ontract numbey
ledges a stipeng

ilfer. I. Am. Chermy,
W. Johnson, SPIE
353 166-

Polym. Sci., Polym,
nolecules 20 {1987

tah and SR. Kurtz,
1. Hochstrasser and
88y 75,

479,
itoand R.D. Miller

H

ometallic Polymers,
am Series 36 (1987)

R.M. Hochstrasser,

109;
ne Johnson, Polym.

st and R.D. Miller,
nd JM. Zagler, 3.
itsumoto, J. Amer.

Wojnowski, Chera.

sournal Bf Luminescence 45 {1990) 377379
North-Holland

77

THE FIRST ORBER DISTRIBUTION FUNCTION OF D-A TRANSFER RATES

IN ENERGY TRANSFER

Shihwa HUANG ! and Liren LOU 2

! Changehun Institute of Physics, Academia Sinica, Changchun, China
? Department of Physics, University of Science and Technology of China, Hefei, China

The differential equation governing the temporal variation of the distribution density, ¢( X, 7), of D-A transfer rates has
been derived directly from the macroscopic differential equations of energy transfer for the cases where the covariance
coefficient of D~A transfer rate, X, and D-D transfer rate, W, equals 0 or 1. ¢(X, t) may be expressed as a function of
$o{ X} the static distribution density of D-A transfer rates, and F(r), the decay dynamics of the donor fluorescence. F{¢}

derived by normalizing ¢{ X, r) coincides with the results of Burshtein’s hopping model.

1. Bonor fluerescence dynamics

The dynamics of a system containing random dis-
wibuted N, donors and N, acceptors can be described
by & set of differential equations 1]

AP {t)/de=—rP(e) = L. [ W, P (0) = Wo,Po(1)]

i’

W'ZX:jPi(l}s (1)
J

where P(¢) is the probability of the ith donor being
excited at time ¢, X, is the transfer rate of the ith
donor to the jth acceptor, W), is the transfer rate
between the ith and the {"th donors, r is the intrinsic
decay rate of the donor fluorescence, the first summa-
tion runs over all donors, while the second runs over all
acceptors. Approximations in (1) include: (i) weak, uni-
form excitation; and (i1) no A—D back transfer.

The observed donor decay curve is proportional to

Yo P{t)y="F(t)y=exp{—rt)f(1).

f(1} is dependent only on the energy transfer process.
Sumsming (1) over / we have

df (r)/dr=—X(e)f(1), 2)
with the initial condition

[0y =1, (3
where

f(z){_zxu-a(r)]/za(r) @

is the average transient D-A transfer rate and is related
o concrete processes. With these notations the solution
of eq. {2) may be written in a nermalized form as

f(l}mexp[ffolf(t)dt]. (5)

4022-2313 /90 /$03.50 @ Elsevier Science Publishers B.V.
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2. The first order distribution density function of D-A
transfer rates

Let (D*) be the set of all the excited doners. The
number of donors in this set, ¥Np«(1) is time dependent
and equals eF(7)}N,, where e is the excitation ratio, 1.e.
Ny« {0)/Np. Dividing (D *) into subsets according to X
and W, the D-A and D-D transfer rates of a donor to
all acceptors and all the other donors. At ¢, the number
of excited donors with X in [ X, X +dX] and W in
(W, W+ dW] equals Npo.()D(X, W, 1) dX dW,
where D({X, W, r) is the distribution density of the
donor according to their X and W, which is normalized

[ awdxp(x,w. =1

(D*y

We may also define ¢(X, t) and & (¥, ¢} as the first
order distmibution densities of the DA transfer rates

and D-D transfer rates of the excited donors

a( X, 1) :fm*)dWD(X, W, 1)

(W, 1) ='£D*)dXD(X, W, ).

Obviously, both of them are normalized. Thus, 3{’(1_) mn
eq. (5) may be expressed as

i(r):‘f(m)w(x, ) dX,

and (5) can be written as

f(t)=exp{—f(;d!fm*))(¢()(, ) ciX], (6)

which shows that the decay curve may be determined by
the first order distribution density of D-A transfer
rates.
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Let gy be the covariance coefficient of X and W.
If gyy =0, ie. X and ¥ are independent, D(X, W, 1)
will be $(X, )¢ (W, 1), the distribution of D-D trans-
fer rates in amy subset (D*X) will be (¥, 1). On the
other hand, if W= 4X, where A is a constant, then
gyw=1,and D{(X, W, 1)=o¢(X, ).

3. The static distribution density of D-A transfer rates

Let Fy(1)} = exp(—rt)f;(1) be the donor fluorescence
decay for the static model {2,3] where DD transfer
may be neglected. With the distribution density of D-A
transfer tates, f, (1) may also be written as

f0<r)mf0°°exp(~m¢o<x>dx, ™)

where ¢,(X) is the static distribution density of D-A
transfer rates. Since the excitation is uniform at ¢=10
for all kinds of transfer in our assumption,

¢ (X, 0) = ¢ (X). (®)

$,¢ X) may be obtained from f,(1). If we substitute in
eq. (7) with —ig, it then becomes

fo{=ig) = [ 4o (X) explixg) dX

and ¢,(X) can be obtained by Fourier transformation

go(X)= (i) [~ fi(-ig) exp(~iXg) dg.  (9)
i+l

For electric multipole interaction between donor and
acceptor, eq. (9) will be [4]

40 (X) = (1/7X) [ du
xexp[ - Xu e, (11— 3/5)) X!

—u cos(3m /5 )]

xsin[(37/s5) — u sin(3n/5)]. (10}
where s is the index of multipole interaction and ¢, is
the acceptor concentration. For 5= 6, eq. (10) may be

integrated analytically and results in the well known
expression

‘PU(X) = (CA/Z)(XG/Xa)IﬂCxP(“"“‘Z%XU/“X)-

4. The equation of motion of ${X, r) in an energy
transfer process

Considering a system containing donors and accep-
tors, a delta excitation is applied at r= 0. The excitation
is uniform, so the property of the excited donors at
¢ = O reflects the entirety of the donor, and eq. (8) holds.

Under weak excitation the number of unexcited
donors is close to Ny,. Let {DX) be a subset of unex-

cited donors with D-A transfer rate in the intervy
[X, X+dX]. The number of donors in (DX) j
Npdg( X} dX. As already mentioned in section 2, the
number of donors in (D *) is eN, F(1), and the numbe;
of donors in one of its subsets (D*X) s eNp F(7)d( X,
N dX

Now considering the temporal variation of the popy.
lation of the subset (D*X), eNp 3{ F{1)d( X, 1)} d X /3:,
Contributions {o this variation are from: (1) the intrip-
sic decay of donors, —reNp F{)H X, 114X {2) D-A
transfer from (D*X) to all accepters, — XeNp F{1)o( X,
1y dX (3) D-D transfer from (D*X) to (DX}, the
unexcited donors with D~A transfer rate unequal to X:
the above three terms make the population of (D*x)
decreased, and (4) D-D transfer from subset (D* X",
excited donors with D-A transfer rate unequal to X, 1o
(D X)) unexcited donor with D~ A transfer rate X, which
makes the population of (D*X) increased. (3} and (4)
are related to the details of the energy transfer process,
in this paper we only deal with the simplest cases.

For gyp =0, X and W are independent, term (3)
may be expressed as

—eNp F(1) de(D*X)qu(X, DWW, 1) dW

= —{W)eNg F{1)e(X, t}dX.
Here

(W)= [ wp(w. z)def Wy (W, t) dW
(B*X) (D*)

is the ensemble average of ID-D transfer rates and it
may depend on time t. The independence of X and W
ensures that the transfer rate of the donors in (D*X) to
the donors in (D X) equals its total D-D transfer rate
¥ times the ratic of the population of (DX) to the
donor number of the entirety, i.e. We (X)) dX. There-
fore, term {4) may be written as

eNpydy ( X) F(1) de(‘D‘}WMX'I)\p(W, ¢) dX'dW

= (W )eNp F(1)p,(X) dX.

Taking all the four terms into account, we have
A[F(e)e(X, N]/dt=—[r+ X+ (W) F()e(X, 1)

F(WIF(1)$o(X)-
It may be rearranged as
3$( X, 1)/t = — [ X+ (W) +df(t)/f(1) dr]
X $( X, 1)+ (W) (X), (11)

with eq. (8) as the initial condition. Hq. (11) may be
integrated and leads to

$(X, 1)
= [ & (X)/f(2)] exp[—X:—fU‘(W) dt’]

X[l +j;)'dz’ FCOWW) exP( i’ 4 foz’(w) dr”)].

(12)

Normalizing ¢(X
) =hol) x|

+£dz’(
chp[—j

which may also be
into {6).

3 &{X,¢)and f{

In concentratic
a donor Or as an
transfer or cross
hoth processes an
tion mechanism |
dependence on th
W, = Ay, where .
fions as in sect. 4,
this case is

dp (X, t)/0t=~
*




in the intervy
s oin (DX) g
a section 2, the
and the numbey

is eNGF(ryg( X,

ion of the popu.-
(X, 13 dX /8,
1 (1} the intrin.
1) dX; (2) D-A
AXeNDF(f_}MXy
} to (DAT), the
ie unequal to X:
ation of (D*xy
subset (D* X"y,
unequal to X, to
‘er rate X, which
wed. (3} and (4)
transfer process,
iplest cases.

:ndent, term (3)

tydw

A (W, 1) dW

sfer rates and it
nce of X and W
wes in (D*X) to
- transfer rate
of (DX) to the
3{ Xy dX. There-

W, 1) dX‘dW

mt, we have
NFE()e(X. 1)
(X}

f(e) dr]
X), (1)
Eq. {11) may be

)dr’]

+ fO'!(W) ér””-
(12)
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Normalizing ¢(X, 1) and using (7) gives
70 =hoo) el - [(9) a|
w [l (WY ) fole )
O

X exp

m[f(W) dr”], (13)

which may also be obtained by directly substituting (12)
into {6).

5 ¢{X, 1) and f(t)forgyw =1

in concentration quenching a center can act both as
a donor or as an acceptor depending on whether DD
transfer or cross relaxation happens at the center. If
both processes are caused by the same kind of interac-
tion mechanism and hence their rates have the same
depsndence on the separation between two centers, then
W, = A, where A is a constant. By similar considera-
tions as in sect. 4, the equation of motion of ¢{ X, 1) in
this case is

B (X, t)/Bt=—~[X(1+A4) +df(2)/f(1) di]
X (X, 1)+ AXe,( X). (14}

The solution of eq. (14) with the initial condition (8) is

$(X, 1) = {9 (X)/f(1)] expl — (1 +4) Xt ]

x[HAfofdz’f(z’) exp[ X(1+A4)r'].
(15)
Normalization gives
(1) =1 (1 + Ay ] = [4/(1 + 4)]
xfo’dr'f(r') dfp[(1+A) (1= )]yde’. (16)

Egs. (13) and (16) coincide with the results of
Burshtein’s hopping model [5].
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