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11. Strong-Coupling Limita) 

PAN JDT-SHENG 

The effectiveHamiltonian and effective potential are given for the surface strong coupling polaron 
in polar crystals. Their binding energy and effective mas8 are also evaluated. When a piece of 
a polar crystal contacts with a piece of another non-polar material, and the high frequency di- 
electric constant em2 of the non-polar material is larger than that (i.e. e m ~ )  of the polar crystal, 
or is larger than a certain critical value ( E ~ Z ) ~ ~ ~ ,  polarons can exist in the interface. Reversely, 
when em2 < ( E - Z ) ~ ~ ~ ,  the polaron is not able to exist near the interface. If the non-polar material 
is metallic (i.e. em?, = m), there is a deeper potential well near the interface in which the polaron 
may be trapped. 

HpenCTaBnReTCR 3@@eKTHBHbIfi raMI4JIbTOH I4 3@@eKTHBHbIa nOTeHUHaJI, KOTOpbIe IIpH- 
HaAJIeFKaT IIOBepXHOCTHOMy IIOJIRpOHy CHJIbHOfi CBR311 B IIOJIRPOHblX KHpCTaJIJlaX. BbI- 
YHCJIeHbI M X  3HeprI4R CBRBYI 11 3@@eKTYIBHaR MaCCa. BOBMOXEHO CyUeCTBOBaTb nOJIRpOHb1 

MaTepHaJIOM, I4 6e3bIHepUHOHHbIX AI43JIeKTPI44eCKUX IIpOHHUaeMOCTefi Em2 HeIlOJIRpHbIX 
MaTepMaJIOB B O J I ~ I U ~ ,  YeM Em1 IIOJlRpHbIX KPEICTaJlJIOB, MJlH E m 2  6onbrue, 9eM HeHOTOPblX 
KpEiTHYeCli11X 3HaseHYIG (Ew2)min. HaIIpOTkIB, IlOjIRpOHbI He MOrYT 06pa30BaTb Ha rpa- 
HHUe, IIpEi E ~ Z  < (Em2)min. ECJIEI HeIIOJIRpHbIfi MaTepIlaJI HBJIReTCR MeTaJIJIOM ( E m 2  = 
= CO),  TO IlOf€BJIfieTCH rpy6orta~ IIOTeH4HaJIbHaR RMa, B KOTOpO% BOBMOXEHO JIOBElTb no- 
JIRPOHbl. 

Ha rpamqe pa3nena, rcorna nomipHbGi KpncTann ConpmacaeTcR c KpyrEiM IrenonRpHbrM 

1. The Strong-Coupling Limit 
In  the previous paper [l], I have derived the expression of the expectation value of 
( V,UZ)-l ( H  - all \U,U21 for the surface polaron (henceforward, I will denote the 
results oft he previous paper as I). They are, in principle, usable for arbitrary coupling 
strength. However, as  there is anunknown parameter A characterizing the coupling 
strength in this expression, we can obtain some useful resultsonly for the strong-coupl- 
ing and weak-coupling limits. In  the previous paper, we have accounted for the weak- 
coupling limit, the case of A = 1. Now, I will account for the case of A = 0 which 
corresponds to  the strong-coupling limit. Then, putting A = 0 in (I, 15)) we have 
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where HC) and P, are the new Hamiltonianand moinentuin obtained after twice unitary 
transformation which are (U,U,)-l H (  U,U2) and ( UlU2)-’ PllT (cTlU2) in (1.11) and 
(1.1,3) respectively. U I I  is the Lagrange’s multiplier, fQ,  f a  and their complex conjugate 
forms are the variational functions, p ,  and2 the variational parameters. In addition, V Q  
and V ,  are the coupling strength coefficients which are also given in (1.2) and (1.3). 

Minimizing (1) with respect to fQ, f a ,  ..., we can obtain these functions. Inserting 
these functions into (l), F becomes 

where we have expanded [ l  - (ull q ~ , / m ~ ) ] - ~  and [ l  - ( ~ 1 1 .  Q/ws)]-” contained in 
fQ ,  f g  and their square expressions (n = 1 or 2) in the series of uIl Q and ull - qIl, 
and only the second-order ternis are retained. Carrying out the variation of ( 2 )  with 
respect to po gives 

Inserting this p0 into (2) and changing the summation over Q and Q to integration, 
we finally have 

h~ 1 * p: e2 ( ~ ~ 1  - ~ ~ 2 )  - F ( u ,  A) = -- - m1lq + __ + 
2 2  2mz 42 Em1 (Ern1 4- E r n 2 )  

Here we have 

A, = 

OD 

I VQI2 and I V,I2 have been replaced by the values given in (1.2) and (1.3). (4) does not 
contain terms of odd order in Q and q, because these terms vanish in integrating over 
Q and q. It is evident from (4) that, as-A occurs in the error function, it isquite difficult 
to get an analytic experession for it. If we take z(2m*u,,qh)1/2 > 1 and z(2m* x 
x < 1 as two extremum cases, the problem may be greatly simplified and an 
approximate expression for3 can be also obtained. However, this will result in the 
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region of z - ( 2 7 n * w 0 ~ / h ) 1 / 2  which is most important for the surface polarons out of 
account, so we will apply the iteration method instead. 

i n  the variation of (4) with respect to i, we assume that the contribution of the 
terms containing z i i  can be ignored and3  in the integraad of f i ( z )  may be regarded as 
a constant IG. Performing the variation of (4) with respect to 1, we get 

1, may be regarded as a value of the zero-order approximation, or, if necessary, may 
be also considered as a value of the first-order approximation. If & in f,(z) is taken t,o 
be a zero-order value, i.e. To = (n~x~m$lSm*)~ /~ ,  KO determined from (8) is a first-order 
value. 

inserting all the variational functions and parameters determined above into (1.13), 
the expectation value of P, for t8he ground state 10) is obtained to be (henceforth, 

It is evident from (9) that the factor before U I ;  

can be interpreted as the effective mass of the polaron, and ull  has the meaning of 
the velocity which can be interpreted as the translation velocity of the polaron in the 
xy plane. 

Similarly, inserting these variational functions and parameters determined above 
into (I.ll), the expectation value of HLO) for the ground state 10) is obtained to be 
(hence-forth, denoted by H e f f )  

(11) 
It may be called the effective Hamiltonian. An inspection of (11) shows that the first 
term represents the kinetic energy of the polaron for the motion in z-direction and the 
rest of the terms, namely, 

8'; e2 ( ~ ~ 1  - v e f f  = ___ 2M,*ff + az Eool(Eco1 + E c o 2 )  

can be interpreted as effective potential function for the motion in z-direction. 

the ground state energy E, is obtained to be 
Taking the expectation value of the effective Hamiltonian (11) with respect to yz 

= (yzl H e f f  I y z )  
- 6 p: e2 ( E m 1 - E r n 2 )  

i v z )  - +- 

2Eff  $- (wzi __-I- 2mz 42 E m l ( E r n l  + E m 2 )  
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2. The Calculations and Discussions 
Since there is an unknown quantity in the expressions of the ground state energy, 
effective potential, and effective mass, first we must determine which value it takes. 
For this purpose, we inspect carefully the integral (6). It may be rewritten as 

Evidently, this integral has a maximum a t  x = b1i2z. On the other hand, (6) can also 
be represented as (making use of the integration by parts) 

'x) 

f , ( z )  = 2n1I2 J z(x - b1/2z) exp [-(z - b l k )  (x + b1I2z)] dx . 
bllaz 

If the factor x(x - b ' k )  in the integrand is replaced by b l / z z ( z  - b1/2z), the integral 
has a minimum. Thus, the following inequality holds : 

to 

2b1/% J (x-b%) exp [ - (x2-bz2)]  dx<f$$ < Yexp [ -2b1~2z(x-b1/2z)]  dz. 
61/22 b 1 P z  

The inequality on the left-hand side may be rewritten as 
m 

2(nb)'12 z(1 + 2bz2)-l J (x) exp [-(xz - bz2)] dx < fl(z) . 
0 1 1 2 ~  

Thus we have 
(1 + 2bz2)-1 (nb)l/Z z < f l ( z )  < n1/2(2b1/2z)-l . 

Since ,!lo = ( 2 r n * ~ > , / h ) ~ / ~  is the order of 2 x lo5 m and j112 is larger t,,an ($%/4) x 4 
for niost of the strong polar materials, W 2 z  = ,402.1/2z is larger than unity as long as z 
is larger than 0.1 nm. In this case f l ( z )  in (8) can be approximately represented as 

- 

to 

fi(z) A d i e  J exp L-2b1/2z(z - b1/2z)]  dz ~ ~ / 2 ( 2 b ~ k ) - ~  . (14) 
b l P 2  

Prom (S), j 1 I 2  correspondingly is 

For the case of z < 0.1 nm, we may simply put z -, 0 in (6). Then, from (8) we have 

Now, we return to evaluate the binding energy and inspect the effective potential 
of the polarons. According to (13a), if the wave function is known, the ground state 
energy can be obtained. Making use of the trial function 

y z  = 2zc3i2 exp ( - [ z )  (16) 
to substitute into (13a), through some simple calculations we may find this energy. 
However, 2 contained in f, ( x )  of (13a) is still a function of z .  As an approximation and 
in order to  simplify the calculation, we use the average value (A1i2) of (15a) over z to  
substitute for A1j2.  From (16) and (15a), the average value of over z is 
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Comparing (15b) and (15c), one can see that there is a formal resemblance between 
these two expressions, only their numerical values differ a little. Therefore, we may 
safely assume that ( f i /2)  as  given by (15c) is applicable to  the whole region of z > 0. 
Making use of the trial function (16) and inserting ( # I 2 )  represented by (15c) into 
(13a), after some simple calculations we find the ground state energy to be (putting 
( 4 / m * )  = 1) 

+?(Al n -i)"[1 +;(Al -;);]-"5'2}. 

Here we have used Po = (2rn*o~, , /h )~ /~  as a unit of length, i.e. 5' = [/Po. For convenience 
of writing, let us put 

(17) 
E , ( E m l  - Em2) 

(E ,  - F o o l )  ( F o o l  + &con)  * 
A, = 

Then, the extremum condition for the ground state energy, (aE,/?[') = 0, gives 

-4 ( A ]  - +)"[1-Z (Al - 44 1 5' = 0 .  
Tc 

From this equation 5' can be found. But the last term in the above equation is small 
compared with the other terms. If we ignore it, an approximate analytic expression 
for 5' can be obtained, 

[ ' = a  X 

(19) 
5' has the meaning of the reverse st,ate radius of the surface polaron. Evidently, [' 
cannot be smaller than zero, or else it will lose its meaning. It means that the inter- 
face polaron can be formed only in satisfying the following condition: 

In  fact, this condition can be satisfied as long as 
value ( ~ ~ ~ ) , , , i , , .  From (20) and (17) this critical value is given by 

is larger than a certain critical 
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This 
cm2 < ( E ~ Z ) ~ ~ ~ ,  polarons cannot exist near the interface. 

is also the critical value for the dead layer of the polarons, i.e. when 

Substituting (19) into (13b), we finally obtain 

B2 - 9; 72 nB 
(n + B) 4(A, - $) - (A, - +) 

(22 ) 
where we have used hw, as energy unit and 

B = - - A  A - - + - +  [ z (  ;) 3 
+ {b, (/I, - +;] - 272 (Al - ;) [A2 - (A, - qy. (23) 

L 

From the above results we come to the conclusion that the ground state energy of the 
interface polaron is as that of the bulk polaron proportional to  a2, but its value is 
much larger than that of the bulk polaron. In  general, the binding energy of the surface 
polaron is defined as the difference of the ground state energy of surface polaron and 
bulk polaron. Taking the ground state energy of the bulk polaron as ( ~ ~ / 3 n ) ,  and taking 
the average kinetic energy of the surface polaron parallel to  the zy plane as zero, the 
binding energy of the interface polaron is 

72 

16 

The values of [’ and AE calculated from (19) and (24) for some alkali halides and 
cuprous oxide (Cu,O) are given in Table 1. 

Now, we return to discuss the effective potential of the polarons. Because the image 
potential is inversely proportional to  z (the distance from the interface), it is evident 
from the effective potential (12) that when E~~ < cml, or E ~ ~ Z  is smaller than a critical 
value ( ~ ~ ~ ) ~ i ~ ,  the effective potential may be a positive value within a certain z range. 
In  this case there is no polaron near the surface which is called the dead layer for the 
polaron. As we pointed out in the previous paper, we can assume that the effect of 
the kinetic energy will decrease the polarization potential energy 1/4 of its original 
value [5 ] .  Then, from (12) we have the equation determining the thickness of the dead 
layer which is given by (putting (mt/m*) = 1) 

where x‘ = &z, and fi(z) is approximately given by (14), but in which 
the value given in (15a). After some simple calculations, (25) becomes 

is replaced by 

[ncxz’ + 8 (A, - +)I3 + [+ (A, - +) - -A2] [ m z ’  + 8(A, - $)I2 - 
-3(A1 - $)2 [naz’ + 8(A, - $)] - 24(A, - +)3 = 0 .  (26s) 

The calculation shows that when the polar crystal is in contact with vacuum, i.e. 
= 1, the polaron cannot exist within a certain range near the interface. The thick- 
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Table  1 
The calculated values of the dead layer z,, binding energies AE, and the reverse state 
radius (’ for the interface polarons*) 

1 0.35 0.56 
NaCl 2.78 5.5 4.9 5.26 2.25 2.0 0.927 1.7 

24.53 4.65 

1 0.85 1.05 
KCI 1.85 5.6 3.87 4.68 2.13 2.0 0.607 0.89 

19.04 4.13 

1 0.73 0.73 
NaBr 2.96 5.0 3.84 5.99 2.62 2.3 1.014 1.05 

24.33 4.61 

1 0.87 0.75 
NaI 3.25 4.8 3.31 6.6 2.91 2.6 1.158 1.08 

25.36 4.68 

1 2.7 
KI  2.11 4.6 2.76 4.94 2.69 2.3 0.381 0.71 

19.94 4.61 

1 1.7 
cu,o 1.81 2.5 8.1 10.5 4.0 3.0 0.213 0.42 

3.53 1.71 

*) The values of m*, %, wo, eo and ~~1 are taken from [4]. mo is the mass of the free electron, a,, 
the Frohlich constant for m* = 1. 

nesses of the dead layer calculated from (26a) for some alkali halides and cuprous oxide 
(Cu,O) are given in Table 1. One can see from this table that the thicknesses of the 
dead layer are rather small for these materials. They are about 0.1 nm. However, as 
the values of z are small, if we put z = 0 in f , (z) ,  from (25) we can easily obtain 

For comparison, the values calculated from (26 b) for some alkali halides are also given 
in Table 1. It is shown that the thicknesses of the dead layer obtained from (26a) and 
(26b) are nearly consistent. 

Reversely, when the high frequency dielectric constant ~~2 of the non-polar material 
is larger than sml, or larger than a certain critical value ( E ~ z ) ~ ~ ~ ,  according to (12), 
the effective potential of the polaron is negative. In this case, the polarons can be 
trapped near the interface. Let us assume that the non-polar material contacted with 
a piece of polar crystal is a metal, i.e. = 00, substituting (15a) into fi(z) of (12), we 
have 
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the possible gop between the metal 

Fig. 1. The potential well for the electron polarons and 
hole polarons near the interface of a metal and a 
strong polar crystal, 0 the electron polaron, o the 
hole polaron 

Fig. 1 shows the typical behaviour of this potential function near the interface. The 
upper and lower branches in this graph are the potential energies of the electron 
polarons and the hole polarons, respectively. This graph shows that near the inter- 
face there exist two kinds of potential well in which the electron polarons and the hole 
polarons, respectively, can be trapped. It is worth mentioning that the potential 
wells for the electron polaron and the hole polaron are completely dipped by them- 
selves. They exist with the polarons and disappear with them. 

In  the polar crystal contacted with metal, if the electrons are excited from the 
valence band to the conduction band by a radiation with apposite wavelength, under 
the action of the surface potential, the electrons and holes have a strong tendency to 
move towards the interface. Recombinations between the electron polarons and hole 
polarons are also possible to  happen near the interface. Since the sum of the depth of 
both the potential wells is much larger than the binding energy of the bulk polaron 
and the bulk exciton, the position of the radiative spectrum line emitted a t  the recom- 
bination between them is on the long-wave side of the absorption band and the bulk 
exciton line. If such radiation can be observed (I think, it should he observed), this 
phenomenon possibly provides a method for investigating the surface or the interface 
properties and the behaviour of the polarons near the interface. 

Finally, we examine the effective mass of the surface polaron. However, it is difficult 
to calculate the function f&) in the expression of the effective mass. We can only 
approximately evaluate it. For the case of z < 0.1 nm we may simply take z + 0 in 
f2(z) ,  then from (10) we have 

Inserting x1/2 denoted by (15b) into the above expression gives 

Reservely, in the case of z > 0.1 nni from (7) f2 (z )  may be approximately expressed as 

Inserting this result into (10) and averaging it over x gives 
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Inserting 3 given in (16c) and [' given in (19) into the above expression, we finally 
obtain (putting (m$m*) = 1) 

Thus, we come to the conclusion that the effective mass of the interface polaron is as 
that of the bulk polaron proportional to a 4 ,  but itjs value is much larger than that of 
the bulk polaron. 
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