}-\left(n+\frac{t}{2}\right)(2 d+b)+(n+t) \Delta a$
According to formulae (8) and (11), the accumulating errors can be written :

$$
(n+t) \Delta a=(n+t) \frac{s a}{720 m}
$$

So long as $(n+t) s<72 \mathrm{~m}$ is satisfied, then the accumulating error is smaller than $\frac{1}{10}$ a , it satisfies the requirement of good cratings.

If we know the sign of the accumulated error of the original datum grating signal before hand, we can control a suitable positive or necative switching error and make it to offset the original ercors. In this way the self-guiding grating would have smaller accumulated error.

If we have a datum grating which would be used for guiding, the length of self-çuiding srating can be evaluated from formula(a). For example, $I_{10}=12() m m,(2 d+b)=25 \mathrm{~mm}, \mathrm{n}=4$, then

$$
\mathrm{I}_{\Sigma 1}=500+4 \Delta a
$$

We can get a 500 mm grating, in which the accumulated error is only $4 \Delta \mathrm{a}$. If the precision of phase comparing is $s=1^{\circ}$ and $a=\frac{1}{600} \mathrm{~mm}, \mathrm{~m}=2$, then

$$
4 \Delta a=\frac{a}{180 \mathrm{~m}} \approx 0.005 \mu
$$

When the datum grating which would be used for guidign is shorter, the length can be evaluated from formula (11). For example, if $L_{0}=60 \mathrm{~mm}, \mathrm{n}=2, \mathrm{t}=8$, and the others are the same as the above, then

$$
I_{\Sigma}=510+10 \Delta^{\mathrm{a}}
$$

We can get a 510 mm new grating in which the accumulated error is $10 \Delta \mathrm{a}$.

$$
10 \Delta \mathrm{a}=-\frac{\mathrm{a}}{72 \mathrm{~m}} \approx 0.01 \mu
$$

We cap also get a good diffraction grating. When we assume the accumulated error less than $\frac{1}{10} a$, and the $\mathrm{J}_{0}=120 \mathrm{~mm},(2 \mathrm{~d}+\mathrm{b})=25 \mathrm{~mm}$, if $\mathrm{s}=10^{\circ}$, then $\mathrm{I}=1618 \mathrm{~mm}+\frac{1}{10} \mathrm{a}$. If $\mathrm{s}=1^{\circ}$, then $I=15550 \mathrm{~mm}+\frac{1}{10} \mathrm{a}$.

Experiment design of the self-guiding method

This experiment of the SG method has been carried out on a continuous move grating ruling engine. Fig. l is the scheme diagram and Fig. 3 is the photo of the experimental device. The self-guiding signal is generated from the self-guiding grating with pitch $a=\frac{1}{600}$ by using a splitting beam grating interferometer. The diffraction order number is m=2 . The inetrfero-fringe is horizontal and has a width e=10 mm .

The splitting beam grating interferometer for self-guiding
The main requirement to the interferometer is its stability. If we want to keep the signal phase to l^{0} the position of the splitting beam plane must be stabilized about 0.0012μ. This is ε. very high accuracy. We have to adopt a lot of steps to increase the stability of the interferometer both in design and technology

Jor getting the required interfero-fringes, the splitting beam prism must be able to move in vertical direction and to rotate both in vertical and horizental slightly (see Fig. l) . The two reflective prisms must be able to move and rotate around certain scope. The imagery lens must be able to move in horizental and vertical direction . The collimator light source must be able not only to focus itself, but also to move and rotate as a whole. All of these adjustments and the high stability of the device are achieved by using appropriate adjusteble mechanisms

The device for receiving the signals and regulating
the phases of the signals
The receiving slit is cut in a small slide which can be driven in vertical direction on a small guide way . If ve want to ensure the phose difference of the two signals 1°, the position reculating accuracy of the incident slit must be

$$
\frac{1}{360} e \approx 30 \mu
$$

For the regulating of the receiving slit, we adopt following reduced speed driving systems; velocity adjustable small eledtrical machinery, belt reduced velocity machine, worm-çearing , screw-nut pair, small slide. This transmission system is smooth, steady and fine, it satisfies the requirements of the experiment.

> Results of the exneriment

Synopsis of the experiment
In the ruling period, do not allow to open the encine covers, so some adjustments must be carried out before ruling begins, some operation must be done out of the encine covers by means of electronical circuits. The main procedures of the experiment are as follows.

(1) Adjusting the interferometer

When the ruled section of the being ruled grating to a length equal or longer than $(2 d+b)$, then, using this segment as a reference to adjust the interferometer, and make it generate the applicable signals.
(2) Comparing two signals phases and switching over the signals

According to the figures shown in an oscillograph, regulate the position of the receiving slit to such a position that the two signals as the same in phase as possible. Choose any back stroke of the diamond to switch the control signal. All these operations have not any influence on the ruling engine. It continues its ruling to the given length.

Experimental results

Due to the limit of the engine travel, we can not be able to rule a long grating; the surface quelity of the specimens remains to improve further, but the experiments have verified all of the principle links to the self-guiding method.

(1)

(2)

Fig. 4. Interference frinces. (1) lst order (2) 2nd order

Fig. 5. Photo of the actual measured profile .

Fig. 6. aveform photofor comparing phases .

The size of the first ruled self-guding grating is $20 x 110 \mathrm{~mm}^{2}$; the crating pitch is $\frac{1}{600} \mathrm{~mm}$; the croove shape is symetric and blazing in the second order on both sides. The vavefront interferometric tests for it have been carried out, for first and second order interferocrams (Fig.4 (1) and Fig. 4 (2)), no any stagger and crook at the line where two signals are switched over and which is marked " V " in the photo can be found. It is similar to the gratings which were not switched over. The actual resolution power has been measured for the grating segment which is on the both sides of the switching line, each side is 25 mm long. The ectual resolution power of the segment in the second order is 5.4×104, this value is 90% of that of the theoretical value (half width method). Fig. 5 is the photo of the actual measured profile.

In this experiment, the comparing of the two signal phases was shown with a oscillograph . Fig. 6 is the waveform photo for the phases comparing . The phase difference is
smaller than 10°, according to the formula (8), the switching error is

$$
\Delta a=\frac{s a}{720 \mathrm{~m}}=\frac{a}{144}
$$

The grating belongs to a good diffraction grating，so its interfero－fringes are better and its resolution is higher．Later，the other two SG gratings were ruled．As the same as the first self－guiding grating，in their wavefront interfero－fringes，we can not ob－ serve any stagcer in the first and second order，it seems the same as the grating which has not been switched．The experimental results and theoretical analysis show that if we have a ruling engine with enough long travel，the long and good diffraction gratings should be achieved by using this self－guiding method ．
Discussions
（1）The ruled cratings in this experiment have symmetric grooves，they are ideal datum ratings for measuring the linear displacement．By means of this method，enough long grat－ ings can be made．These gratings may be used in large diffraction grating ruling engines． and fine measurement devices ．
（2）
（3）If we use this method to rule a long diffraction grating，we need a long travel engine and further solution of ruling technology－
Acknoviledgments
Thank Prof．Wang Da－heng and Prof．Tang Diu－hua for their profoundness and direction． Thank Associate Prof．Zhang Qing－ying and Associate Prof．Yang Hou－min for their help in the experiments．
References
I，iang Hao－ming，Zhang Qing－ying，Zhuang Kui，Yang Hou－min 光 学学报 1，51（1981）．

[^0]: * " The error transferrences of the datum crating with splitting beam grating interferometer for measuring linear displacement " has not been published .

